1
|
Yang M, Wang D, Wang X, Mei J, Gong Q. Role of Folate in Liver Diseases. Nutrients 2024; 16:1872. [PMID: 38931227 PMCID: PMC11206401 DOI: 10.3390/nu16121872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Folate is a water-soluble B vitamin involved in the synthesis of purines and pyrimidines and is one of the essential vitamins for human growth and reproduction. Folate deficiency due to low dietary intake, poor absorption of folate, and alterations in folate metabolism due to genetic defects or drug interactions significantly increases the risk of diseases such as neural tube defects, cardiovascular disease, cancer, and cognitive dysfunction. Recent studies have shown that folate deficiency can cause hyperhomocysteinemia, which increases the risk of hypertension and cardiovascular disease, and that high homocysteine levels are an independent risk factor for liver fibrosis and cirrhosis. In addition, folate deficiency results in increased secretion of pro-inflammatory factors and impaired lipid metabolism in the liver, leading to lipid accumulation in hepatocytes and fibrosis. There is substantial evidence that folate deficiency contributes to the development and progression of a variety of liver diseases, including non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), alcoholic liver disease (ALD), viral hepatitis, hepatic fibrosis, and liver cancer. Here we review key studies on the role of folate in the pathophysiology of liver diseases, summarize the current status of studies on folate in the treatment of liver diseases, and speculate that folate may be a potential therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Minlan Yang
- School of Medicine, Yangtze University, Jingzhou 434020, China
| | | | | | | | - Quan Gong
- School of Medicine, Yangtze University, Jingzhou 434020, China
| |
Collapse
|
2
|
Jiang L, Ni Y, Zhao C, Gao D, Gai X, Xiong K, Wang J. Folic acid protects against isoniazid-induced liver injury via the m 6A RNA methylation of cytochrome P450 2E1 in mice. Front Nutr 2024; 11:1389684. [PMID: 38798770 PMCID: PMC11116731 DOI: 10.3389/fnut.2024.1389684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Background Cytochrome P450 2E1 (CYP2E1) converts isoniazid (INH) to toxic metabolites and is critical in INH-induced liver injury. The aim is to investigate the effect of folic acid (FA) on CYP2E1 and INH-induced liver injury. Methods Male Balb/c mice were used. The mice in the control group only received an AIN-93M diet. The AIN-93M diet was supplemented with 0.66 g INH/kg diet for the mice in the INH and FA groups. The mice in the FA group were treated with additional 0.01 g FA/kg diet. The one-carbon cycle metabolites, the expressions of CYP2E1 and the DNA and RNA methylation levels were detected to reveal the potential mechanism. Results FA treatment significantly reduced the alanine aminotransferase level and alleviated the liver necrosis. The mRNA and protein expressions of CYP2E1 were significantly lower in the FA group than those in the INH group. The N6-methyladenosine RNA methylation level of Cyp2e1 significantly increased in the FA group compared with the INH group, while the DNA methylation levels of Cyp2e1 were similar between groups. Additionally, the liver S-adenosyl methionine (SAM)/S-adenosyl homocysteine (SAH) was elevated in the FA group and tended to be positively correlated with the RNA methylation level of Cyp2e1. Conclusion FA alleviated INH-induced liver injury which was potentially attributed to its inhibitory effect on CYP2E1 expressions through enhancing liver SAM/SAH and RNA methylation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinyu Wang
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Zhang Y, Wei J, Feng X, Lin Q, Deng J, Yuan Y, Li M, Zhai B, Chen J. Folic acid supplementation prevents high body fat-induced bone loss through TGR5 signaling pathways. Food Funct 2024; 15:4193-4206. [PMID: 38506303 DOI: 10.1039/d4fo00404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Osteoporosis caused by bone loss is one of the serious global public health problems. Folic acid is a B vitamin with multiple physiological functions such as lipid regulation and antioxidant capacity, and its potential to improve bone loss has attracted our attention. Through NHANES database analysis, we found that folic acid intake was significantly correlated with whole-body bone mineral density (BMD) in people aged 20-60 years, and the association may be mediated by the body fat rate. Male C57Bl/6 mice were fed either a normal diet or a high-fat diet, and folic acid was added to drinking water for supplementation. Our results indicated that mice with high body fat showed bone microstructure damage and bone loss, while folic acid supplementation improved bone quality. At the same time, we found that mice with high body fat exhibited abnormal blood lipids, dysregulation of intestinal flora, and metabolic disorders. Folic acid supplementation improved these phenomena. Through the network analysis of intestinal flora and metabolites, we found that LCA and TGR5 may play important roles. The results showed that folic acid promoted the expression of LCA and TGR5 in mice, increased the phosphorylation of AMPK, and decreased the phosphorylation of NF-κB and ERK, thereby reducing bone loss. In summary, folic acid intake is closely related to BMD, and folic acid supplementation can prevent high body fat-induced bone loss. Our study provides new ideas and an experimental basis for preventing bone loss and osteoporosis.
Collapse
Affiliation(s)
- Yaxi Zhang
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410008, China.
| | - Jieqiong Wei
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410008, China.
| | - Xiangling Feng
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410008, China.
| | - Qian Lin
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410008, China.
| | - Jing Deng
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410008, China.
| | - Yuehan Yuan
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410008, China.
| | - Min Li
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410008, China.
| | - Bingfang Zhai
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410008, China.
| | - Jihua Chen
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410008, China.
| |
Collapse
|
4
|
Cabrera-Rode E, Cubas-Dueñas I, Acosta JR, Hernández JC, González AIC, Calero TMG, Domínguez YA, Rodríguez JH, Rodríguez ADR, Álvarez Álvarez A, Valdés RE, Espinosa LJ, Belent OT, Benavides ZB, Estévez ES, Rodríguez YA, del Valle Rodríguez J, Juliá SM. Efficacy and safety of Obex® in overweight and obese subjects: a randomised, double-blind, placebo-controlled clinical trial. BMC Complement Med Ther 2023; 23:58. [PMID: 36804035 PMCID: PMC9940432 DOI: 10.1186/s12906-023-03847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/16/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Obex® may be helpful in reducing body weight and fat. The current study was carried out to evaluate the efficacy and safety of Obex® in the treatment of overweight and obese subjects. METHODS A double-blind, randomised, controlled phase III clinical trial was conducted involving 160 overweight and obese subjects (BMI ≥ 25.0 and < 40 kg/m2) aged 20 to 60 years, who received Obex® (n = 80) and placebo (n = 80) plus non-pharmacological treatment (physical activity and nutritional counseling). One sachet of Obex® or placebo were administered before the two main meals each day for 6 months. In addition to anthropometric measurements and blood pressure, fasting plasma and 2 h glucose levels during the oral glucose tolerance test, lipid profile, insulin, liver enzymes, creatinine, and uric acid (UA) were determined, insulin resistance (HOMA-IR) beta-cell function (HOMA-β) were assessed and insulin sensitivity (IS) was calculated with three indirect indexes. RESULTS After 3 months of Obex®, 48.3% of the participants (28/58) achieved complete success in reducing both weight and waist circumference by greater than or equal to 5% from baseline, as opposed to 26.0% (13/50) of individuals receiving placebo (p = 0.022). Compared to baseline, at 6 months no differences were found between the groups concerning anthropometric and biochemical measurements, except for high-density lipoprotein cholesterol (HDL-c) levels, which were higher in subjects receiving Obex® compared to those receiving placebo (p = 0.030). After 6 months of treatment, both groups showed reduced cholesterol and triglyceride levels (p < 0.012) compared to baseline value. However, only those intake Obex® showed reduced insulin concentrations and HOMA-IR, improved IS (p < 0.05), and decreased creatinine and UA levels (p < 0.005). CONCLUSIONS The consumption of Obex® together with lifestyle changes increased HDL-c, contributed to a rapid reduction of weight and waist circumference, as well as improved insulin homeostasis, which did not occur in the placebo group, and appears to be safe as an adjunct at conventional obesity treatment. TRIAL REGISTRATION Clinical trial protocol was registered in the Cuban public registry of clinical trials under code RPCEC00000267 on 17/04/2018 and also registered in the international registry of clinical trials, ClinicalTrials.gov, under code: NCT03541005 on 30/05/2018.
Collapse
Affiliation(s)
- Eduardo Cabrera-Rode
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba.
| | - Ileana Cubas-Dueñas
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Janet Rodríguez Acosta
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Jeddú Cruz Hernández
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Ana Ibis Conesa González
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Teresa M. González Calero
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Yuri Arnold Domínguez
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - José Hernández Rodríguez
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Antonio D. Reyes Rodríguez
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Aimee Álvarez Álvarez
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Ragmila Echevarría Valdés
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Liudmila Jorge Espinosa
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Onelia Torres Belent
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Zoila Bell Benavides
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Elizabeth Senra Estévez
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Yanet Abreu Rodríguez
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Juana del Valle Rodríguez
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Silvia Marín Juliá
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| |
Collapse
|
5
|
Abstract
Methotrexate is a key component of the treatment of inflammatory rheumatic diseases and the mainstay of therapy in rheumatoid arthritis. Hepatotoxicity has long been a concern for prescribers envisaging long-term treatment with methotrexate for their patients. However, the putative liver toxicity of methotrexate should be evaluated in the context of advances in our knowledge of the pathogenesis and natural history of liver disease, especially non-alcoholic fatty liver disease (NAFLD). Notably, patients with NAFLD are at increased risk for methotrexate hepatotoxicity, and methotrexate can worsen the course of NAFLD. Understanding the mechanisms of acute hepatotoxicity can facilitate the interpretation of elevated concentrations of liver enzymes in this context. Liver fibrosis and the mechanisms of fibrogenesis also need to be considered in relation to chronic exposure to methotrexate. A number of non-invasive tests for liver fibrosis are available for use in patients with rheumatic disease, in addition to liver biopsy, which can be appropriate for particular individuals. On the basis of the available evidence, practical suggestions for pretreatment screening and long-term monitoring of methotrexate therapy can be made for patients who have (or are at risk for) chronic liver disease.
Collapse
|
6
|
Cano A, Vazquez-Chantada M, Conde-Vancells J, Gonzalez-Lahera A, Mosen-Ansorena D, Blanco FJ, Clément K, Aron-Wisnewsky J, Tran A, Gual P, García-Monzón C, Caballería J, Castro A, Martínez-Chantar ML, Mato JM, Zhu H, Finnell RH, Aransay AM. Impaired Function of Solute Carrier Family 19 Leads to Low Folate Levels and Lipid Droplet Accumulation in Hepatocytes. Biomedicines 2023; 11:biomedicines11020337. [PMID: 36830876 PMCID: PMC9953281 DOI: 10.3390/biomedicines11020337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Low serum folate levels are inversely related to metabolic associated fatty liver disease (MAFLD). The role of the folate transporter gene (SLC19A1) was assessed to clarify its involvement in lipid accumulation during the onset of MAFLD in humans and in liver cells by genomic, transcriptomic, and metabolomic techniques. Genotypes of 3 SNPs in a case-control cohort were initially correlated to clinical and serum MAFLD markers. Subsequently, the expression of 84 key genes in response to the loss of SLC19A1 was evaluated with the aid of an RT2 profiler-array. After shRNA-silencing of SLC19A1 in THLE2 cells, folate and lipid levels were measured by ELISA and staining techniques, respectively. In addition, up to 482 amino acids and lipid metabolites were semi-quantified in SLC19A1-knockdown (KD) cells through ultra-high-performance liquid chromatography coupled with mass spectrometry. SNPs, rs1051266 and rs3788200, were significantly associated with the development of fatty liver for the single-marker allelic test. The minor alleles of these SNPs were associated with a 0.6/-1.67-fold decreased risk of developing MAFLD. When SLC19A1 was KD in THLE2 cells, intracellular folate content was four times lower than in wild-type cells. The lack of functional SLC19A1 provoked significant changes in the regulation of genes associated with lipid droplet accumulation within the cell and the onset of NAFLD. Metabolomic analyses showed a highly altered profile, where most of the species that accumulated in SLC19A1-KD-cells belong to the chemical groups of triacylglycerols, diacylglycerols, polyunsaturated fatty acids, and long chain, highly unsaturated cholesterol esters. In conclusion, the lack of SLC19A1 gene expression in hepatocytes affects the regulation of key genes for normal liver function, reduces intracellular folate levels, and impairs lipid metabolism, which entails lipid droplet accumulation in hepatocytes.
Collapse
Affiliation(s)
- Ainara Cano
- Food Research, AZTI, Basque Research and Technology Alliance (BRTA), Parque Tecnologico de Bizkaia, Astondo Bidea, Building 609, 48160 Derio, Spain
- OWL Metabolomics, Parque Tecnologico de Bizkaia, Building 502, 48160 Derio, Spain
| | - Mercedes Vazquez-Chantada
- OWL Metabolomics, Parque Tecnologico de Bizkaia, Building 502, 48160 Derio, Spain
- Department of Nutritional Sciences, Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Javier Conde-Vancells
- Department of Nutritional Sciences, Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Aintzane Gonzalez-Lahera
- CIC bioGUNE, Parque Tecnologico de Bizkaia, Building 801-A, 48160 Derio, Spain
- CIBERehd, ISCIII, 28029 Madrid, Spain
| | | | - Francisco J. Blanco
- CIC bioGUNE, Parque Tecnologico de Bizkaia, Building 801-A, 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Karine Clément
- Nutriomics Research Group, Nutrition Department, Pitié-Salpétrière Hospital, INSERM, Sorbonne Université, F-75013 Paris, France
- INSERM, UMR_S 1166, NutriOmics Team 6, F-75013 Paris, France
- Assistance Publique Hôpitaux de Paris, Nutrition department ICAN and CRNH-Ile de France, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| | - Judith Aron-Wisnewsky
- Nutriomics Research Group, Nutrition Department, Pitié-Salpétrière Hospital, INSERM, Sorbonne Université, F-75013 Paris, France
- INSERM, UMR_S 1166, NutriOmics Team 6, F-75013 Paris, France
- Assistance Publique Hôpitaux de Paris, Nutrition department ICAN and CRNH-Ile de France, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| | - Albert Tran
- Team 8 “Chronic Liver Diseases Associated with Obesity and Alcohol”, INSERM, U1065, Centre Hospitalier Universitaire de Nice, C3M, Université Côte d’Azur, 06000 Nice, France
| | - Philippe Gual
- Team 8 “Chronic Liver Diseases Associated with Obesity and Alcohol”, INSERM, U1065, Centre Hospitalier Universitaire de Nice, C3M, Université Côte d’Azur, 06000 Nice, France
| | - Carmelo García-Monzón
- CIBERehd, ISCIII, 28029 Madrid, Spain
- Liver Research Unit, Santa Cristina University Hospital, Instituto de Investigación Sanitaria Princesa, 28009 Madrid, Spain
| | - Joan Caballería
- CIBERehd, ISCIII, 28029 Madrid, Spain
- Liver Unit, Hospital Clinic, 08036 Barcelona, Spain
| | - Azucena Castro
- OWL Metabolomics, Parque Tecnologico de Bizkaia, Building 502, 48160 Derio, Spain
| | - María Luz Martínez-Chantar
- CIC bioGUNE, Parque Tecnologico de Bizkaia, Building 801-A, 48160 Derio, Spain
- CIBERehd, ISCIII, 28029 Madrid, Spain
| | - José M. Mato
- CIC bioGUNE, Parque Tecnologico de Bizkaia, Building 801-A, 48160 Derio, Spain
- CIBERehd, ISCIII, 28029 Madrid, Spain
| | - Huiping Zhu
- Department of Nutritional Sciences, Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Richard H. Finnell
- Department of Nutritional Sciences, Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ana M. Aransay
- CIC bioGUNE, Parque Tecnologico de Bizkaia, Building 801-A, 48160 Derio, Spain
- CIBERehd, ISCIII, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-944-061-325 or +34-946-572-524; Fax: +34-946-572-530
| |
Collapse
|
7
|
Li N, Wen L, Yu Z, Li T, Wang T, Qiao M, Song L, Huang X. Effects of folic acid on oxidative damage of kidney in lead-exposed rats. Front Nutr 2022; 9:1035162. [PMID: 36458173 PMCID: PMC9705793 DOI: 10.3389/fnut.2022.1035162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/31/2022] [Indexed: 08/07/2023] Open
Abstract
INTRODUCTION Lead (Pb) has many applications in daily life, but in recent years, various problems caused by lead exposure have aroused people's concern. Folic acid is widely found in fruits and has received more attention for its antioxidant function. However, the role of folic acid in lead-induced kidney injury in rats is unclear. This study was designed to investigate the effects of folic acid on oxidative stress and endoplasmic reticulum stress in the kidney of rats caused by lead exposure. METHODS Forty specific pathogen-free male Rattus norvegicus rats were randomly divided into control, lead, intervention, and folic acid groups. The levels of SOD, GSH-Px, GSH, and MDA were measured by biochemical kits. The protein levels of Nrf2, HO-1, CHOP, and GRP78 were measured by immunofluorescence. RESULTS This study showed that lead exposure increased the blood levels of lead in mice. However, the intervention of folic acid decreased the levels of lead, but the difference was not statistically significant. Lead exposure causes oxidative stress by decreasing kidney SOD, GSH-Px, and GSH levels and increasing MDA levels. However, folic acid alleviated the oxidative damage caused by lead exposure by increasing the levels of GSH-Px and GSH and decreasing the levels of MDA. Immunofluorescence results showed that folic acid intervention downregulated the upregulation of kidney Nrf2, HO-1, GRP78, and CHOP expression caused by lead exposure. DISCUSSION Overall, folic acid alleviates kidney oxidative stress induced by lead exposure by regulating Nrf2 and HO-1, while regulating CHOP and GRP78 to mitigate apoptosis caused by excessive endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Ning Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Liuding Wen
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Tiange Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Tianlin Wang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Mingwu Qiao
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Lianjun Song
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xianqing Huang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
8
|
Jiang Y, Cao H, Chen X, Yu G, Song C, Duan H, Tian F, Wan H, Shen J. Associations of serum folate and vitamin C levels with metabolic dysfunction-associated fatty liver disease in US adults: A nationwide cross-sectional study. Front Public Health 2022; 10:1022928. [PMID: 36388270 PMCID: PMC9643688 DOI: 10.3389/fpubh.2022.1022928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/06/2022] [Indexed: 01/28/2023] Open
Abstract
Background Clinical research results on the relationship between folate and non-alcoholic fatty liver disease are contradictory. Metabolic dysfunction-associated fatty liver disease (MAFLD) is a recently proposed concept. Evidence about the relationship between serum folate and MAFLD, especially considering the status of serum vitamin C, is scarce. This study was aimed to investigate the association of serum folate levels with the prevalence of MAFLD, and further to analyze the potential impact of serum vitamin C status on their association. Methods Totally 2,797 participants from National Health and Nutrition Examination Survey (NHANES) 2017-2018 were included. Vibration-controlled transient elastography was used to detect liver steatosis and fibrosis. Participants were divided in groups based on the tertiles of serum folate or vitamin C, and the serum folate or vitamin C level in T1 was low. Logistic regression analysis in the complex sample module was performed to illustrate the association of serum folate levels with the prevalence of MAFLD. Stratification analysis by serum vitamin C status was performed as well. Results Compared with the serum folate levels of T1 group, participants in the T3 group had 47.9% lower risk of MAFLD [OR = 0.521 (95% CI: 0.401-0.677)]. However, when participants were stratified by serum vitamin C levels, there was no association between the serum folate levels and MAFLD in the T1 or T2 group. Among participants in the T3 group of vitamin C status, participants in the T3 group of serum folate had a 63.6% lower risk of MAFLD compared with the T1 group [OR = 0.364 (95% CI: 0.147-0.903)]. Conclusions High serum folate level is associated with lower prevalence of MAFLD, especially in participants with sufficient vitamin C.
Collapse
Affiliation(s)
- Yuqi Jiang
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Huanyi Cao
- Department of Endocrinology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xingying Chen
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Genfeng Yu
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Cheng Song
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Hualin Duan
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Feng Tian
- Health Management Division, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Heng Wan
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China,Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China,Heng Wan
| | - Jie Shen
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China,Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China,*Correspondence: Jie Shen
| |
Collapse
|
9
|
Zhang H, Zuo Y, Zhao H, Zhao H, Wang Y, Zhang X, Zhang J, Wang P, Sun L, Zhang H, Liang H. Folic acid ameliorates alcohol-induced liver injury via gut–liver axis homeostasis. Front Nutr 2022; 9:989311. [PMID: 36337656 PMCID: PMC9632181 DOI: 10.3389/fnut.2022.989311] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
The gut–liver axis (GLA) plays an important role in the development of alcohol-induced liver injury. Alcohol consumption is typically associated with folic acid deficiency. However, no clear evidence has confirmed the effect of folic acid supplementation on alcohol-induced liver injury via GLA homeostasis. In this study, male C57BL/6J mice were given 56% (v/v) ethanol and 5.0 mg/kg folic acid daily by gavage for 10 weeks to investigate potential protective mechanisms of folic acid in alcohol-induced liver injury via GLA homeostasis. Histopathological and biochemical analyses showed that folic acid improved lipid deposition and inflammation in the liver caused by alcohol consumption and decreased the level of ALT, AST, TG, and LPS in serum. Folic acid inhibited the expression of the TLR4 signaling pathway and its downstream inflammatory mediators in the liver and upregulated the expression of ZO-1, claudin 1, and occludin in the intestine. But compared with the CON group, folic acid did not completely eliminate alcohol-induced intestine and liver injury. Furthermore, folic acid regulated alcohol-induced alterations in gut microbiota. In alcohol-exposed mice, the relative abundance of Bacteroidota was significantly increased, and the relative abundance of unclassified_Lachnospiraceae was significantly decreased. Folic acid supplementation significantly increased the relative abundance of Verrucomicrobia, Lachnospiraceae_NK4A136_group and Akkermansia, and decreased the relative abundance of Proteobacteria. The results of Spearman’s correlation analysis showed that serum parameters and hepatic inflammatory cytokines were significantly correlated with several bacteria, mainly including Bacteroidota, Firmicutes, and unclassified_Lachnospiraceae. In conclusion, folic acid could ameliorate alcohol-induced liver injury in mice via GLA homeostasis to some extent, providing a new idea and method for prevention of alcohol-induced liver injury.
Collapse
Affiliation(s)
- Huaqi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Yuwei Zuo
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Huichao Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Hui Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Yutong Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Xinyu Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Jiacheng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Peng Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Lirui Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Huizhen Zhang
- Qingdao Institute for Food and Drug Control, Qingdao, China
| | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
- *Correspondence: Hui Liang,
| |
Collapse
|
10
|
Zhou L, Liu J, An Y, Wang Y, Wang G. Plasma Homocysteine Level Is Independently Associated With Conventional Atherogenic Lipid Profile and Remnant Cholesterol in Adults. Front Cardiovasc Med 2022; 9:898305. [PMID: 35770226 PMCID: PMC9234129 DOI: 10.3389/fcvm.2022.898305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundHomocysteine (Hcy) is an independent risk factor for cardiovascular disease, while mechanisms are unclear. Despite inconsistent and limited, epidemiological and experimental studies indicated that hyperhomocysteinemia (HHcy) affected lipid metabolism. This study aims to investigate the association of plasma Hcy with traditional lipid profiles and remnant cholesterol (RC) in Chinese adults.MethodsIn total, 7,898 subjects aged 20–79 years who underwent a physical examination at Beijing Chao-Yang Hospital in Beijing were included in this study. Fasting plasma total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), apolipoprotein A1 (ApoA1), apolipoprotein B (ApoB), lipoprotein (a) [Lp(a)], Hcy, and other metabolic risk factors were measured by routine automated laboratory methods. RC was calculated as TC minus HDL-C and LDL-C. The linear regression model and logistic regression model were used to assess the relationship between Hcy and lipids after adjusting potential confounders.ResultsOf the subjects, the median level of plasma Hcy was 13.0 μmol/L and 32.3% had HHcy. Plasma Hcy was negatively associated with HDL-C, ApoA1, and Lp(a) and positively associated with TG levels after adjusting age, sex, body mass index, blood pressure, alanine transaminase, aspartate transaminase, creatinine, uric acid, and glucose. HHcy significantly increased the risk of low HDL-C [odds ratio (OR) 1.26; 95%CI (1.11–1.44); p < 0.001]. The net mediation effects of ApoA1 on the relationship between Hcy and HDL-C before and after adjusting confounders were 46.9 and 30.6%, respectively. More interestingly, the RC level was significantly elevated in subjects with HHcy after adjusting other influencing factors (p = 0.025). Hcy presented a positive correlation with RC levels after adjusting the above confounding factors (β = 0.073, p = 0.004), and the correlation was still significant even after controlling other lipids, including TG, LDL-C, HDL-C, ApoA1, ApoB, and Lp(a).ConclusionOur study showed that plasma Hcy was not only significantly associated with conventional atherogenic lipids but also independently correlated with RC levels beyond other lipids after controlling potential confounders. This finding proposes that identifying Hcy-related dyslipidemia risk, both traditional lipids and RC residual risk, is clinically relevant as we usher in a new era of targeting Hcy-lowering therapies to fight against dyslipidemia or even cardiovascular disease.
Collapse
Affiliation(s)
- Liyuan Zhou
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jia Liu
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yu An
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ying Wang
- Medical Examination Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Ying Wang,
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Guang Wang,
| |
Collapse
|
11
|
The regulation of HBP1, SIRT1, and SREBP-1c genes and the related microRNAs in non-alcoholic fatty liver rats: The association with the folic acid anti-steatosis. PLoS One 2022; 17:e0265455. [PMID: 35417465 PMCID: PMC9007334 DOI: 10.1371/journal.pone.0265455] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/02/2022] [Indexed: 01/20/2023] Open
Abstract
Folic acid is one of the vital micronutrients that contribute to the genetic stability and other biological activities. In addition, microRNAs regulate gene expression through a multittude of pathways. Our current work aimd to explore the possible ameliorative potency of folic acid and its association with the hepatic miR-21, -34a, and -122 expression as well as their targeted genes, HBP1, SIRT1, and SREBP-1c in rats with non-alcoholic fatty liver disease (NAFL). A total of 50 Wistar rats were randomly divided into two groups, a control group (n = 10) and NAFL group (n = 40). Rats in NAFL group were fed a high-fat diet (HFD) containing 20% fats for 14 weeks. The NAFL group was further subdivided into four groups (n = 10/group), one untreated and three orally folic acid-treated groups (25, 50, and 75 μg/Kg b.wt). NAFL characteristics was evaluated in rats in addition to the miR-21, -34a, and -122 profile as well as the transcriptional levels of HBP1, SIRT1, and SREBP-1c genes. NAFL rats exhibited the classic traits of fatty liver disease profile and dysregulation in the pattern of miR-21, -34a, and -122 expression as well as their targeted genes (HBP1, SIRT1, and SREBP-1c, respectively) in the liver. Additionally, NAFL rats had altered levels of TNF-α and adiponectin. These alterations were significantly ameliorated in a dose-dependent pattern following the folic acid treatments. In conclusions, the anti-steatotic, insulin-sensitizing, glucose-lowering and lipotropic potencies of folic acid in NAFL rats may be linked to the epigenetic modulation of the hepatic microRNAs (miR-21, -34a, and -122) and the expression of their target genes (HBP1, SIRT1, and SREBP-1c).
Collapse
|
12
|
Madduma Hewage S, Au-Yeung KKW, Prashar S, Wijerathne CUB, O K, Siow YL. Lingonberry Improves Hepatic Lipid Metabolism by Targeting Notch1 Signaling. Antioxidants (Basel) 2022; 11:antiox11030472. [PMID: 35326122 PMCID: PMC8944850 DOI: 10.3390/antiox11030472] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/19/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Impaired hepatic lipid metabolism is a hallmark of non-alcoholic fatty liver disease (NAFLD), which has no effective treatment option. Recently, Notch signaling has been identified as an important mediator of hepatic lipid metabolism. Lingonberry (Vaccinium vitis-idaea L.) is an anthocyanin-rich fruit with significant lipid-lowering properties. In this study, we examined how lingonberry influenced Notch signaling and fatty acid metabolism in a mouse model of NAFLD. Mice (C57BL/6J) fed a high-fat diet (HFD) for 12 weeks developed fatty liver and activated hepatic Notch1 signaling. Lingonberry supplementation inhibited hepatic Notch1 signaling and improved lipid profile by improving the expression of the genes involved in hepatic lipid metabolism. The results were verified using a palmitic-acid-challenged cell model. Similar to the animal data, palmitic acid impaired cellular lipid metabolism and induced Notch1 in HepG2 cells. Lingonberry extract or cyanidin-3-glucoside attenuated Notch1 signaling and decreased intracellular triglyceride accumulation. The inhibition of Notch in the hepatocytes attenuated sterol-regulatory-element-binding-transcription-factor-1 (SREBP-1c)-mediated lipogenesis and increased the expression of carnitine palmitoyltransferase-I-alpha (CPTIα) and acyl-CoA oxidase1 (ACOX1). Taken together, lingonberry’s hepatoprotective effect is mediated by, in part, improving hepatic lipid metabolism via inhibiting Notch1 signaling in HFD-induced fatty liver.
Collapse
Affiliation(s)
- Susara Madduma Hewage
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada; (S.M.H.); (K.K.W.A.-Y.); (S.P.); (C.U.B.W.)
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Kathy K. W. Au-Yeung
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada; (S.M.H.); (K.K.W.A.-Y.); (S.P.); (C.U.B.W.)
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Suvira Prashar
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada; (S.M.H.); (K.K.W.A.-Y.); (S.P.); (C.U.B.W.)
- Agriculture and Agri-Food Canada, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Charith U. B. Wijerathne
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada; (S.M.H.); (K.K.W.A.-Y.); (S.P.); (C.U.B.W.)
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Karmin O
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada; (S.M.H.); (K.K.W.A.-Y.); (S.P.); (C.U.B.W.)
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Correspondence: (K.O.); or (Y.L.S.)
| | - Yaw L. Siow
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada; (S.M.H.); (K.K.W.A.-Y.); (S.P.); (C.U.B.W.)
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Agriculture and Agri-Food Canada, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
- Correspondence: (K.O.); or (Y.L.S.)
| |
Collapse
|
13
|
Rome FI, Hughey CC. Disrupted Liver Oxidative Metabolism in Glycine N-Methyltransferase-Deficient Mice is Mitigated by Dietary Methionine Restriction. Mol Metab 2022; 58:101452. [PMID: 35121169 PMCID: PMC8866067 DOI: 10.1016/j.molmet.2022.101452] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/10/2022] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
|
14
|
Lingonberry Improves Non-Alcoholic Fatty Liver Disease by Reducing Hepatic Lipid Accumulation, Oxidative Stress and Inflammatory Response. Antioxidants (Basel) 2021; 10:antiox10040565. [PMID: 33917360 PMCID: PMC8067338 DOI: 10.3390/antiox10040565] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease globally and there is a pressing need for effective treatment. Lipotoxicity and oxidative stress are the important mediators in NAFLD pathogenesis. Lingonberry (Vaccinium vitis-idaea L.) is rich in anthocyanins that have antioxidant and anti-inflammatory properties. The present study investigated the effect of lingonberry supplementation on liver injury in C57BL/6J male mice fed a high-fat diet (HFD) for 12 weeks. Mice fed HFD displayed liver injury with steatosis, increased lipid peroxidation and inflammatory cytokine expression in the liver as compared to mice fed a control diet. Lingonberry supplementation for 12 weeks alleviated HFD-induced liver injury, attenuated hepatic lipid accumulation, and inflammatory cytokine expression. Lingonberry supplementation inhibited the expression of sterol regulatory element-binding protein-1c (SREBP-1c) and acetyl-CoA carboxylase-1 (AAC-1) as well as activated AMP-activated protein kinase (AMPK) in the liver. It also decreased HFD-induced hepatic oxidative stress and aggregation of inflammatory foci. This was associated with a restoration of nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione level in the liver. These results suggest that lingonberry supplementation can protect against HFD-induced liver injury partly through attenuation of hepatic lipid accumulation, oxidative stress, and inflammatory response.
Collapse
|
15
|
Wang L, Jia Z, Wang B, Zhang B. Berberine inhibits liver damage in rats with non-alcoholic fatty liver disease by regulating TLR4/MyD88/NF-κB pathway. TURKISH JOURNAL OF GASTROENTEROLOGY 2021; 31:902-909. [PMID: 33626003 DOI: 10.5152/tjg.2020.19568] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIMS This study aimed to explore the therapeutic effects and underlying mechanism of berberine (BBR) on the non-alcoholic fatty liver disease (NAFLD) induced by high-fat diet (HFD). MATERIALS AND METHODS Rats were randomly divided into the following 4 groups: control (normal diet), model (HFD), polyene phosphatidylcholine HFD+PPC, and BBR (HFD+BBR) group. The NAFLD models were prepared by feeding with HFD for 12 weeks. The liver tissues were observed by oil red O staining. H-E staining was used to detect pathological changes in the liver tissues. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were detected by an automatic biochemical analyzer. ELISA was performed to observe the inflammatory cytokines (TNF-α, IL-6, and IL-1β) expressions. The levels of TLR4, MyD88, and NF-κB p65 were analyzed using western blot and qRT-PCR, respectively. The nuclear translocation levels of NF-κB in the primary liver cells were measured using flow cytometry. RESULTS BBR could significantly alleviate the liver tissue steatosis and inflammatory cell infiltration; reduce the NAFLD activity scores and serum levels of ALT, AST, TC, and LDL-C; decrease the levels of TNF-α, IL-6, and IL-1β, and reduce the expression of TLR4, MyD88, and NF-κB in the liver tissues. BBR could also reverse the nuclear translocation of NF-κB in the primary liver cells. CONCLUSION BBR alleviated the progress of NAFLD and liver damage, which might contribute to inhibit the nuclear translocation of NF-κB via the TLR4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Lingling Wang
- Ningbo Affiliated TCM Hospital of Zhejiang Chinese Medicine University, Zhejiang, China
| | - Zhandong Jia
- Ningbo Affiliated TCM Hospital of Zhejiang Chinese Medicine University, Zhejiang, China
| | - Bangcai Wang
- Ningbo Affiliated TCM Hospital of Zhejiang Chinese Medicine University, Zhejiang, China
| | - Bin Zhang
- Ningbo Affiliated TCM Hospital of Zhejiang Chinese Medicine University, Zhejiang, China
| |
Collapse
|
16
|
Bagherieh M, Kheirollahi A, Zamani-Garmsiri F, Emamgholipour S, Meshkani R. Folic acid ameliorates palmitate-induced inflammation through decreasing homocysteine and inhibiting NF-κB pathway in HepG2 cells. Arch Physiol Biochem 2021:1-8. [PMID: 33596128 DOI: 10.1080/13813455.2021.1878539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Prevention of inflammation is one of the possible remedy procedure for steatohepatitis during NAFLD. In this study, we researched the folic acid (FA) potency to attenuate the inflammation of palmitate-treated HepG2 cells and the related signalling pathways. METHODS The molecular mechanisms related to FA anti-inflammatory effect in palmitate and Hcy-treated HepG2 cell line were assessed. RESULTS The results indicated that while palmitate enhances the expression and secretion of TNF-α, IL-6, and IL-1β, and also intracellular ROS level, FA at concentrations of 25, 50, and 75 µg/mL significantly reversed these effects in HepG2 cells. In addition, FA could ameliorate inflammation and decrease ROS production induced by Hcy. Furthermore, FA pre-treatment suppress palmitate -induced (NF-κB) p65 level in palmitate or Hcy stimulated cells. CONCLUSIONS Overall, these results suggest that FA reduces inflammation in HepG2 cells through decreasing ROS and Hcy concentration level resulting in inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Molood Bagherieh
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Asma Kheirollahi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fahimeh Zamani-Garmsiri
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Yang C, Wijerathne CUB, Tu GW, Woo CWH, Siow YL, Madduma Hewage S, Au-Yeung KKW, Zhu T, O K. Ischemia-Reperfusion Injury Reduces Kidney Folate Transporter Expression and Plasma Folate Levels. Front Immunol 2021; 12:678914. [PMID: 34149715 PMCID: PMC8213029 DOI: 10.3389/fimmu.2021.678914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/04/2021] [Indexed: 02/05/2023] Open
Abstract
Acute or chronic kidney disease can cause micronutrient deficiency. Patients with end-stage renal disease, kidney transplantation or on dialysis have reduced circulating levels of folate, an essential B vitamin. However, the molecular mechanism is not well understood. Reabsorption of folate in renal proximal tubules through folate transporters is an important process to prevent urinary loss of folate. The present study investigated the impact of acute kidney injury (AKI) on folate transporter expression and the underlying mechanism. AKI was induced in Sprague-Dawley rats that were subjected to kidney ischemia (45 min)-reperfusion (24 h). Both male and female rats displayed kidney injury and low plasma folate levels compared with sham-operated rats. The plasma folate levels were inversely correlated to plasma creatinine levels. There was a significant increase in neutrophil gelatinase-associated lipocalin (NGAL) and IL-6 mRNA expression in the kidneys of rats with ischemia-reperfusion, indicating kidney injury and increased inflammatory cytokine expression. Ischemia-reperfusion decreased mRNA and protein expression of folate transporters including folate receptor 1 (FOLR1) and reduced folate carrier (RFC); and inhibited transcription factor Sp1/DNA binding activity in the kidneys. Simulated ischemia-reperfusion through hypoxia-reoxygenation or Sp1 siRNA transfection in human proximal tubular cells inhibited folate transporter expression and reduced intracellular folate levels. These results suggest that ischemia-reperfusion injury downregulates renal folate transporter expression and decreases folate uptake by tubular cells, which may contribute to low folate status in AKI. In conclusion, ischemia-reperfusion injury can downregulate Sp1 mediated-folate transporter expression in tubular cells, which may reduce folate reabsorption and lead to low folate status.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Organ Transplantation, Shanghai, China
| | - Charith U. B. Wijerathne
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Guo-wei Tu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Connie W. H. Woo
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China
| | - Yaw L. Siow
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
- Agriculture and Agri Food Canada, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Susara Madduma Hewage
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Kathy K. W. Au-Yeung
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Organ Transplantation, Shanghai, China
- *Correspondence: Tongyu Zhu, ; Karmin O,
| | - Karmin O
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Tongyu Zhu, ; Karmin O,
| |
Collapse
|
18
|
Suliburska J, Skrypnik K, Chmurzyńska A. Folic Acid Affects Iron Status in Female Rats with Deficiency of These Micronutrients. Biol Trace Elem Res 2020; 195:551-558. [PMID: 31512172 PMCID: PMC7176598 DOI: 10.1007/s12011-019-01888-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023]
Abstract
Although simultaneous supplementation with iron and folic acid is justified, the potential interactions between these micronutrients are unknown. The aim of this study was to determine the effects of oral iron and folic acid, administered together or separately, on iron concentration in tissues in rats with a deficiency of both these micronutrients. In the first stage of the experiment (28 days), 150 8-week-old female Wistar rats were randomly assigned to a control group (C; n = 30) fed the standard diet and to a study group (n = 120) fed a diet deficit in iron and folate. The study group was then randomly divided to four groups: D group fed a deficit diet, FE group fed a deficit diet with iron gluconate, the FOL group fed a deficit diet with folate acid, and the FEFOL group fed a deficit diet with iron gluconate and folate acid. After 2, 10, and 21 days of supplementation, ten animals from each group were killed. Morphological parameters were measured in whole blood. Iron concentration was assayed in serum, liver, spleen, pancreas, heart, and kidneys. Folic acid supplementation more significantly decreased iron concentrations in the pancreas and spleen than in the D group after 10 and 21 days of supplementation. Moreover, the combination of iron with folic acid markedly decreased iron levels in the liver and spleen, in comparison with iron alone, after 10 and 21 days of the experiment. In conclusion, folic acid affects iron status in female rats deficient in these micronutrients in moderate and long-term supplementation.
Collapse
Affiliation(s)
- Joanna Suliburska
- Institute of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego St. 31, 60-624, Poznan, Poland.
| | - Katarzyna Skrypnik
- Institute of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego St. 31, 60-624, Poznan, Poland
| | - Agata Chmurzyńska
- Institute of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego St. 31, 60-624, Poznan, Poland
| |
Collapse
|
19
|
Xin FZ, Zhao ZH, Zhang RN, Pan Q, Gong ZZ, Sun C, Fan JG. Folic acid attenuates high-fat diet-induced steatohepatitis via deacetylase SIRT1-dependent restoration of PPARα. World J Gastroenterol 2020; 26:2203-2220. [PMID: 32476787 PMCID: PMC7235203 DOI: 10.3748/wjg.v26.i18.2203] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/27/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Folic acid has been shown to improve non-alcoholic steatohepatitis (NASH), but its roles in hepatic lipid metabolism, hepatic one-carbon metabolism, and gut microbiota are still unknown.
AIM To demonstrate the role of folic acid in lipid metabolism and gut microbiota in NASH.
METHODS Twenty-four Sprague-Dawley rats were assigned into three groups: Chow diet, high-fat diet (HFD), and HFD with folic acid administration. At the end of 16 wk, the liver histology, the expression of hepatic genes related to lipid metabolism, one-carbon metabolism, and gut microbiota structure analysis of fecal samples based on 16S rRNA sequencing were measured to evaluate the effect of folic acid. Palmitic acid-exposed Huh7 cell line was used to evaluate the role of folic acid in hepatic lipid metabolism.
RESULTS Folic acid treatment attenuated steatosis, lobular inflammation, and hepatocellular ballooning in rats with HFD-induced steatohepatitis. Genes related to lipid de novo lipogenesis, β-oxidation, and lipid uptake were improved in HFD-fed folic acid-treated rats. Furthermore, peroxisome proliferator-activated receptor alpha (PPARα) and silence information regulation factor 1 (SIRT1) were restored by folic acid in HFD-fed rats and palmitic acid-exposed Huh7 cell line. The restoration of PPARα by folic acid was blocked after transfection with SIRT1 siRNA in the Huh7 cell line. Additionally, folic acid administration ameliorated depleted hepatic one-carbon metabolism and restored the diversity of the gut microbiota in rats with HFD-induced steatohepatitis.
CONCLUSION Folic acid improves hepatic lipid metabolism by upregulating PPARα levels via a SIRT1-dependent mechanism and restores hepatic one-carbon metabolism and diversity of gut microbiota, thereby attenuating HFD-induced NASH in rats.
Collapse
Affiliation(s)
- Feng-Zhi Xin
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ze-Hua Zhao
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Rui-Nan Zhang
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qin Pan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zi-Zhen Gong
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
- Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chao Sun
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| |
Collapse
|
20
|
da Silva RP, Eudy BJ, Deminice R. One-Carbon Metabolism in Fatty Liver Disease and Fibrosis: One-Carbon to Rule Them All. J Nutr 2020; 150:994-1003. [PMID: 32119738 DOI: 10.1093/jn/nxaa032] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/14/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a term used to characterize a range of disease states that involve the accumulation of fat in the liver but are not associated with excessive alcohol consumption. NAFLD is a prevalent disease that can progress to organ damage like liver cirrhosis and hepatocellular carcinoma. Many animal models have demonstrated that one-carbon metabolism is strongly associated with NAFLD. Phosphatidylcholine is an important phospholipid that affects hepatic lipid homeostasis and de novo synthesis of this phospholipid is associated with NAFLD. However, one-carbon metabolism serves to support all cellular methylation reactions and catabolism of methionine, serine, glycine, choline, betaine, tryptophan, and histidine. Several different pathways within one-carbon metabolism that play important roles in regulating energy metabolism and immune function have received less attention in the study of fatty liver disease and fibrosis. This review examines what we have learned about hepatic lipid metabolism and liver damage from the study of one-carbon metabolism thus far and highlights unexplored opportunities for future research.
Collapse
Affiliation(s)
- Robin P da Silva
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Brandon J Eudy
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Rafael Deminice
- Department of Physical Education, State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
21
|
Madduma Hewage S, Prashar S, Debnath SC, O K, Siow YL. Inhibition of Inflammatory Cytokine Expression Prevents High-Fat Diet-Induced Kidney Injury: Role of Lingonberry Supplementation. Front Med (Lausanne) 2020; 7:80. [PMID: 32292787 PMCID: PMC7119336 DOI: 10.3389/fmed.2020.00080] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic low-grade inflammation is a major stimulus for progression of chronic kidney disease (CKD) in individuals consuming high-fat diet. Currently, there are limited treatment options for CKD other than controlling the progression rate and its associated complications. Lingonberry (Vaccinium vitis-idaea L.) is rich in anthocyanins with demonstrated anti-inflammatory effect. In the current study, we investigated the potential renal protective effect of lingonberry and its anthocyanin (cyanidin-3-glucoside) in high-fat diet fed obese mice and in human proximal tubular cells. Prolonged consumption of high-fat diets is strongly associated with obesity, abnormal lipid and glucose metabolism. Mice (C57BL/6J) fed a high-fat diet (62% kcal fat) for 12 weeks developed renal injury as indicated by an elevation of blood urea nitrogen (BUN) level as well as an increase in renal kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL) and renin expression. Those mice displayed an activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and increased expression of inflammatory cytokines-monocyte chemoattractant-1 (MCP-1), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) in the kidneys. Mice fed a high-fat diet also had a significant elevation of inflammatory cytokine levels in the plasma. Dietary supplementation of lingonberry for 12 weeks not only attenuated high-fat diet-induced renal inflammatory response but also reduced kidney injury. Such a treatment improved plasma lipid and glucose profiles, reduced plasma inflammatory cytokine levels but did not affect body weight gain induced by high-fat diet feeding. Lingonberry extract or its active component cyanidin-3-glucoside effectively inhibited palmitic acid-induced NF-κB activation and inflammatory cytokine expression in proximal tubular cells. These results suggest that lingonberry supplementation can reduce inflammatory response and prevent chronic kidney injury. Such a renal protective effect by lingonberry and its active component may be mediated, in part, through NF-κB signaling pathway.
Collapse
Affiliation(s)
- Susara Madduma Hewage
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Suvira Prashar
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Agriculture and Agri-Food Canada, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Samir C Debnath
- Agriculture and Agri-Food Canada, St. John's Research and Development Centre, St. John's, NL, Canada
| | - Karmin O
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Yaw L Siow
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,Agriculture and Agri-Food Canada, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| |
Collapse
|