1
|
Liu Q, Xiao JJ, Wang S, Li Y, Yang LJ, Lu QY, Wu XY, Cao J, Yu H, Zhang BF. Paraoxonase 1 Ameliorates Renal Lipotoxicity by Activating Lipophagy and Inhibiting Pyroptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1531-1545. [PMID: 35963464 DOI: 10.1016/j.ajpath.2022.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/02/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Several studies in recent years have shown that lipid overload causes lipotoxic damage to the kidney, and oxidative stress, inflammation, and autophagic arrest are all important mechanisms of renal lipotoxicity. However, effective measures with therapeutic effects on renal lipotoxicity are limited. The present study indicated the protective effect of the paraoxonase 1 (PON1) against renal lipotoxicity in high-fat diet-fed scavenger receptor class B type I-deficient (SR-BI-/-) mice. The results showed that SR-BI-/- mice exhibited significant renal pathologic characteristics, such as oxidative stress, inflammation, and fibrosis, under a normal chow diet, and were accompanied by dyslipidemia and reduced plasma PON1 activity and renal PON1 levels. PON1 overexpression significantly attenuated the above pathologic changes in the kidneys of SR-BI-/- mice fed with a high-fat diet. Mechanistically, PON1 may ameliorate renal oxidative stress by reducing reactive oxygen species production, reduce renal lipid accumulation by inhibiting AKT/mechanistic target of rapamycin kinase pathway to activate lipophagy, and reduce the occurrence of inflammation and cell death by inhibiting Nod-like receptor family protein 3 inflammasome-mediated pyroptosis. The present study is the first to show that PON1 overexpression can effectively alleviate renal lipotoxicity injury, and PON1 may be a promising therapeutic strategy for the treatment of renal lipotoxicity-related diseases.
Collapse
Affiliation(s)
- Qing Liu
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Jing-Jie Xiao
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Shan Wang
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Ying Li
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Li-Jiao Yang
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qian-Yu Lu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao-Yan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jia Cao
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Hong Yu
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China.
| | - Bai-Fang Zhang
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China.
| |
Collapse
|
2
|
Rom O, Liu Y, Finney AC, Ghrayeb A, Zhao Y, Shukha Y, Wang L, Rajanayake KK, Das S, Rashdan NA, Weissman N, Delgadillo L, Wen B, Garcia-Barrio MT, Aviram M, Kevil CG, Yurdagul A, Pattillo CB, Zhang J, Sun D, Hayek T, Gottlieb E, Mor I, Chen YE. Induction of glutathione biosynthesis by glycine-based treatment mitigates atherosclerosis. Redox Biol 2022; 52:102313. [PMID: 35447412 PMCID: PMC9044008 DOI: 10.1016/j.redox.2022.102313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
Lower circulating levels of glycine are consistently reported in association with cardiovascular disease (CVD), but the causative role and therapeutic potential of glycine in atherosclerosis, the underlying cause of most CVDs, remain to be established. Here, following the identification of reduced circulating glycine in patients with significant coronary artery disease (sCAD), we investigated a causative role of glycine in atherosclerosis by modulating glycine availability in atheroprone mice. We further evaluated the atheroprotective potential of DT-109, a recently identified glycine-based compound with dual lipid/glucose-lowering properties. Glycine deficiency enhanced, while glycine supplementation attenuated, atherosclerosis development in apolipoprotein E-deficient (Apoe−/−) mice. DT-109 treatment showed the most significant atheroprotective effects and lowered atherosclerosis in the whole aortic tree and aortic sinus concomitant with reduced superoxide. In Apoe−/− mice with established atherosclerosis, DT-109 treatment significantly reduced atherosclerosis and aortic superoxide independent of lipid-lowering effects. Targeted metabolomics and kinetics studies revealed that DT-109 induces glutathione formation in mononuclear cells. In bone marrow-derived macrophages (BMDMs), glycine and DT-109 attenuated superoxide formation induced by glycine deficiency. This was abolished in BMDMs from glutamate-cysteine ligase modifier subunit-deficient (Gclm−/-) mice in which glutathione biosynthesis is impaired. Metabolic flux and carbon tracing experiments revealed that glycine deficiency inhibits glutathione formation in BMDMs while glycine-based treatment induces de novo glutathione biosynthesis. Through a combination of studies in patients with CAD, in vivo studies using atherosclerotic mice and in vitro studies using macrophages, we demonstrated a causative role of glycine in atherosclerosis and identified glycine-based treatment as an approach to mitigate atherosclerosis through antioxidant effects mediated by induction of glutathione biosynthesis.
Collapse
Affiliation(s)
- Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Yuhao Liu
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Alia Ghrayeb
- The Laboratory for Metabolism in Health and Disease, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Ying Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yousef Shukha
- Department of Internal Medicine E, Rambam Health Care Campus, Haifa, 3109601, Israel; The Lipid Research Laboratory, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3525433, Israel
| | - Lu Wang
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Krishani K Rajanayake
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sandeep Das
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Nabil A Rashdan
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Natan Weissman
- The Laboratory for Metabolism in Health and Disease, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Luisa Delgadillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Bo Wen
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Minerva T Garcia-Barrio
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael Aviram
- The Lipid Research Laboratory, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3525433, Israel
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Arif Yurdagul
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Christopher B Pattillo
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Duxin Sun
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tony Hayek
- Department of Internal Medicine E, Rambam Health Care Campus, Haifa, 3109601, Israel; The Lipid Research Laboratory, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3525433, Israel
| | - Eyal Gottlieb
- The Laboratory for Metabolism in Health and Disease, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Inbal Mor
- The Laboratory for Metabolism in Health and Disease, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Y Eugene Chen
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Han QQ, Yin M, Wang ZY, Liu H, Ao JP, Wang YX. Cynandione A Alleviates Neuropathic Pain Through α7-nAChR-Dependent IL-10/β-Endorphin Signaling Complexes. Front Pharmacol 2021; 11:614450. [PMID: 33584292 PMCID: PMC7873367 DOI: 10.3389/fphar.2020.614450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Cynandione A, an acetophenone isolated from Cynanchum Wilfordii Radix, exhibits antineuropathic pain effect. This study further explored the target molecule and signaling mechanisms underlying cynandione-A-induced antineuropathic pain. Intrathecal injection of cynandione A significantly attenuated mechanical allodynia in neuropathic rats and substantially increased spinal expression of IL-10 and β-endorphin but not dynorphin A. Cynandione A treatment also enhanced expression of IL-10 and β-endorphin but not α7 nicotinic acetylcholine receptors (nAChRs) in cultured microglia. The IL-10 antibody attenuated cynandione-A-induced spinal or microglial gene expression of β-endorphin and mechanical allodynia, whereas the β-endorphin antiserum blocked cynandione-A-induced mechanical antiallodynia but not spinal or microglial IL-10 gene expression. The α7 nAChR antagonist methyllycaconitine significantly reduced cynandione-A-induced mechanical antiallodynia and spinal or microglial expression of IL-10 and β-endorphin. Furthermore, cynandione A stimulated microglial phosphorylation of PKA, p38, and CREB in an α7-nAChR-dependent manner, and treatment with their inhibitors attenuated cynandione-A-induced mechanical antiallodynia and spinal or microglial expression of IL-10 and β-endorphin. In addition, cynandione A stimulated spinal phosphorylation of the transcription factor STAT3, which was inhibited by methyllycaconitine, the PKA activation inhibitor or IL-10 antibody. The STAT3 inhibitor NSC74859 also abolished cynandione-A-induced mechanical antiallodynia and spinal expression of β-endorphin. These findings suggest that cynandione A suppresses neuropathic pain through α7-nAChR-dependent IL-10/β-endorphin signaling pathway in spinal microglia.
Collapse
Affiliation(s)
- Qiao-Qiao Han
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Min Yin
- Jiangsu Key Laboratory for the Research and Utilization of Plants Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Zi-Ying Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Hao Liu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Jun-Ping Ao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| |
Collapse
|
6
|
Estrada-Luna D, Carreón-Torres E, Bautista-Pérez R, Betanzos-Cabrera G, Dorantes-Morales A, Luna-Luna M, Vargas-Barrón J, Mejía AM, Fragoso JM, Carvajal-Aguilera K, García-Trejo JJ, Vargas-Alarcón G, Pérez-Méndez Ó. Microencapsulated Pomegranate Reverts High-Density Lipoprotein (HDL)-Induced Endothelial Dysfunction and Reduces Postprandial Triglyceridemia in Women with Acute Coronary Syndrome. Nutrients 2019; 11:nu11081710. [PMID: 31349559 PMCID: PMC6722536 DOI: 10.3390/nu11081710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022] Open
Abstract
(1) Background: the composition of high-density lipoproteins (HDL) becomes altered during the postprandial state, probably affecting their functionality vis-à-vis the endothelium. Since acute coronary syndrome (ACS) in women is frequently associated with endothelial dysfunction, it is likely that HDL are unable to improve artery vasodilation in these patients. Therefore, we characterized HDL from women with ACS in fasting and postprandial conditions. We also determined whether microencapsulated pomegranate (MiPo) reverts the HDL abnormalities, since previous studies have suggested that this fruit improves HDL functionality. (2) Methods: Eleven women with a history of ACS were supplemented daily with 20 g of MiPo, for 30 days. Plasma samples were obtained during fasting and at different times, after a lipid load test to determine the lipid profile and paraoxonase–1 (PON1) activity. HDL were isolated by sequential ultracentrifugation to determine their size distribution and to assess their effect on endothelial function, by using an in vitro model of rat aorta rings. (3) Results: MiPo improved the lipid profile and increased PON1 activity, as previously reported, with fresh pomegranate juice. After supplementation with MiPo, the incremental area under the curve of triglycerides decreased to half of the initial values. The HDL distribution shifted from large HDL to intermediate and small-size particles during the postprandial period in the basal conditions, whereas such a shift was no longer observed after MiPo supplementation. Consistently, HDL isolated from postprandial plasma samples hindered the vasodilation of aorta rings, and this endothelial dysfunction was reverted after MiPo consumption. (4) Conclusions: MiPo exhibited the same beneficial effects on the lipid profile and PON1 activity as the previously reported fresh pomegranate. In addition, MiPo supplementation reverted the negative effects of HDL on endothelial function generated during the postprandial period in women with ACS.
Collapse
Affiliation(s)
- Diego Estrada-Luna
- Department of Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico
| | - Elizabeth Carreón-Torres
- Department of Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico
| | - Rocío Bautista-Pérez
- Department of Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico
| | - Gabriel Betanzos-Cabrera
- School of Engineering and Sciences Campus Queretaro, Tecnologico de Monterrey, 76130 Queretaro, Mexico
| | - Alan Dorantes-Morales
- Department of Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico
| | - María Luna-Luna
- Department of Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico
| | - Jesús Vargas-Barrón
- Department of Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico
| | - Ana María Mejía
- Blood Bank, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico
| | - José Manuel Fragoso
- Department of Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico
| | - Karla Carvajal-Aguilera
- Laboratory of Experimental Nutrition, Instituto Nacional de Pediatría, 04530 Mexico City, Mexico
| | - José J García-Trejo
- Department of Biology, School of Chemistry, Universidad Nacional Autónoma de México (U.N.A.M.), 04510 Mexico City, Mexico
| | - Gilberto Vargas-Alarcón
- Department of Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico
| | - Óscar Pérez-Méndez
- Department of Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| |
Collapse
|