1
|
Farazi N, Salehi-Pourmehr H, Farajdokht F, Mahmoudi J, Sadigh-Eteghad S. Photobiomodulation combination therapy as a new insight in neurological disorders: a comprehensive systematic review. BMC Neurol 2024; 24:101. [PMID: 38504162 PMCID: PMC10949673 DOI: 10.1186/s12883-024-03593-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
Preclinical and clinical studies have indicated that combining photobiomodulation (PBM) therapy with other therapeutic approaches may influence the treatment process in a variety of disorders. The purpose of this systematic review was to determine whether PBM-combined therapy provides additional benefits over monotherapies in neurologic and neuropsychiatric disorders. In addition, the review describes the most commonly used methods and PBM parameters in these conjunctional approaches.To accomplish this, a systematic search was conducted in Google Scholar, PubMed, and Scopus databases through January 2024. 95 potentially eligible articles on PBM-combined treatment strategies for neurological and neuropsychological disorders were identified, including 29 preclinical studies and 66 clinical trials.According to the findings, seven major categories of studies were identified based on disease type: neuropsychiatric diseases, neurodegenerative diseases, ischemia, nerve injury, pain, paresis, and neuropathy. These studies looked at the effects of laser therapy in combination with other therapies like pharmacotherapies, physical therapies, exercises, stem cells, and experimental materials on neurological disorders in both animal models and humans. The findings suggested that most combination therapies could produce synergistic effects, leading to better outcomes for treating neurologic and psychiatric disorders and relieving symptoms.These findings indicate that the combination of PBM may be a useful adjunct to conventional and experimental treatments for a variety of neurological and psychological disorders.
Collapse
Affiliation(s)
- Narmin Farazi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Hanieh Salehi-Pourmehr
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran.
| |
Collapse
|
2
|
Semyachkina-Glushkovskaya O, Penzel T, Poluektov M, Fedosov I, Tzoy M, Terskov A, Blokhina I, Sidorov V, Kurths J. Phototherapy of Alzheimer's Disease: Photostimulation of Brain Lymphatics during Sleep: A Systematic Review. Int J Mol Sci 2023; 24:10946. [PMID: 37446135 DOI: 10.3390/ijms241310946] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The global number of people with Alzheimer's disease (AD) doubles every 5 years. It has been established that unless an effective treatment for AD is found, the incidence of AD will triple by 2060. However, pharmacological therapies for AD have failed to show effectiveness and safety. Therefore, the search for alternative methods for treating AD is an urgent problem in medicine. The lymphatic drainage and removal system of the brain (LDRSB) plays an important role in resistance to the progression of AD. The development of methods for augmentation of the LDRSB functions may contribute to progress in AD therapy. Photobiomodulation (PBM) is considered to be a non-pharmacological and safe approach for AD therapy. Here, we highlight the most recent and relevant studies of PBM for AD. We focus on emerging evidence that indicates the potential benefits of PBM during sleep for modulation of natural activation of the LDRSB at nighttime, providing effective removal of metabolites, including amyloid-β, from the brain, leading to reduced progression of AD. Our review creates a new niche in the therapy of brain diseases during sleep and sheds light on the development of smart sleep technologies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Department of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Thomas Penzel
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Interdisziplinäres Schlafmedizinisches Zentrum, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Mikhail Poluektov
- Department of Nervous Diseases, Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya 2, Building 4, 119435 Moscow, Russia
| | - Ivan Fedosov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Maria Tzoy
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Viktor Sidorov
- Company "Lazma" for Research and Production Enterprise of Laser Medical Equipment, Kuusinena Str. 11, 123308 Moscow, Russia
| | - Jürgen Kurths
- Department of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Department of Complexity Science, Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| |
Collapse
|
3
|
Xie K, El Khoury H, Mitrofanis J, Austin PJ. A systematic review of the effect of photobiomodulation on the neuroinflammatory response in animal models of neurodegenerative diseases. Rev Neurosci 2022; 34:459-481. [DOI: 10.1515/revneuro-2022-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/18/2022] [Indexed: 12/09/2022]
Abstract
Abstract
This systematic review examines the effect of photobiomodulation (PBM), the application of red to near infrared light on body tissues, on the neuroinflammatory response and oxidative stress in animal models of neurodegenerative diseases. The research question and search protocol were prospectively registered on the PROSPERO database. Neurodegenerative diseases are becoming ever more prevalent in the ageing populations across the Western world, with no disease-modifying or neuroprotective treatment options being available. Hence there is a real need for the development of effective treatment options for patients. Inflammatory responses and oxidative stress within the central nervous system have a strong correlation with neuronal cell death. PBM is a non-invasive therapeutic option that has shown efficacy and promising effects in animal models of neurodegenerative disease; many studies have reported neuroprotection and improved behavioural outcomes. To the best of our knowledge, there has been no previous study that has reviewed the anti-inflammatory and the antioxidant effect of PBM in the context of neurodegeneration. This review has examined this relationship in animal models of a range of neurodegenerative diseases. We found that PBM can effectively reduce glial activation, pro-inflammatory cytokine expression and oxidative stress, whilst increasing anti-inflammatory glial responses and cytokines, and antioxidant capacity. These positive outcomes accompanied the neuroprotection evident after PBM treatment. Our review provides further indication that PBM can be developed into an effective non-pharmacological intervention for neurodegenerative diseases.
Collapse
Affiliation(s)
- Kangzhe Xie
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine & Health , University of Sydney , Sydney , NSW 2006 , Australia
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health , University of Sydney , Sydney , NSW 2050 , Australia
| | - Hala El Khoury
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health , University of Sydney , Sydney , NSW 2050 , Australia
| | - John Mitrofanis
- Université Grenoble Alpes, Fonds de Dotation Clinatec , 38054 Grenoble , France
| | - Paul J. Austin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health , University of Sydney , Sydney , NSW 2050 , Australia
| |
Collapse
|
4
|
Moro C, Valverde A, Dole M, Hoh Kam J, Hamilton C, Liebert A, Bicknell B, Benabid AL, Magistretti P, Mitrofanis J. The effect of photobiomodulation on the brain during wakefulness and sleep. Front Neurosci 2022; 16:942536. [PMID: 35968381 PMCID: PMC9366035 DOI: 10.3389/fnins.2022.942536] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022] Open
Abstract
Over the last seventy years or so, many previous studies have shown that photobiomodulation, the use of red to near infrared light on body tissues, can improve central and peripheral neuronal function and survival in both health and in disease. These improvements are thought to arise principally from an impact of photobiomodulation on mitochondrial and non-mitochondrial mechanisms in a range of different cell types, including neurones. This impact has downstream effects on many stimulatory and protective genes. An often-neglected feature of nearly all of these improvements is that they have been induced during the state of wakefulness. Recent studies have shown that when applied during the state of sleep, photobiomodulation can also be of benefit, but in a different way, by improving the flow of cerebrospinal fluid and the clearance of toxic waste-products from the brain. In this review, we consider the potential differential effects of photobiomodulation dependent on the state of arousal. We speculate that the effects of photobiomodulation is on different cells and systems depending on whether it is applied during wakefulness or sleep, that it may follow a circadian rhythm. We speculate further that the arousal-dependent photobiomodulation effects are mediated principally through a biophoton – ultra-weak light emission – network of communication and repair across the brain.
Collapse
Affiliation(s)
- Cecile Moro
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | - Audrey Valverde
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | - Marjorie Dole
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | - Jaimie Hoh Kam
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | | | - Ann Liebert
- Governance and Research Department, Sydney Adventist Hospital, Sydney, NSW, Australia
| | - Brian Bicknell
- Faculty of Health Sciences, Australian Catholic University, Sydney, NSW, Australia
| | | | - Pierre Magistretti
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - John Mitrofanis
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
- Institute of Ophthalmology, University College London, London, United Kingdom
- *Correspondence: John Mitrofanis,
| |
Collapse
|
5
|
Tolentino M, Cho CC, Lyons JA. Photobiomodulation at 830 nm Reduced Nitrite Production by Peripheral Blood Mononuclear Cells Isolated from Multiple Sclerosis Subjects. Photobiomodul Photomed Laser Surg 2022; 40:480-487. [DOI: 10.1089/photob.2021.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Miguel Tolentino
- Biomedical Sciences Department, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA
| | - Chi C. Cho
- College of Health Sciences, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA
| | - Jeri-Anne Lyons
- Biomedical Sciences Department, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
6
|
Tolentino M, Cho CC, Lyons JA. Photobiomodulation Modulates Interleukin-10 and Interferon Gamma Production by Mononuclear Cells from Healthy Donors and Persons with Multiple Sclerosis. Photobiomodul Photomed Laser Surg 2022; 40:234-244. [DOI: 10.1089/photob.2021.0169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Miguel Tolentino
- Biomedical Sciences, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA
| | - Chi C. Cho
- College of Health Sciences, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA
| | - Jeri-Anne Lyons
- Biomedical Sciences, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
7
|
Bedlack R, Barkhaus P, Barnes B, Bereman M, Bertorini T, Carter G, Crayle J, Kihuwa-Mani S, Bowser R, Kittrell P, McDermott C, Pattee G, Salmon K, Wicks P. ALSUntangled #60: light therapy. Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:315-319. [PMID: 33683159 DOI: 10.1080/21678421.2021.1883668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
ALSUntangled reviews alternative and off-label treatments for people with ALS. Here we review light therapy. We show that it has theoretically plausible mechanisms, three flawed pre-clinical data, studies, and one incompletely documented case report supporting its use. We explain why further studies are needed to determine whether any specific light therapy protocol can help people with ALS.
Collapse
Affiliation(s)
| | - Paul Barkhaus
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ben Barnes
- Department of Neurology, Augusta University Medical Center, Augusta, GA, USA
| | - Michael Bereman
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Tulio Bertorini
- Department of Neurology, Methodist University Hospital, Memphis, TN, USA
| | - Gregory Carter
- Department of Neurology, St Lukes Rehabilitation Hospital, Chesterfield, MO, USA
| | - Jesse Crayle
- Department of Neurology, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Sky Kihuwa-Mani
- University of North Carolina at Greensboro, Lloyd International Honors College, Greensboro, NC, USA
| | - Robert Bowser
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Pamela Kittrell
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | | | - Gary Pattee
- Department of Neurology, Nebraska Medicine, Omaha, NE, USA
| | - Kristiana Salmon
- Department of Neurology, McGill Centre for Research in Neuroscience, Montreal, QC, Canada
| | | |
Collapse
|
8
|
Ramezani F, Neshasteh-Riz A, Ghadaksaz A, Fazeli SM, Janzadeh A, Hamblin MR. Mechanistic aspects of photobiomodulation therapy in the nervous system. Lasers Med Sci 2021; 37:11-18. [PMID: 33624187 DOI: 10.1007/s10103-021-03277-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Photobiomodulation therapy (PBMT) previously known as low-level laser therapy (LLLT) has been used for over 30 years, to treat neurological diseases. Low-powered lasers are commonly used for clinical applications, although recently LEDs have become popular. Due to the growing application of this type of laser in brain and neural-related diseases, this review focuses on the mechanisms of laser action. The most important points to consider include the photon absorption by intracellular structures; the effect on the oxidative state of cells; and the effect on the expression of proteins involved in oxidative stress, inflammation, pain, and neuronal growth.
Collapse
Affiliation(s)
- Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Ali Neshasteh-Riz
- Radiation Biology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Alireza Ghadaksaz
- Department of Biophysics, Medical School, University of Pécs, Pécs, 7622, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, 7622, Hungary
| | - Seyedalireza Moghadas Fazeli
- Occupational Medicine Research Center (OMRC), Iran University of Medical Sciences, Tehran, Iran.,International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Science, Tehran, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| |
Collapse
|
9
|
Miller LA, Torraca DG, De Taboada L. Retrospective Observational Study and Analysis of Two Different Photobiomodulation Therapy Protocols Combined with Rehabilitation Therapy as Therapeutic Interventions for Canine Degenerative Myelopathy. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2021; 38:195-205. [PMID: 32301669 PMCID: PMC7187977 DOI: 10.1089/photob.2019.4723] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Objective: The objective of this retrospective review was to examine the impact that adding photobiomodulation therapy (PBMt) to rehabilitation therapy had on the pathology of degenerative myelopathy (DM) in canine patients. Background: Canine DM is a progressive, fatal neurodegenerative disease for which there exists a dearth of effective treatments, limiting clinicians to pursue symptom palliation. Methods: Clinical records of dogs referred for presumed DM to a specialty rehabilitation facility were screened for patients meeting study criteria. Qualifying patients were divided into two groups: Protocol A (PTCL-A) and Protocol B (PTCL-B) group, based on the PBMt protocol used. Data related to demographics, diagnostics, rehabilitation protocols, and progression of clinical signs were collected. Data were analyzed to determine differences in outcomes between the two treated groups and historical data expectations, as given by a previously published study. Results: The times between symptom onset and euthanasia of dogs in the PTCL-B group: 38.2 ± 14.67 months (mean ± SD), were significantly longer than those of dogs in the PTCL-A group: 11.09 ± 2.68 months. Similarly, the times between symptom onset and nonambulatory paresis (NAP) or paralysis of dogs in the PTCL-B group: 31.76 ± 12.53 months, were significantly longer than those of dogs in the PTCL-A group: 8.79 ± 1.60 months. Further, Kaplan–Meier survival analysis showed that the times from symptom onset to NAP of dogs in the PTCL-B group were significantly longer than those of dogs in the PTCL-A group (Mantel-Cox Log Rank statistic = 20.434, p < 0.05) or the historical data group (Mantel-Cox Log Rank statistic = 16.334, p < 0.05). Conclusions: The data reviewed show significantly slower disease progression—longer survival times—for patients in the PTCL-B group than those in the PTCL-A group or published historical data. Further studies are warranted.
Collapse
Affiliation(s)
- Lisa A Miller
- Companion Animal Health, LiteCure LLC, New Castle, Delaware, USA
| | - Debbie Gross Torraca
- Wizard of Paws Physical Rehabilitation for Animals, Colchester, Connecticut, USA
| | - Luis De Taboada
- Companion Animal Health, LiteCure LLC, New Castle, Delaware, USA
| |
Collapse
|
10
|
Liu YL, Gong SY, Xia ST, Wang YL, Peng H, Shen Y, Liu CF. Light therapy: a new option for neurodegenerative diseases. Chin Med J (Engl) 2020; 134:634-645. [PMID: 33507006 PMCID: PMC7990011 DOI: 10.1097/cm9.0000000000001301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT Given the increasing incidence of neurodegenerative disease (ND), recent research efforts have intensified the search for curative treatments. Despite significant research, however, existing therapeutic options for ND can only slow down the progression of the disease, but not provide a cure. Light therapy (LT) has been used to treat some mental and sleep disorders. This review illustrates recent studies of the use of LT in patients with ND and highlights its potential for clinical applications. The literature was collected from PubMed through June 2020. Selected studies were primarily English articles or articles that could be obtained with English abstracts and Chinese main text. Articles were not limited by type. Additional potential publications were also identified from the bibliographies of identified articles and the authors' reference libraries. The identified literature suggests that LT is a safe and convenient physical method of treatment. It may alleviate sleep disorders, depression, cognitive function, and other clinical symptoms. However, some studies have reported limited or no effects. Therefore, LT represents an attractive therapeutic approach for further investigation in ND. LT is an effective physical form of therapy and a new direction for research into treatments for ND. However, it requires further animal experiments to elucidate mechanisms of action and large, double-blind, randomized, and controlled trials to explore true efficacy in patients with ND.
Collapse
Affiliation(s)
- Yu-Lu Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Si-Yi Gong
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Shu-Ting Xia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ya-Li Wang
- Department of Neurology, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, Jiangsu 215008, China
| | - Hao Peng
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215006 China
| | - Yun Shen
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Chun-Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
- Department of Neurology, Suqian First Hospital, Suqian, Jiangsu 223800, China
| |
Collapse
|
11
|
Pedram MS, Dehghan MM, Shojaee M, Fekrazad R, Sharifi D, Farzan A, Ghasemi S, AliMohammad Kalhori K. Therapeutic effects of simultaneous Photobiomodulation therapy (PBMT) and Meloxicam administration on experimental acute spinal cord injury: Rat animal model. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 189:49-54. [PMID: 30312920 DOI: 10.1016/j.jphotobiol.2018.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/29/2018] [Accepted: 09/25/2018] [Indexed: 11/26/2022]
Abstract
STUDY DESIGN Application of Photobiomodulation therapy (PBMT) and meloxicam in acute spinal cord injury, functional recovery and histological evaluation. OBJECTIVE Evaluation of the effect of simultaneous PBMT and meloxicam on treatment of acute experimental spinal cord injury and comparing it with the effect of application of each of them separately. SETTING The study was conducted at the Department of Surgery & Radiology, Faculty of Veterinary Medicine and Institute of Biomedical Research, University of Tehran, Tehran, Iran. METHODS Twenty four rats were used in this study. A compression injury was induced to the T8-T9 segment of the spinal cord of rats using a Fogarty embolectomy catheter. Rats were randomly divided into 4 groups including: Control group, PBMT (810 nm-200 mw-8 s-2 weeks) group, Meloxicam (1 mg/kg) group, and PBMT and Meloxicam (mixed) group. After inducing injury, hind limb performance of the rats was evaluated, using BBB test and then treatment intervention was performed and continued for 2 weeks. RESULTS Four weeks after injury induction, BBB test results were significantly higher in all treatment groups in comparison to control group, however, there were no significant differences among the treatment groups. In addition, histological findings revealed no significant difference between all 4 study groups. CONCLUSION According to the results of this study we can conclude that simultaneous and separate application of PBMT and Meloxicam play an effective role in treatment of acute spinal cord injuries.
Collapse
Affiliation(s)
- Mir Sepehr Pedram
- Department of Surgery & Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery & Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Institute of Biomedical Research, University of Tehran, Tehran, Iran.
| | - Maryam Shojaee
- Department of Surgery & Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Fekrazad
- Department of Periodontology, Dental Faculty - Laser research center in medical Sciences, AJA University of Medical Sciences & International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Davood Sharifi
- Department of Surgery & Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Arash Farzan
- Department of Orthodontics, School of Density, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Setareh Ghasemi
- Department of Surgery & Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Katayoun AliMohammad Kalhori
- Department of Oral & Maxillofacial Pathology, Dental Faculty, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
12
|
Bond L, Bernhardt K, Madria P, Sorrentino K, Scelsi H, Mitchell CS. A Metadata Analysis of Oxidative Stress Etiology in Preclinical Amyotrophic Lateral Sclerosis: Benefits of Antioxidant Therapy. Front Neurosci 2018; 12:10. [PMID: 29416499 PMCID: PMC5787557 DOI: 10.3389/fnins.2018.00010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress, induced by an imbalance of free radicals, incites neurodegeneration in Amyotrophic Lateral Sclerosis (ALS). In fact, a mutation in antioxidant enzyme superoxide dismutase 1 (SOD1) accounts for 20% of familial ALS cases. However, the variance among individual studies examining ALS oxidative stress clouds corresponding conclusions. Therefore, we construct a comprehensive, temporal view of oxidative stress and corresponding antioxidant therapy in preclinical ALS by mining published quantitative experimental data and performing metadata analysis of 41 studies. In vitro aggregate analysis of innate oxidative stress inducers, glutamate and hydrogen peroxide, revealed 70–90% of cell death coincides to inducer exposure equivalent to 30–50% peak concentration (p < 0.05). A correlative plateau in cell death suggests oxidative stress impact is greatest in early-stage neurodegeneration. In vivo SOD1-G93A transgenic ALS mouse aggregate analysis of heat shock proteins (HSPs) revealed HSP levels are 30% lower in muscle than spine (p < 0.1). Overall spine HSP levels, including HSP70, are mildly upregulated in SOD1-G93A mice compared to wild type, but not significantly (p > 0.05). Thus, innate HSP compensatory responses to oxidative stress are simply insufficient, a result supportive of homeostatic system instability as central to ALS etiology. In vivo aggregate analysis of antioxidant therapy finds SOD1-G93A ALS mouse survival duration significantly increases by 11.2% (p << 0.001) but insignificantly decreases onset age by 2%. Thus, the aggregate antioxidant treatment effect on survival in preclinical ALS is not sufficient to overcome clinical heterogeneity, which explains the literature disparity between preclinical and clinical antioxidant survival benefit. The aggregate effect sizes on preclinical ALS survival and onset illustrate that present antioxidants, alone, are not sufficient to halt ALS, which underscores its multi-factorial nature. Nonetheless, antioxidant-treated SOD1-G93A ALS mice have significantly increased motor performance (p < 0.05) measured via rotarod. With a colossal aggregate preclinical effect size average of 59.6%, antioxidants are promising for increasing function/quality of life in clinical ALS patients, a premise worth exploration via low-risk nutritional supplements. Finally, more direct, quantitative measures of oxidative stress, antioxidant levels and bioavailability are key to developing powerful antioxidant therapeutics that can assert measurable impacts on redox homeostasis in the brain and spinal cord.
Collapse
Affiliation(s)
- Leila Bond
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
| | - Kamren Bernhardt
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
| | - Priyank Madria
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine Sorrentino
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
| | - Hailee Scelsi
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States.,Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| | - Cassie S Mitchell
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
13
|
Belykh E, Yagmurlu K, Martirosyan NL, Lei T, Izadyyazdanabadi M, Malik KM, Byvaltsev VA, Nakaji P, Preul MC. Laser application in neurosurgery. Surg Neurol Int 2017; 8:274. [PMID: 29204309 PMCID: PMC5691557 DOI: 10.4103/sni.sni_489_16] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 08/18/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Technological innovations based on light amplification created by stimulated emission of radiation (LASER) have been used extensively in the field of neurosurgery. METHODS We reviewed the medical literature to identify current laser-based technological applications for surgical, diagnostic, and therapeutic uses in neurosurgery. RESULTS Surgical applications of laser technology reported in the literature include percutaneous laser ablation of brain tissue, the use of surgical lasers in open and endoscopic cranial surgeries, laser-assisted microanastomosis, and photodynamic therapy for brain tumors. Laser systems are also used for intervertebral disk degeneration treatment, therapeutic applications of laser energy for transcranial laser therapy and nerve regeneration, and novel diagnostic laser-based technologies (e.g., laser scanning endomicroscopy and Raman spectroscopy) that are used for interrogation of pathological tissue. CONCLUSION Despite controversy over the use of lasers for treatment, the surgical application of lasers for minimally invasive procedures shows promising results and merits further investigation. Laser-based microscopy imaging devices have been developed and miniaturized to be used intraoperatively for rapid pathological diagnosis. The multitude of ways that lasers are used in neurosurgery and in related neuroclinical situations is a testament to the technological advancements and practicality of laser science.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Kaan Yagmurlu
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Nikolay L. Martirosyan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ting Lei
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Mohammadhassan Izadyyazdanabadi
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Kashif M. Malik
- University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Vadim A. Byvaltsev
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Mark C. Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
14
|
Effects of intravenous laser irradiation on respiratory physiology parameters of amyotrophic lateral sclerosis patients: An uncontrolled observational study. Eur J Integr Med 2016. [DOI: 10.1016/j.eujim.2015.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Johnstone DM, Moro C, Stone J, Benabid AL, Mitrofanis J. Turning On Lights to Stop Neurodegeneration: The Potential of Near Infrared Light Therapy in Alzheimer's and Parkinson's Disease. Front Neurosci 2016; 9:500. [PMID: 26793049 PMCID: PMC4707222 DOI: 10.3389/fnins.2015.00500] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/15/2015] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's and Parkinson's disease are the two most common neurodegenerative disorders. They develop after a progressive death of many neurons in the brain. Although therapies are available to treat the signs and symptoms of both diseases, the progression of neuronal death remains relentless, and it has proved difficult to slow or stop. Hence, there is a need to develop neuroprotective or disease-modifying treatments that stabilize this degeneration. Red to infrared light therapy (λ = 600-1070 nm), and in particular light in the near infrared (NIr) range, is emerging as a safe and effective therapy that is capable of arresting neuronal death. Previous studies have used NIr to treat tissue stressed by hypoxia, toxic insult, genetic mutation and mitochondrial dysfunction with much success. Here we propose NIr therapy as a neuroprotective or disease-modifying treatment for Alzheimer's and Parkinson's patients.
Collapse
Affiliation(s)
| | - Cécile Moro
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus Grenoble, France
| | - Jonathan Stone
- Department of Physiology, University of Sydney Sydney, NSW, Australia
| | - Alim-Louis Benabid
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus Grenoble, France
| | - John Mitrofanis
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus Grenoble, France
| |
Collapse
|
16
|
Pires de Sousa MV, Ferraresi C, Kawakubo M, Kaippert B, Yoshimura EM, Hamblin MR. Transcranial low-level laser therapy (810 nm) temporarily inhibits peripheral nociception: photoneuromodulation of glutamate receptors, prostatic acid phophatase, and adenosine triphosphate. NEUROPHOTONICS 2016; 3:015003. [PMID: 26835486 PMCID: PMC4725212 DOI: 10.1117/1.nph.3.1.015003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/09/2015] [Indexed: 05/13/2023]
Abstract
Photobiomodulation or low-level light therapy has been shown to attenuate both acute and chronic pain, but the mechanism of action is not well understood. In most cases, the light is applied to the painful area, but in the present study we applied light to the head. We found that transcranial laser therapy (TLT) applied to mouse head with specific parameters (810 nm laser, [Formula: see text], 7.2 or [Formula: see text]) decreased the reaction to pain in the foot evoked either by pressure (von Frey filaments), cold, or inflammation (formalin injection) or in the tail (evoked by heat). The pain threshold increasing is maximum around 2 h after TLT, remains up to 6 h, and is finished 24 h after TLT. The mechanisms were investigated by quantification of adenosine triphosphate (ATP), immunofluorescence, and hematoxylin and eosin (H&E) staining of brain tissues. TLT increased ATP and prostatic acid phosphatase (an endogenous analgesic) and reduced the amount of glutamate receptor (mediating a neurotransmitter responsible for conducting nociceptive information). There was no change in the concentration of tubulin, a constituent of the cytoskeleton, and the H&E staining revealed no tissue damage. This is the first study to show inhibition of peripheral pain due to photobiomodulation of the central nervous system.
Collapse
Affiliation(s)
- Marcelo Victor Pires de Sousa
- Massachusetts General Hospital, Wellman Center for Photomedicine, BAR414, 40 Blossom Street, Boston, Massachusetts 02114, United States
- University of São Paulo, Institute of Physics, Laboratory of Radiation Dosimetry and Medical Physics, Rua do Matão, Travessa R, 187, Cidade Universitária, São Paulo, Brazil
- Bright Photomedicine Ltd., CIETEC Building, 2242 Lineu Prestes, São Paulo 05508-000, Brazil
| | - Cleber Ferraresi
- Massachusetts General Hospital, Wellman Center for Photomedicine, BAR414, 40 Blossom Street, Boston, Massachusetts 02114, United States
- Federal University of São Carlos, Department of Physical Therapy, Laboratory of Electro-Thermo-Phototherapy, Street Washington Luis, km 235. Monjolinho, São Carlos, São Paulo 13565-905, Brazil
- Federal University of São Carlos, Post-Graduation Program in Biotechnology, Street Washington Luis, km 235. Monjolinho, São Carlos, São Paulo 13560-000, Brazil
- University of São Paulo, Optics Group, Physics Institute of São Carlos, Street Miguel Petroni, 146–Jardim Bandeirantes, São Carlos, São Paulo 13560-970, Brazil
| | - Masayoshi Kawakubo
- Massachusetts General Hospital, Wellman Center for Photomedicine, BAR414, 40 Blossom Street, Boston, Massachusetts 02114, United States
| | - Beatriz Kaippert
- Massachusetts General Hospital, Wellman Center for Photomedicine, BAR414, 40 Blossom Street, Boston, Massachusetts 02114, United States
- Federal University of Rio de Janeiro, Carlos Chagas Filho, 373–Cidade Universitária, Rio de Janeiro, RJ 21941-170, Brazil
| | - Elisabeth Mateus Yoshimura
- University of São Paulo, Institute of Physics, Laboratory of Radiation Dosimetry and Medical Physics, Rua do Matão, Travessa R, 187, Cidade Universitária, São Paulo, Brazil
| | - Michael R. Hamblin
- Massachusetts General Hospital, Wellman Center for Photomedicine, BAR414, 40 Blossom Street, Boston, Massachusetts 02114, United States
- Harvard Medical School, Department of Dermatology, 50 Staniford Street #807, Boston, Massachusetts 02114, United States
- Harvard-MIT, Division of Health Sciences and Technology, 77 Massachusetts Avenue, E25-518, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Bedlack RS, Joyce N, Carter GT, Paganoni S, Karam C. Complementary and Alternative Therapies in Amyotrophic Lateral Sclerosis. Neurol Clin 2015; 33:909-36. [PMID: 26515629 PMCID: PMC4712627 DOI: 10.1016/j.ncl.2015.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Given the severity of their illness and lack of effective disease-modifying agents, it is not surprising that most patients with amyotrophic lateral sclerosis (ALS) consider trying complementary and alternative therapies. Some of the most commonly considered alternative therapies include special diets, nutritional supplements, cannabis, acupuncture, chelation, and energy healing. This article reviews these in detail. The authors also describe 3 models by which physicians may frame discussions about alternative therapies: paternalism, autonomy, and shared decision making. Finally, the authors review a program called ALSUntangled, which uses shared decision making to review alternative therapies for ALS.
Collapse
Affiliation(s)
- Richard S Bedlack
- Department of Neurology, Duke University Medical Center, Durham, NC 27702, USA.
| | - Nanette Joyce
- Department of Physical Medicine and Rehabilitation, University of California, Davis School of Medicine, 4860 Y Street Suite 3850, Sacramento, CA 95817, USA
| | - Gregory T Carter
- Department of Physical Medicine and Rehabilitation, St. Luke's Rehabilitation Institute, 711 South Cowley, Spokane, WA 99202, USA
| | - Sabrina Paganoni
- Spaulding Rehabilitation Hospital, Boston VA Health Care System, Harvard Medical School, Massachussets General Hospital, Boston, MA 02114, USA
| | - Chafic Karam
- Department of Neurology, University of North Carolina School of Medicine, 170 Manning Drive, Campus Box 7025, Chapel Hill, NC 27599-7025, USA
| |
Collapse
|
18
|
Seo JS, Choi J, Leem YH, Han PL. Rosmarinic Acid Alleviates Neurological Symptoms in the G93A-SOD1 Transgenic Mouse Model of Amyotrophic Lateral Sclerosis. Exp Neurobiol 2015; 24:341-50. [PMID: 26713081 PMCID: PMC4688333 DOI: 10.5607/en.2015.24.4.341] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/29/2015] [Accepted: 08/21/2015] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects motor neurons in the brain and spinal cord, resulting in paralysis of voluntary skeletal muscles and eventually death, usually within 2~3 years of symptom onset. The pathophysiology mechanism underlying ALS is not yet clearly understood. Moreover the available medication for treating ALS, riluzole, only modestly improves neurological symptoms and increases survival by a few months. Therefore, improved therapeutic strategies are urgently needed. In the present study, we investigated whether rosmarinic acid has a therapeutic potential to alleviate neurological deterioration in the G93A-SOD1 transgenic mouse model of ALS. Treatment of G93A-SOD1 transgenic mice with rosmarinic acid from 7 weeks of age at the dose of 400 mg/kg/day significantly extended survival, and relieved motor function deficits. Specifically, disease onset and symptom progression were delayed by more than one month. These symptomatic improvements were correlated with decreased oxidative stress and reduced neuronal loss in the ventral horns of G93A-SOD1 mice. These results support that rosmarinic acid is a potentially useful supplement for relieving ALS symptoms.
Collapse
Affiliation(s)
- Ji-Seon Seo
- Department of Brain & Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Juli Choi
- Department of Brain & Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Yea-Hyun Leem
- Department of Chemistry & Nano Science, Ewha Womans University, Seoul 03760, Korea. ; Brain Disease Research Institute, Ewha Womans University, Seoul 03760, Korea
| | - Pyung-Lim Han
- Department of Brain & Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea. ; Department of Chemistry & Nano Science, Ewha Womans University, Seoul 03760, Korea. ; Brain Disease Research Institute, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
19
|
Hearst SM, Shao Q, Lopez M, Raucher D, Vig PJS. Focused cerebellar laser light induced hyperthermia improves symptoms and pathology of polyglutamine disease SCA1 in a mouse model. THE CEREBELLUM 2015; 13:596-606. [PMID: 24930030 DOI: 10.1007/s12311-014-0576-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Spinocerebellar ataxia 1 (SCA1) results from pathologic glutamine expansion in the ataxin-1 protein (ATXN1). This misfolded ATXN1 causes severe Purkinje cell (PC) loss and cerebellar ataxia in both humans and mice with the SCA1 disease. The molecular chaperone heat-shock proteins (HSPs) are known to modulate polyglutamine protein aggregation and are neuroprotective. Since HSPs are induced under stress, we explored the effects of focused laser light induced hyperthermia (HT) on HSP-mediated protection against ATXN1 toxicity. We first tested the effects of HT in a cell culture model and found that HT induced Hsp70 and increased its localization to nuclear inclusions in HeLa cells expressing GFP-ATXN1[82Q]. HT treatment decreased ATXN1 aggregation by making GFP-ATXN1[82Q] inclusions smaller and more numerous compared to non-treated cells. Further, we tested our HT approach in vivo using a transgenic (Tg) mouse model of SCA1. We found that our laser method increased cerebellar temperature from 38 to 40 °C without causing any neuronal damage or inflammatory response. Interestingly, mild cerebellar HT stimulated the production of Hsp70 to a significant level. Furthermore, multiple exposure of focused cerebellar laser light induced HT to heterozygous SCA1 transgenic (Tg) mice significantly suppressed the SCA1 phenotype as compared to sham-treated control animals. Moreover, in treated SCA1 Tg mice, the levels of PC calcium signaling/buffering protein calbindin-D28k markedly increased followed by a reduction in PC neurodegenerative morphology. Taken together, our data suggest that laser light induced HT is a novel non-invasive approach to treat SCA1 and maybe other polyglutamine disorders.
Collapse
Affiliation(s)
- Scoty M Hearst
- Department of Neurology, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| | | | | | | | | |
Collapse
|
20
|
Karam CY, Paganoni S, Joyce N, Carter GT, Bedlack R. Palliative Care Issues in Amyotrophic Lateral Sclerosis: An Evidenced-Based Review. Am J Hosp Palliat Care 2014; 33:84-92. [PMID: 25202033 DOI: 10.1177/1049909114548719] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As palliative care physicians become increasingly involved in the care of patients with amyotrophic lateral sclerosis (ALS), they will be asked to provide guidance regarding the use of supplements, diet, exercise, and other common preventive medicine interventions. Moreover, palliative care physicians have a crucial role assisting patients with ALS in addressing health care decisions to maximize quality of life and cope with a rapidly disabling disease. It is therefore important for palliative care physicians to be familiar with commonly encountered palliative care issues in ALS. This article provides an evidenced-based review of palliative care options not usually addressed in national and international ALS guidelines.
Collapse
Affiliation(s)
- Chafic Y Karam
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Sabrina Paganoni
- Harvard Medical School, Massachusetts General Hospital, Spaulding Rehabilitation Hospital, and Boston VA Healthcare System
| | - Nanette Joyce
- Department of Physical Medicine and Rehabilitation, Neuromuscular Section, University of California, Davis Medical School, Sacramento, CA, USA
| | - Gregory T Carter
- Department of Physical Medicine and Rehabilitation St Luke's Rehabilitation Institute, Spokane, WA, USA
| | - Richard Bedlack
- Duke University School of Medicine, and Durham Veterans Affairs Medical Center, Durham, NC, USA
| |
Collapse
|
21
|
Huang YY, Nagata K, Tedford CE, McCarthy T, Hamblin MR. Low-level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro. JOURNAL OF BIOPHOTONICS 2013; 6:829-38. [PMID: 23281261 PMCID: PMC3651776 DOI: 10.1002/jbio.201200157] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 11/13/2012] [Accepted: 11/26/2012] [Indexed: 05/18/2023]
Abstract
Low-level laser (light) therapy (LLLT) involves absorption of photons being in the mitochondria of cells leading to improvement in electron transport, increased mitochondrial membrane potential (MMP), and greater ATP production. Low levels of reactive oxygen species (ROS) are produced by LLLT in normal cells that are beneficial. We exposed primary cultured murine cortical neurons to oxidative stressors: hydrogen peroxide, cobalt chloride and rotenone in the presence or absence of LLLT (3 J/cm², CW, 810 nm wavelength laser, 20 mW/cm²). Cell viability was determined by Prestoblue™ assay. ROS in mitochondria was detected using Mito-sox, while ROS in cytoplasm was detected with CellRox™. MMP was measured with tetramethylrhodamine. In normal neurons LLLT elevated MMP and increased ROS. In oxidatively-stressed cells LLLT increased MMP but reduced high ROS levels and protected cultured cortical neurons from death. Although LLLT increases ROS in normal neurons, it reduces ROS in oxidatively-stressed neurons. In both cases MMP is increased. These data may explain how LLLT can reduce clinical oxidative stress in various lesions while increasing ROS in cells in vitro.
Collapse
Affiliation(s)
- Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston MA, USA
- Department of Pathology, Guangxi Medical University, Nanning, Guangxi, China
| | - Kazuya Nagata
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston MA 02114, USA
- Graduate School of Medicine, University of Tokyo, Japan
| | | | | | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
22
|
Naeser MA, Hamblin MR. Potential for transcranial laser or LED therapy to treat stroke, traumatic brain injury, and neurodegenerative disease. Photomed Laser Surg 2011; 29:443-6. [PMID: 21728786 DOI: 10.1089/pho.2011.9908] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
23
|
Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. J Periodontal Implant Sci 2011; 40:105-10. [PMID: 20607054 PMCID: PMC2895515 DOI: 10.5051/jpis.2010.40.3.105] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 04/20/2010] [Indexed: 01/11/2023] Open
Abstract
Soon after the discovery of lasers in the 1960s it was realized that laser therapy had the potential to improve wound healing and reduce pain, inflammation and swelling. In recent years the field sometimes known as photobiomodulation has broadened to include light-emitting diodes and other light sources, and the range of wavelengths used now includes many in the red and near infrared. The term "low level laser therapy" or LLLT has become widely recognized and implies the existence of the biphasic dose response or the Arndt-Schulz curve. This review will cover the mechanisms of action of LLLT at a cellular and at a tissular level and will summarize the various light sources and principles of dosimetry that are employed in clinical practice. The range of diseases, injuries, and conditions that can be benefited by LLLT will be summarized with an emphasis on those that have reported randomized controlled clinical trials. Serious life-threatening diseases such as stroke, heart attack, spinal cord injury, and traumatic brain injury may soon be amenable to LLLT therapy.
Collapse
Affiliation(s)
- Hoon Chung
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
24
|
Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 2011; 40:516-33. [PMID: 22045511 DOI: 10.1007/s10439-011-0454-7] [Citation(s) in RCA: 832] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/20/2011] [Indexed: 01/03/2023]
Abstract
Soon after the discovery of lasers in the 1960s it was realized that laser therapy had the potential to improve wound healing and reduce pain, inflammation and swelling. In recent years the field sometimes known as photobiomodulation has broadened to include light-emitting diodes and other light sources, and the range of wavelengths used now includes many in the red and near infrared. The term "low level laser therapy" or LLLT has become widely recognized and implies the existence of the biphasic dose response or the Arndt-Schulz curve. This review will cover the mechanisms of action of LLLT at a cellular and at a tissular level and will summarize the various light sources and principles of dosimetry that are employed in clinical practice. The range of diseases, injuries, and conditions that can be benefited by LLLT will be summarized with an emphasis on those that have reported randomized controlled clinical trials. Serious life-threatening diseases such as stroke, heart attack, spinal cord injury, and traumatic brain injury may soon be amenable to LLLT therapy.
Collapse
Affiliation(s)
- Hoon Chung
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
25
|
Wu X, Moges H, DeTaboada L, Anders J. Comparison of the effects of pulsed and continuous wave light on axonal regeneration in a rat model of spinal cord injury. Lasers Med Sci 2011; 27:525-8. [DOI: 10.1007/s10103-011-0983-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 08/03/2011] [Indexed: 11/28/2022]
|
26
|
Solomon JA, Tarnopolsky MA, Hamadeh MJ. One universal common endpoint in mouse models of amyotrophic lateral sclerosis. PLoS One 2011; 6:e20582. [PMID: 21687686 PMCID: PMC3110799 DOI: 10.1371/journal.pone.0020582] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 05/05/2011] [Indexed: 12/14/2022] Open
Abstract
There is no consensus among research laboratories around the world on the criteria that define endpoint in studies involving rodent models of amyotrophic lateral sclerosis (ALS). Data from 4 nutrition intervention studies using 162 G93A mice, a model of ALS, were analyzed to determine if differences exist between the following endpoint criteria: CS 4 (functional paralysis of both hindlimbs), CS 4+ (CS 4 in addition to the earliest age of body weight loss, body condition deterioration or righting reflex), and CS 5 (CS 4 plus righting reflex >20 s). The age (d; mean ± SD) at which mice reached endpoint was recorded as the unit of measurement. Mice reached CS 4 at 123.9±10.3 d, CS 4+ at 126.6±9.8 d and CS 5 at 127.6±9.8 d, all significantly different from each other (P<0.001). There was a significant positive correlation between CS 4 and CS 5 (r = 0.95, P<0.001), CS 4 and CS 4+ (r = 0.96, P<0.001), and CS 4+ and CS 5 (r = 0.98, P<0.001), with the Bland-Altman plot showing an acceptable bias between all endpoints. Logrank tests showed that mice reached CS 4 24% and 34% faster than CS 4+ (P = 0.046) and CS 5 (P = 0.006), respectively. Adopting CS 4 as endpoint would spare a mouse an average of 4 days (P<0.001) from further neuromuscular disability and poor quality of life compared to CS 5. Alternatively, CS 5 provides information regarding proprioception and severe motor neuron death, both could be important parameters in establishing the efficacy of specific treatments. Converging ethics and discovery, would adopting CS 4 as endpoint compromise the acquisition of insight about the effects of interventions in animal models of ALS?
Collapse
Affiliation(s)
- Jesse A. Solomon
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Mark A. Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mazen J. Hamadeh
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
27
|
Hashmi JT, Huang YY, Osmani BZ, Sharma SK, Naeser MA, Hamblin MR. Role of low-level laser therapy in neurorehabilitation. PM R 2011; 2:S292-305. [PMID: 21172691 DOI: 10.1016/j.pmrj.2010.10.013] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
This year marks the 50th anniversary of the discovery of the laser. The development of lasers for medical use, which became known as low-level laser therapy (LLLT) or photobiomodulation, followed in 1967. In recent years, LLLT has become an increasingly mainstream modality, especially in the areas of physical medicine and rehabilitation. At first used mainly for wound healing and pain relief, the medical applications of LLLT have broadened to include diseases such as stroke, myocardial infarction, and degenerative or traumatic brain disorders. This review will cover the mechanisms of LLLT that operate both on a cellular and a tissue level. Mitochondria are thought to be the principal photoreceptors, and increased adenosine triphosphate, reactive oxygen species, intracellular calcium, and release of nitric oxide are the initial events. Activation of transcription factors then leads to expression of many protective, anti-apoptotic, anti-oxidant, and pro-proliferation gene products. Animal studies and human clinical trials of LLLT for indications with relevance to neurology, such as stroke, traumatic brain injury, degenerative brain disease, spinal cord injury, and peripheral nerve regeneration, will be covered.
Collapse
Affiliation(s)
- Javad T Hashmi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
28
|
Miana-Mena FJ, González-Mingot C, Larrodé P, Muñoz MJ, Oliván S, Fuentes-Broto L, Martínez-Ballarín E, Reiter RJ, Osta R, García JJ. Monitoring systemic oxidative stress in an animal model of amyotrophic lateral sclerosis. J Neurol 2010; 258:762-9. [PMID: 21108037 DOI: 10.1007/s00415-010-5825-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/25/2010] [Accepted: 10/29/2010] [Indexed: 10/18/2022]
Abstract
A mutant form of the ubiquitous copper/zinc superoxide dismutase (SOD1) protein has been found in some patients with amyotrophic lateral sclerosis (ALS). We monitored oxidative stress in an animal model of ALS, the SOD(G93A) mouse, which develops a disease similar to ALS with an accelerated course. The aim of this work was to show that ALS damages several organs and tissues, from an oxidative stress point of view. We measured lipid and protein oxidative damage in different tissue homogenates of SOD(G93A) mice. The biomarkers that we analyzed were malondialdehyde + 4-hydroxyalkenal (MDA + 4-HDA) and carbonyls, respectively. The spinal cord and brain of SOD(G93A) mice showed increased lipid peroxidation after 100 or 130 days compared to age-matched littermate controls. The CNS was most affected, but lipid peroxidation was also detected in the skeletal muscle and liver on day 130. No changes were observed in protein carbonylation in the homogenates. Our results are consistent with a multisystem etiology of ALS and suggest that oxidative stress may play a primary role in ALS pathogenesis. Thus, oxidative stress represents a potential biomarker that might be useful in developing new therapeutic strategies for ALS.
Collapse
Affiliation(s)
- Francisco Javier Miana-Mena
- Departamento Farmacología y Fisiología, Universidad de Zaragoza, c) Domingo Miral s/n, 50009, Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Anders JJ. The potential of light therapy for central nervous system injury and disease. Photomed Laser Surg 2009; 27:379-80. [PMID: 19569951 DOI: 10.1089/pho.2009.0053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
30
|
Photomedicine and LLLT Literature Watch. Photomed Laser Surg 2009; 27:217-8. [DOI: 10.1089/pho.2009.9958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|