1
|
Dumas N, Pecchi E, O'Connor R, Bos R, Moreau D. Infrared neuroglial modulation of spinal locomotor networks. Sci Rep 2024; 14:22282. [PMID: 39333287 PMCID: PMC11437012 DOI: 10.1038/s41598-024-73577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Infrared neural stimulation (INS) emerges as a promising tool for stimulating the nervous system by its high spatial precision and absence of the use of exogenous agents into the tissue, which led to the first successful proof of concept in human brain. While neural networks have been the focal point of INS research, this technique is also non cell type specific as it triggers activity in non electrically excitable cells. Despite increasing interest, there remains to demonstrate well defined simultaneous astrocytic and neuronal signals in response to INS. Using calcium imaging, we show that INS has the capacity to initiate calcium signaling in both astrocytes and neurons simultaneously from the rostral lumbar spinal cord, each exhibiting distinct temporal and amplitude characteristics. Importantly, the mechanism underlying infrared-induced neuronal and astrocytic calcium signaling differ, with neuronal activity relying on sodium channels, whereas induced astrocytic signaling is predominantly influenced by extracellular calcium and TRPV4 channels. Furthermore, our findings demonstrate the frequency shift of neuronal calcium oscillations through infrared stimulation. By deepening our understanding in INS fundamentals, this technique holds great promise for advancing neuroscience, deepening our understanding of pathologies, and potentially paving the way for future clinical applications.
Collapse
Affiliation(s)
- Nathan Dumas
- Mines Saint-Etienne, Centre CMP, Département BEL, 13541, Gardanne, France
| | - Emilie Pecchi
- Institut de Neurosciences de la Timone, CNRS UMR 7289 et Aix- Marseille Université, 13005, Marseille, France
| | - Rodney O'Connor
- Mines Saint-Etienne, Centre CMP, Département BEL, 13541, Gardanne, France
| | - Rémi Bos
- Institut de Neurosciences de la Timone, CNRS UMR 7289 et Aix- Marseille Université, 13005, Marseille, France
| | - David Moreau
- Mines Saint-Etienne, Centre CMP, Département BEL, 13541, Gardanne, France.
| |
Collapse
|
2
|
Guo XJ, Zhao Z, Chang JQ, He LW, Su WN, Feng T, Zhao C, Xu M, Rao JS. Epidural combined optical and electrical stimulation induces high-specificity activation of target muscles in spinal cord injured rats. Front Neurosci 2023; 17:1282558. [PMID: 38027482 PMCID: PMC10667474 DOI: 10.3389/fnins.2023.1282558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Epidural electrical stimulation (EES) has been shown to improve motor dysfunction after spinal cord injury (SCI) by activating residual locomotor neural networks. However, the stimulation current often spreads excessively, leading to activation of non-target muscles and reducing the accuracy of stimulation regulation. Objectives Near-infrared nerve stimulation (nINS) was combined with EES to explore its regulatory effect on lower limb muscle activity in spinal-cord-transected rats. Methods In this study, stimulation electrodes were implanted into the rats' L3-L6 spinal cord segment with T8 cord transected. Firstly, a series of EES parameters (0.2-0.6 mA and 20-60 Hz) were tested to determine those that specifically regulate the tibialis anterior (TA) and medial gastrocnemius (MG). Subsequently, to determine the effect of combined optical and electrical stimulation, near-infrared laser with a wavelength of 808 nm was used to irradiate the L3-L6 spinal cord segment while EES was performed. The amplitude of electromyography (EMG), the specific activation intensity of the target muscle, and the minimum stimulus current intensity to induce joint movement (motor threshold) under a series of optical stimulation parameters (power: 0.0-2.0 W; pulse width: 0-10 ms) were investigated and analyzed. Results EES stimulation with 40 Hz at the L3 and L6 spinal cord segments specifically activated TA and MG, respectively. High stimulation intensity (>2 × motor threshold) activated non-target muscles, while low stimulation frequency (<20 Hz) produced intermittent contraction. Compared to electrical stimulation alone (0.577 ± 0.081 mV), the combined stimulation strategy could induce stronger EMG amplitude of MG (1.426 ± 0.365 mV) after spinal cord injury (p < 0.01). The combined application of nINS effectively decreased the EES-induced motor threshold of MG (from 0.237 ± 0.001 mA to 0.166 ± 0.028 mA, p < 0.001). Additionally, the pulse width (PW) of nINS had a slight impact on the regulation of muscle activity. The EMG amplitude of MG only increased by ~70% (from 3.978 ± 0.240 mV to 6.753 ± 0.263 mV) when the PW increased by 10-fold (from 1 to 10 ms). Conclusion The study demonstrates the feasibility of epidural combined electrical and optical stimulation for highly specific regulation of muscle activity after SCI, and provides a new strategy for improving motor dysfunction caused by SCI.
Collapse
Affiliation(s)
- Xiao-Jun Guo
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ziyi Zhao
- Department of Orthopedics, The First Medical Center of PLA General Hospital, Beijing, China
| | - Jia-Qi Chang
- Smart Fluid Equipment and Manufacture Lab, School of Automation Science and Electrical Engineering, Beihang Univeristy, Beijing, China
| | - Le-Wei He
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wen-Nan Su
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ting Feng
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Can Zhao
- Institute of Rehabilitation Engineering, China Rehabilitation Science Institute, Beijing, China
| | - Meng Xu
- Department of Orthopedics, The First Medical Center of PLA General Hospital, Beijing, China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
3
|
Almasri RM, Ladouceur F, Mawad D, Esrafilzadeh D, Firth J, Lehmann T, Poole-Warren LA, Lovell NH, Al Abed A. Emerging trends in the development of flexible optrode arrays for electrophysiology. APL Bioeng 2023; 7:031503. [PMID: 37692375 PMCID: PMC10491464 DOI: 10.1063/5.0153753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Optical-electrode (optrode) arrays use light to modulate excitable biological tissues and/or transduce bioelectrical signals into the optical domain. Light offers several advantages over electrical wiring, including the ability to encode multiple data channels within a single beam. This approach is at the forefront of innovation aimed at increasing spatial resolution and channel count in multichannel electrophysiology systems. This review presents an overview of devices and material systems that utilize light for electrophysiology recording and stimulation. The work focuses on the current and emerging methods and their applications, and provides a detailed discussion of the design and fabrication of flexible arrayed devices. Optrode arrays feature components non-existent in conventional multi-electrode arrays, such as waveguides, optical circuitry, light-emitting diodes, and optoelectronic and light-sensitive functional materials, packaged in planar, penetrating, or endoscopic forms. Often these are combined with dielectric and conductive structures and, less frequently, with multi-functional sensors. While creating flexible optrode arrays is feasible and necessary to minimize tissue-device mechanical mismatch, key factors must be considered for regulatory approval and clinical use. These include the biocompatibility of optical and photonic components. Additionally, material selection should match the operating wavelength of the specific electrophysiology application, minimizing light scattering and optical losses under physiologically induced stresses and strains. Flexible and soft variants of traditionally rigid photonic circuitry for passive optical multiplexing should be developed to advance the field. We evaluate fabrication techniques against these requirements. We foresee a future whereby established telecommunications techniques are engineered into flexible optrode arrays to enable unprecedented large-scale high-resolution electrophysiology systems.
Collapse
Affiliation(s)
- Reem M. Almasri
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | | | - Damia Mawad
- School of Materials Science and Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Josiah Firth
- Australian National Fabrication Facility, UNSW, Sydney, NSW 2052, Australia
| | - Torsten Lehmann
- School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052, Australia
| | | | | | - Amr Al Abed
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Horváth ÁC, Borbély S, Mihók F, Fürjes P, Barthó P, Fekete Z. Histological and electrophysiological evidence on the safe operation of a sharp-tip multimodal optrode during infrared neuromodulation of the rat cortex. Sci Rep 2022; 12:11434. [PMID: 35794160 PMCID: PMC9259743 DOI: 10.1038/s41598-022-15367-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Infrared neuromodulation is an emerging technology in neuroscience that exploits the inherent thermal sensitivity of neurons to excite or inhibit cellular activity. Since there is limited information on the physiological response of intracortical cell population in vivo including evidence on cell damage, we aimed to create and to validate the safe operation of a microscale sharp-tip implantable optrode that can be used to suppress the activity of neuronal population with low optical power continuous wave irradiation. Effective thermal cross-section and electric properties of the multimodal microdevice was characterized in bench-top tests. The evoked multi-unit activity was monitored in the rat somatosensory cortex, and using NeuN immunocytochemistry method, quantitative analysis of neuronal density changes due to the stimulation trials was evaluated. The sharp tip implant was effectively used to suppress the firing rate of neuronal populations. Histological staining showed that neither the probe insertion nor the heating protocols alone lead to significant changes in cell density in the close vicinity of the implant with respect to the intact control region. Our study shows that intracortical stimulation with continuous-wave infrared light at 1550 nm using a sharp tip implantable optical microdevice is a safe approach to modulate the firing rate of neurons.
Collapse
Affiliation(s)
- Á Cs Horváth
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, PPKE, Budapest, Hungary
| | - S Borbély
- Sleep Oscillations Research Group, Institute of Cognitive Neuroscience and Psychology, RCNS, ELKH, Budapest, Hungary
- Neuronal Network and Behavior Research Group, Institute of Experimental Medicine, ELKH, Budapest, Hungary
| | - F Mihók
- Department of Control Engineering and Information Technology, BUTE, Budapest, Hungary
| | - P Fürjes
- Microsystems Laboratory, Centre for Energy Research, ELKH, Budapest, Hungary
| | - P Barthó
- Sleep Oscillations Research Group, Institute of Cognitive Neuroscience and Psychology, RCNS, ELKH, Budapest, Hungary
| | - Z Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, PPKE, Budapest, Hungary.
| |
Collapse
|
5
|
Kaszas A, Szalay G, Slézia A, Bojdán A, Vanzetta I, Hangya B, Rózsa B, O'Connor R, Moreau D. Two-photon GCaMP6f imaging of infrared neural stimulation evoked calcium signals in mouse cortical neurons in vivo. Sci Rep 2021; 11:9775. [PMID: 33963220 PMCID: PMC8105372 DOI: 10.1038/s41598-021-89163-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Infrared neural stimulation is a promising tool for stimulating the brain because it can be used to excite with high spatial precision without the need of delivering or inserting any exogenous agent into the tissue. Very few studies have explored its use in the brain, as most investigations have focused on sensory or motor nerve stimulation. Using intravital calcium imaging with the genetically encoded calcium indicator GCaMP6f, here we show that the application of infrared neural stimulation induces intracellular calcium signals in Layer 2/3 neurons in mouse cortex in vivo. The number of neurons exhibiting infrared-induced calcium response as well as the amplitude of those signals are shown to be both increasing with the energy density applied. By studying as well the spatial extent of the stimulation, we show that reproducibility of the stimulation is achieved mainly in the central part of the infrared beam path. Stimulating in vivo at such a degree of precision and without any exogenous chromophores enables multiple applications, from mapping the brain's connectome to applications in systems neuroscience and the development of new therapeutic tools for investigating the pathological brain.
Collapse
Affiliation(s)
- Attila Kaszas
- Mines Saint-Etienne, Centre CMP, Département BEL, F - 13541, Gardanne, France
- Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix-Marseille Université, 13005, Marseille, France
| | - Gergely Szalay
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Andrea Slézia
- Mines Saint-Etienne, Centre CMP, Département BEL, F - 13541, Gardanne, France
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Alexandra Bojdán
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Ivo Vanzetta
- Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix-Marseille Université, 13005, Marseille, France
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Balázs Rózsa
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, 1083, Hungary
- Two-Photon Laboratory, Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, 1083, Hungary
| | - Rodney O'Connor
- Mines Saint-Etienne, Centre CMP, Département BEL, F - 13541, Gardanne, France
- Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix-Marseille Université, 13005, Marseille, France
| | - David Moreau
- Mines Saint-Etienne, Centre CMP, Département BEL, F - 13541, Gardanne, France.
| |
Collapse
|
6
|
Fekete Z, Horváth ÁC, Zátonyi A. Infrared neuromodulation:a neuroengineering perspective. J Neural Eng 2020; 17:051003. [PMID: 33055373 DOI: 10.1088/1741-2552/abb3b2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Infrared neuromodulation (INM) is a branch of photobiomodulation that offers direct or indirect control of cellular activity through elevation of temperature in a spatially confined region of the target tissue. Research on INM started about 15 ago and is gradually attracting the attention of the neuroscience community, as numerous experimental studies have provided firm evidence on the safe and reproducible excitation and inhibition of neuronal firing in both in vitro and in vivo conditions. However, its biophysical mechanism is not fully understood and several engineered interfaces have been created to investigate infrared stimulation in both the peripheral and central nervous system. In this review, recent applications and present knowledge on the effects of INM on cellular activity are summarized, and an overview of the technical approaches to deliver infrared light to cells and to interrogate the optically evoked response is provided. The micro- and nanoengineered interfaces used to investigate the influence of INM are described in detail.
Collapse
Affiliation(s)
- Z Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest 1083, Hungary. Author to whom any correspondence should be addressed
| | | | | |
Collapse
|
7
|
Damnjanovic R, Bazard P, Frisina RD, Bhethanabotla VR. Hybrid Electro-Plasmonic Neural Stimulation with Visible-Light-Sensitive Gold Nanoparticles. ACS NANO 2020; 14:10917-10928. [PMID: 32603090 DOI: 10.1021/acsnano.0c00722] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biomedical prosthetics utilizing electrical stimulation have limited, effective spatial resolution due to spread of electrical currents to surrounding tissue, causing nonselective stimulation. So, precise spatial resolution is not possible for traditional neural prosthetic devices, such as cochlear implants. More recently, alternative methods utilize optical stimulation, mainly infrared, sometimes paired with nanotechnology for stimulating action potentials. Infrared stimulation has its own drawbacks, as it may cause collateral heating of surrounding tissue. In previous work, we employed a plasmonic method for stimulation of an electrically excitable neuroblastoma cell line, which had limited success. Here, we report the development of a hybrid electro-plasmonic stimulation platform for spatially and temporally precise neural excitation to address the above deficiencies. Primary trigeminal neurons were costimulated in vitro in a whole-cell patch-clamp configuration with subthreshold-level short-duration (1-5 ms) electrical and visible light pulses (1-5 ms). The visible light pulses were aimed at a gold-nanoparticle-coated nanoelectrode placed alongside the neuron, within 2 μm distance. Membrane action potentials were recorded with a 3-fold higher success rate and 5-fold better poststimulation cell recovery rate than with pure optical stimulation alone. Also, electrical stimulus current input was being reduced by up to 40%. The subthreshold levels of electrical stimuli in conjunction with visible light (532 nm) reliably triggered trains of action potentials. This single-cell hybrid activation was reliable and repeatable, without any damage as observed with pure optical stimulation. This work represents an empirical cellular study of the membrane action potential response produced by the cultured primary sensory trigeminal neurons when costimulated with plasmonic and electrical (hybrid) stimulation. Our hybrid neurostimulation method can be used toward development of high-acuity neural modulation prosthetic devices, tunable for individual needs, which would qualify as a preferred alternative over traditional electrical stimulation technologies.
Collapse
|
8
|
Brown WGA, Needham K, Begeng JM, Thompson AC, Nayagam BA, Kameneva T, Stoddart PR. Thermal damage threshold of neurons during infrared stimulation. BIOMEDICAL OPTICS EXPRESS 2020; 11:2224-2234. [PMID: 32341879 PMCID: PMC7173919 DOI: 10.1364/boe.383165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/11/2020] [Accepted: 03/23/2020] [Indexed: 05/25/2023]
Abstract
In infrared neural stimulation (INS), laser-evoked thermal transients are used to generate small depolarising currents in neurons. The laser exposure poses a moderate risk of thermal damage to the target neuron. Indeed, exogenous methods of neural stimulation often place the target neurons under stressful non-physiological conditions, which can hinder ordinary neuronal function and hasten cell death. Therefore, quantifying the exposure-dependent probability of neuronal damage is essential for identifying safe operating limits of INS and other interventions for therapeutic and prosthetic use. Using patch-clamp recordings in isolated spiral ganglion neurons, we describe a method for determining the dose-dependent damage probabilities of individual neurons in response to both acute and cumulative infrared exposure parameters based on changes in injection current. The results identify a local thermal damage threshold at approximately 60 °C, which is in keeping with previous literature and supports the claim that damage during INS is a purely thermal phenomenon. In principle this method can be applied to any potentially injurious stimuli, allowing for the calculation of a wide range of dose-dependent neural damage probabilities. Unlike histological analyses, the technique is well-suited to quantifying gradual neuronal damage, and critical threshold behaviour is not required.
Collapse
Affiliation(s)
- William G. A. Brown
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, VIC 3122, Australia
| | - Karina Needham
- Department of Surgery (Otolaryngology), University of Melbourne, Royal Victoria Eye & Ear Hospital, 32 Gisborne St, East Melbourne, VIC 3002, Australia
| | - James M. Begeng
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, VIC 3122, Australia
| | | | - Bryony A. Nayagam
- Department of Audiology and Speech Pathology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tatiana Kameneva
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, VIC 3122, Australia
| | - Paul R. Stoddart
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, VIC 3122, Australia
| |
Collapse
|
9
|
Ansari MA, Zakeri M. Blind Localization of Heating in Neural Tissues Induced by a Train of the Infrared Pulse Laser. J Lasers Med Sci 2019; 10:264-267. [PMID: 31875117 DOI: 10.15171/jlms.2019.43] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Recently, infrared lasers (wavelengths larger than 1100 nm) have been applied to stimulate neural tissues. Infrared neural stimulation (INS) has some advantages over conventional electric stimulation, including contact-free delivery, spatial precision, and lack of stimulation artifacts. In this study and based on a photothermal mechanism, we applied the heat diffusion equation to study temperature variation of a biological phantom during INS. In addition, the impact of laser parameters on spatially localized heating induced by 2 different infrared wavelengths were studied. Methods: We studied the localization of INS inside a phantom similar to cortical neural tissue. First, we analytically solved the heat diffusion equation to study the distribution of temperature inside this phantom. Then, the accuracy of analytical results was verified by heating the phantom using amplitude-modulated infrared lasers (lambda= 1450 and 1500 nm, the energy between 2 and 5 mJ and pulse duration up to 20 ms). The laser light was directed to sample by a multimode optical fiber (NA=0.22, core size= 200 microns). Finally, the impacts of laser properties on the spatial resolution of infrared heating were discerned. Results: In order to verify analytical results, we measured the maximum temperatures of the phantom during illumination of lasers and compared them with analytical results. The analytical results were in agreement with the experimental results. The effects of laser beam properties such as pulse duration, energy and repetition rate frequency on the spatial resolution were investigated. The results indicated that the spatial resolution of INS can be smaller than one millimeter. Conclusion: Here, the influences of laser properties on the localization of INS inside a biological phantom were studied. These results can be applied to improve the spatial selectivity of the peripheral nerve interface.
Collapse
Affiliation(s)
- Mohammad Ali Ansari
- Optical Bio-Imaging Lab(OBI lab), Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mahdi Zakeri
- Optical Bio-Imaging Lab(OBI lab), Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
10
|
Influence of radiant exposure and repetition rate in infrared neural stimulation with near-infrared lasers. Lasers Med Sci 2019; 34:1555-1566. [PMID: 30887233 DOI: 10.1007/s10103-019-02741-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
Abstract
In this study, we combine heat diffusion equation and modified Hodgkin-Huxley axonal model to investigate how an action potential is generated during infrared neural stimulation. The effects of temporal and spatial distribution of heat induced by infrared pulsed lasers on variation of electrical membrane capacitance are investigated. These variations can lead to depolarize the membrane and generate an action potential. We estimate the threshold values of laser light parameters such as energy density, pulse duration, and repetition rate are needed to trigger an action potential. In order to do it, we present an analytic solution to heat diffusion equation. Then, the analytic results are verified by experimental results. Furthermore, the modified Hodgkin-Huxley axonal model is applied to simulate the generation of action potential during infrared neural stimulation by taking into account the temperature dependence of electrical membrane capacitance. Results show that the threshold temperature increase induced by a train infrared pulse laser can be smaller if repetition rate is higher. These results also indicate that temperature rise time and axon diameter influence on threshold temperature increase. To verify threshold values estimated by the presented method, we use a train infrared pulsed laser (λ = 1450 nm with repetition rate of 3.8 Hz, pulse duration of 18 ms and energy density of 5 J/cm2) to optically pace an adult rat heart, and we are able to successfully pace the rat heart during an open-heart surgery. The presented method can be used to estimate threshold values of laser parameters required for generating an action potential, and it can provide an insight to how the temperature changes lead to neural stimulation during INS.
Collapse
|
11
|
Jiang W, Rajguru SM. Eye Movements Evoked by Pulsed Infrared Radiation of the Rat Vestibular System. Ann Biomed Eng 2018; 46:1406-1418. [PMID: 29845411 PMCID: PMC6095805 DOI: 10.1007/s10439-018-2059-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/24/2018] [Indexed: 10/16/2022]
Abstract
Light at infrared wavelengths has been demonstrated to modulate the pattern of neural signals transmitted from the angular motion sensing semicircular canals of the vestibular system to the brain. In the present study, we have characterized physiological eye movements evoked by focused, pulsed infrared radiation (IR) stimuli directed at an individual semicircular canal in a mammalian model. Pulsed IR (1863 nm) trains were directed at the posterior semicircular canal in a rat using 200-400 µm optical fibers. Evoked bilateral eye movements were measured using a custom-modified video-oculography system. The activation of vestibulo-ocular motor pathways by frequency modulated pulsed IR directed at single posterior semicircular canals evoked significant, characteristic bilateral eye movements. In this case, the resulting eye movements were disconjugate with ipsilateral eye moving upwards with a rotation towards the stimulated ear and the contralateral eye moving downwards. The eye movements were stable through several hours of repeated stimulation and could be maintained with 30 + minutes of continuous, frequency-modulated IR stimulation. Following the measurements, the distance of the fiber from target structures and orientation of the beam relative to vestibular structures were determined using micro-computed tomography. Results highlight the spatial selectivity of optical stimulation. Our results demonstrate a novel strategy for direct optical stimulation of the vestibular pathway in rodents and lays the groundwork for future applications of optical neural stimulation in inner ear research and therapeutic applications.
Collapse
Affiliation(s)
- Weitao Jiang
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, MEA 204, Coral Gables, FL, 33146, USA
| | - Suhrud M Rajguru
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, MEA 204, Coral Gables, FL, 33146, USA.
- Department of Otolaryngology, University of Miami, 1600 NW 10th Ave, RMSB 3160, Miami, FL, 33136, USA.
| |
Collapse
|
12
|
Paris L, Marc I, Charlot B, Dumas M, Valmier J, Bardin F. Millisecond infrared laser pulses depolarize and elicit action potentials on in-vitro dorsal root ganglion neurons. BIOMEDICAL OPTICS EXPRESS 2017; 8:4568-4578. [PMID: 29082085 PMCID: PMC5654800 DOI: 10.1364/boe.8.004568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 05/27/2023]
Abstract
This work focuses on the optical stimulation of dorsal root ganglion (DRG) neurons through infrared laser light stimulation. We show that a few millisecond laser pulse at 1875 nm induces a membrane depolarization, which was observed by the patch-clamp technique. This stimulation led to action potentials firing on a minority of neurons beyond an energy threshold. A depolarization without action potential was observed for the majority of DRG neurons, even beyond the action potential energy threshold. The use of ruthenium red, a thermal channel blocker, stops the action potential generation, but has no effects on membrane depolarization. Local temperature measurements reveal that the depolarization amplitude is sensitive to the amplitude of the temperature rise as well as to the time rate of change of temperature, but in a way which may not fully follow a photothermal capacitive mechanism, suggesting that more complex mechanisms are involved.
Collapse
Affiliation(s)
- Lambert Paris
- Institut d’Electronique et des Systèmes, CNRS UMR5214, Université de Montpellier, Montpellier, France
- Institut des Neurosciences de Montpellier, INSERM U1051, Montpellier, France
| | | | - Benoit Charlot
- Institut d’Electronique et des Systèmes, CNRS UMR5214, Université de Montpellier, Montpellier, France
| | | | - Jean Valmier
- Institut des Neurosciences de Montpellier, INSERM U1051, Montpellier, France
| | - Fabrice Bardin
- Institut d’Electronique et des Systèmes, CNRS UMR5214, Université de Montpellier, Montpellier, France
- MIPA, Université de Nîmes, Place Gabriel Péri, 30000, Nîmes, France
| |
Collapse
|
13
|
Weissler Y, Farah N, Shoham S. Simulation of morphologically structured photo-thermal neural stimulation. J Neural Eng 2017; 14:055001. [PMID: 28820744 DOI: 10.1088/1741-2552/aa7805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Rational design of next-generation techniques for photo-thermal excitation requires the development of tools capable of modeling the effects of spatially- and temporally-dependent temperature distribution on cellular neuronal structures. APPROACH We present a new computer simulation tool for predicting the effects of arbitrary spatiotemporally-structured photo-thermal stimulation on 3D, morphologically realistic neurons. The new simulation tool is based on interfacing two generic platforms, NEURON and MATLAB and is therefore suited for capturing different kinds of stimuli and neural models. MAIN RESULTS Simulation results are validated using photo-absorber induced neuro-thermal stimulation (PAINTS) empirical results, and advanced features are explored. SIGNIFICANCE The new simulation tool could have an important role in understanding and investigating complex optical stimulation at the single-cell and network levels.
Collapse
Affiliation(s)
- Y Weissler
- The Faculty of Biomedical Engineering and Russel-Berrie Nanoscience and Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
14
|
Molokanova E, Mercola M, Savchenko A. Bringing new dimensions to drug discovery screening: impact of cellular stimulation technologies. Drug Discov Today 2017; 22:1045-1055. [PMID: 28179145 DOI: 10.1016/j.drudis.2017.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/09/2016] [Accepted: 01/27/2017] [Indexed: 01/08/2023]
Abstract
The current mandate for the drug discovery industry is to develop more efficient drugs faster while reducing the costs associated with their development. Incorporation of cell stimulation technologies during screening assays is expected to revolutionize the discovery of novel drugs as well as safety pharmacology. In this review, we highlight 'classical' and emerging cell stimulation technologies that provide the ability to evaluate the effects of drug candidates on cells in different functional states to assess clinically relevant phenotypes.
Collapse
Affiliation(s)
- Elena Molokanova
- Nanotools Bioscience, Encinitas, CA 92024, USA; Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Mark Mercola
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Department of Medicine and Cardiovascular Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Alex Savchenko
- Department of Medicine and Cardiovascular Institute, Stanford University, Palo Alto, CA 94304, USA; Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
15
|
Richardson RT, Thompson AC, Wise AK, Needham K. Challenges for the application of optical stimulation in the cochlea for the study and treatment of hearing loss. Expert Opin Biol Ther 2016; 17:213-223. [PMID: 27960585 DOI: 10.1080/14712598.2017.1271870] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Electrical stimulation has long been the most effective strategy for evoking neural activity from bionic devices and has been used with great success in the cochlear implant to allow deaf people to hear speech and sound. Despite its success, the spread of electrical current stimulates a broad region of neural tissue meaning that contemporary devices have limited precision. Optical stimulation as an alternative has attracted much recent interest for its capacity to provide highly focused stimuli, and therefore, potentially improved sensory perception. Given its specificity of activation, optical stimulation may also provide a useful tool in the study of fundamental neuroanatomy and neurophysiological processes. Areas covered: This review examines the advances in optical stimulation - infrared, nanoparticle-enhanced, and optogenetic-based - and its application in the inner ear for the restoration of auditory function following hearing loss. Expert opinion: Initial outcomes suggest that optogenetic-based approaches hold the greatest potential and viability amongst optical techniques for application in the cochlea. The future success of this approach will be governed by advances in the targeted delivery of opsins to auditory neurons, improvements in channel kinetics, development of optical arrays, and innovation of opsins that activate within the optimal near-infrared therapeutic window.
Collapse
Affiliation(s)
- Rachael T Richardson
- a Bionics Institute , East Melbourne , Australia.,b Department of Medical Bionics , University of Melbourne , East Melbourne , Australia
| | | | - Andrew K Wise
- a Bionics Institute , East Melbourne , Australia.,b Department of Medical Bionics , University of Melbourne , East Melbourne , Australia
| | - Karina Needham
- d Department of Surgery (Otolaryngology) , University of Melbourne, Royal Victorian Eye & Ear Hospital , East Melbourne , Australia
| |
Collapse
|
16
|
Effect of shorter pulse duration in cochlear neural activation with an 810-nm near-infrared laser. Lasers Med Sci 2016; 32:389-396. [PMID: 27995385 DOI: 10.1007/s10103-016-2129-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
Abstract
Optical neural stimulation in the cochlea has been presented as an alternative technique to the electrical stimulation due to its potential in spatially selectivity enhancement. So far, few studies have selected the near-infrared (NIR) laser in cochlear neural stimulation and limited optical parameter space has been examined. This paper focused on investigating the optical parameter effect on NIR stimulation of auditory neurons, especially under shorter pulse durations. The spiral ganglion neurons in the cochlea of deafened guinea pigs were stimulated with a pulsed 810-nm NIR laser in vivo. The laser radiation was delivered by an optical fiber and irradiated towards the modiolus. Optically evoked auditory brainstem responses (OABRs) with various optical parameters were recorded and investigated. The OABRs could be elicited with the cochlear deafened animals by using the 810-nm laser in a wide pulse duration ranged from 20 to 1000 μs. Results showed that the OABR intensity increased along with the increasing laser radiant exposure of limited range at each specific pulse duration. In addition, for the pulse durations from 20 to 300 μs, the OABR intensity increased monotonically along with the pulse duration broadening. While for pulse durations above 300 μs, the OABR intensity basically kept stable with the increasing pulse duration. The 810-nm NIR laser could be an effective stimulus in evoking the cochlear neuron response. Our experimental data provided evidence to optimize the pulse duration range, and the results suggested that the pulse durations from 20 to 300 μs could be the optimized range in cochlear neural activation with the 810-nm-wavelength laser.
Collapse
|
17
|
Entwisle B, McMullan S, Bokiniec P, Gross S, Chung R, Withford M. In vitro neuronal depolarization and increased synaptic activity induced by infrared neural stimulation. BIOMEDICAL OPTICS EXPRESS 2016; 7:3211-3219. [PMID: 27699093 PMCID: PMC5030005 DOI: 10.1364/boe.7.003211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/07/2016] [Accepted: 07/14/2016] [Indexed: 05/11/2023]
Abstract
Neuronal responses to infrared neural stimulation (INS) are explored at the single cell level using patch-clamp electrophysiology. We examined membrane and synaptic responses of solitary tract neurons recorded in acute slices prepared from the Sprague-Dawley rat. Neurons were stimulated using a compact 1890 nm waveguide laser with light delivered to a small target area, comparable to the size of a single cell, via a single-mode fiber. We show that infrared radiation increased spontaneous synaptic event frequency, and evoked steady-state currents and neuronal depolarization. The magnitude of the responses was proportional to laser output.
Collapse
Affiliation(s)
- Blake Entwisle
- Department of Physics and Astronomy, Faculty of Science and Engineering, Macquarie University, Australia Centre for Ultrahigh bandwidth Devices for Optical Systems,
Australia
| | - Simon McMullan
- Australian School of Advanced Medicine, Faculty of Human Sciences, Macquarie University,
Australia
| | - Phillip Bokiniec
- Australian School of Advanced Medicine, Faculty of Human Sciences, Macquarie University,
Australia
| | - Simon Gross
- Department of Physics and Astronomy, Faculty of Science and Engineering, Macquarie University, Australia Centre for Ultrahigh bandwidth Devices for Optical Systems,
Australia
| | - Roger Chung
- Australian School of Advanced Medicine, Faculty of Human Sciences, Macquarie University,
Australia
| | - Michael Withford
- Department of Physics and Astronomy, Faculty of Science and Engineering, Macquarie University, Australia Centre for Ultrahigh bandwidth Devices for Optical Systems,
Australia
| |
Collapse
|
18
|
Liljemalm R, Nyberg T. Damage criteria for cerebral cortex cells subjected to hyperthermia. Int J Hyperthermia 2016; 32:704-12. [PMID: 27269303 DOI: 10.1080/02656736.2016.1181275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Temperatures above the normal physiological threshold may cause damage to cells and tissue. In this study, the response of a culture of dissociated cerebral cortex cells exposed to laser-induced temperature gradients was examined. The cellular response was evaluated using a fluorescent dye indicating metabolic activity. Furthermore, by using a finite element model of the heating during the pulsed laser application, threshold temperatures could be extracted for the cellular response at different laser pulse lengths. These threshold temperatures were used in an Arrhenius model to extract the kinetic parameters, i.e. the activation energy (Ea), and the frequency factor (Ac), for the system. A damage signal ratio was defined and calculated to 5% for the cells to increase their metabolism as a response to the heat. Furthermore, efficient stimulation with 20-ms long laser pulses did not evoke changes in metabolism. Thus, 20 ms could be a potential pulse length for functional stimulation of neural cells.
Collapse
Affiliation(s)
- Rickard Liljemalm
- a Royal Institute of Technology , School of Technology and Health , Huddinge , Sweden
| | - Tobias Nyberg
- a Royal Institute of Technology , School of Technology and Health , Huddinge , Sweden
| |
Collapse
|
19
|
Antognazza MR, Martino N, Ghezzi D, Feyen P, Colombo E, Endeman D, Benfenati F, Lanzani G. Shedding Light on Living Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:7662-7669. [PMID: 25469452 DOI: 10.1002/adma.201403513] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/01/2014] [Indexed: 06/04/2023]
Abstract
An overview of the optical methods available to modulate the cellular activity in cell cultures and biological tissues is presented, with a focus on the use of exogenous functional materials that absorb electromagnetic radiation and transduce it into a secondary stimulus for cell excitation, with high temporal and spatial resolution. Both organic and inorganic materials are critically evaluated, for in vitro and in vivo applications. Finally, as a direct practical application of optical-stimulation techniques, the most recent results in the realization of artificial visual implants are discussed.
Collapse
Affiliation(s)
- Maria Rosa Antognazza
- Center for Nano Science and Technology, @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, Milano, 20133, Italy
| | - Nicola Martino
- Center for Nano Science and Technology, @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, Milano, 20133, Italy
- Politecnico di Milano, Dipartimento di Fisica, Piazza L. da Vinci 32, Milano, 20133, Italy
| | - Diego Ghezzi
- Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies Department, Via Morego 30, Genova, 16163, Italy
| | - Paul Feyen
- Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies Department, Via Morego 30, Genova, 16163, Italy
| | - Elisabetta Colombo
- Center for Nano Science and Technology, @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, Milano, 20133, Italy
- Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies Department, Via Morego 30, Genova, 16163, Italy
| | - Duco Endeman
- Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies Department, Via Morego 30, Genova, 16163, Italy
| | - Fabio Benfenati
- Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies Department, Via Morego 30, Genova, 16163, Italy
| | - Guglielmo Lanzani
- Center for Nano Science and Technology, @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, Milano, 20133, Italy
- Politecnico di Milano, Dipartimento di Fisica, Piazza L. da Vinci 32, Milano, 20133, Italy
| |
Collapse
|
20
|
Wang J, Lu J, Li C, Xu L, Li X, Tian L. Pulsed 980 nm short wavelength infrared neural stimulation in cochlea and laser parameter effects on auditory response characteristics. Biomed Eng Online 2015; 14:89. [PMID: 26445884 PMCID: PMC4597400 DOI: 10.1186/s12938-015-0084-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/22/2015] [Indexed: 11/10/2022] Open
Abstract
Background Auditory neural stimulation with pulsed infrared radiation has been proposed as an alternative method to activate the auditory nerves in vivo. Infrared wavelengths from 1800–2150 nm with high water absorption were mainly selected in previous studies. However, few researchers have used the short-wavelength infrared (SWIR) for auditory nerve stimulation and limited pulse parameters variability has been investigated so far. Methods In this paper, we pioneered to use the 980 nm SWIR laser with adjustable pulse parameter as a stimulus to act on the deafened guinea pigs’ cochlea in vivo. Pulsed laser light was guided through the cochlear round window to irradiate the spiral ganglion cells via a 105 μm optical fiber, and then the laser pulse parameters variability and its influence to auditory response characteristics were studied. Results The results showed that the optically evoked auditory brainstem response (OABR) had a similar waveform to the acoustically induced ABR with click sound stimulus. And the evoked OABR amplitude had a positive correlation, while the OABR latency period showed a negative correlation, with the laser pulse energy increase. However, when holding the laser peak power constant, the pulse width variability ranged from 100 to 800 μs showed little influence on the evoked OABR amplitude and its latency period. Conclusions Our study suggests that 980 nm SWIR laser is an effective stimulus for auditory neurons activation in vivo. The evoked OABR amplitude and latency are highly affected by the laser pulse energy, while not sensitive to the pulse width variability in 100–800 μs range.
Collapse
Affiliation(s)
- Jingxuan Wang
- School of Information Science and Engineering, Shandong University, 250100, Jinan, Shandong, China.
| | - Jianren Lu
- School of Information Science and Engineering, Shandong University, 250100, Jinan, Shandong, China.
| | - Chen Li
- School of Information Science and Engineering, Shandong University, 250100, Jinan, Shandong, China.
| | - Lei Xu
- Shandong Artificial Auditory Engineering Centre, 250022, Jinan, Shandong, China.
| | - Xiaofei Li
- Shandong Artificial Auditory Engineering Centre, 250022, Jinan, Shandong, China.
| | - Lan Tian
- School of Information Science and Engineering, Shandong University, 250100, Jinan, Shandong, China.
| |
Collapse
|
21
|
Moreau D, Lefort C, Burke R, Leveque P, O’Connor RP. Rhodamine B as an optical thermometer in cells focally exposed to infrared laser light or nanosecond pulsed electric fields. BIOMEDICAL OPTICS EXPRESS 2015; 6:4105-17. [PMID: 26504658 PMCID: PMC4605067 DOI: 10.1364/boe.6.004105] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/19/2015] [Accepted: 09/22/2015] [Indexed: 05/11/2023]
Abstract
The temperature-dependent fluorescence property of Rhodamine B was used to measure changes in temperature at the cellular level induced by either infrared laser light exposure or high intensity, ultrashort pulsed electric fields. The thermal impact of these stimuli were demonstrated at the cellular level in time and contrasted with the change in temperature observed in the extracellular bath. The method takes advantage of the temperature sensitivity of the fluorescent dye Rhodamine B which has a quantum yield linearly dependent on temperature. The thermal effects of different temporal pulse applications of infrared laser light exposure and of nanosecond pulsed electric fields were investigated. The temperature increase due to the application of nanosecond pulsed electric fields was demonstrated at the cellular level.
Collapse
Affiliation(s)
- David Moreau
- Univ. Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France
| | - Claire Lefort
- Univ. Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France
| | - Ryan Burke
- Univ. Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France
| | | | | |
Collapse
|
22
|
Radiant energy required for infrared neural stimulation. Sci Rep 2015; 5:13273. [PMID: 26305106 PMCID: PMC4548241 DOI: 10.1038/srep13273] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 07/06/2015] [Indexed: 12/15/2022] Open
Abstract
Infrared neural stimulation (INS) has been proposed as an alternative method to electrical stimulation because of its spatial selective stimulation. Independent of the mechanism for INS, to translate the method into a device it is important to determine the energy for stimulation required at the target structure. Custom-designed, flat and angle polished fibers, were used to deliver the photons. By rotating the angle polished fibers, the orientation of the radiation beam in the cochlea could be changed. INS-evoked compound action potentials and single unit responses in the central nucleus of the inferior colliculus (ICC) were recorded. X-ray computed tomography was used to determine the orientation of the optical fiber. Maximum responses were observed when the radiation beam was directed towards the spiral ganglion neurons (SGNs), whereas little responses were seen when the beam was directed towards the basilar membrane. The radiant exposure required at the SGNs to evoke compound action potentials (CAPs) or ICC responses was on average 18.9 ± 12.2 or 10.3 ± 4.9 mJ/cm(2), respectively. For cochlear INS it has been debated whether the radiation directly stimulates the SGNs or evokes a photoacoustic effect. The results support the view that a direct interaction between neurons and radiation dominates the response to INS.
Collapse
|
23
|
Liu Q, Frerck MJ, Holman HA, Jorgensen EM, Rabbitt RD. Exciting cell membranes with a blustering heat shock. Biophys J 2014; 106:1570-7. [PMID: 24739156 DOI: 10.1016/j.bpj.2014.03.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 11/30/2022] Open
Abstract
Brief heat shocks delivered to cells by pulsed laser light can evoke action potentials in neurons and contraction in cardiomyocytes, but the primary biophysical mechanism has been elusive. In this report we show in the neuromuscular junction of Caenorhabditis elegans that application of a 500°C/s heat shock for 500 μs evoked ~35 pA of excitatory current and injected ~23 fC(femtocoulomb) of charge into the cell while raising the temperature only 0.25°C. The key variable driving the current was the rate of change of temperature (dT/dt heat shock), not temperature itself. The photothermal heat shock current was voltage-dependent and was from thermally driven displacement of ions near the plasma membrane. The charge movement was rapid during the heat shock and slow during thermal relaxation, thus leading to an asymmetrical capacitive current that briefly depolarized the cell. A simple quantitative model is introduced to describe modulation of the membrane potential and facilitate practical application of optical heat shock stimuli.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Biology, University of Utah, Salt Lake City, Utah
| | - Micah J Frerck
- Department of Bioengineering, University of Utah, Salt Lake City, Utah
| | - Holly A Holman
- Department of Bioengineering, University of Utah, Salt Lake City, Utah
| | - Erik M Jorgensen
- Department of Biology, University of Utah, Salt Lake City, Utah; Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah
| | - Richard D Rabbitt
- Department of Bioengineering, University of Utah, Salt Lake City, Utah; Marine Biological Laboratory, Woods Hole, Massachusetts.
| |
Collapse
|
24
|
Li X, Liu J, Liang S, Guan K, An L, Wu X, Li S, Sun C. Temporal modulation of sodium current kinetics in neuron cells by near-infrared laser. Cell Biochem Biophys 2014; 67:1409-19. [PMID: 23723007 DOI: 10.1007/s12013-013-9674-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Near-infrared laser provides a novel nerve stimulation modality to regulate the cell functions. Understanding its physiological effect is a prerequisite for clinic laser therapy applications. Here, the whole-cell sodium (Na) channel kinetics of neuron cell was employed to determine the temporal roles of infrared laser. The Na currents were elicited by electrical pulses that were synchronized at the rising and falling edges of the 980 nm laser pulses, respectively, to investigate the different infrared effect on cell functions. The time constants of activation (τ(m)) and inactivation (τ(h)) kinetics were extracted from fitting of the Na current (m(3)h) according to the Hodgkin-Huxley (HH) model. By comparing the time constants without and with the laser irradiation, we obtained that laser pulses changed the Na current kinetics by accelerating τ(h)-phase and slowing down τ m-phase at the beginning of the laser pulse, whereas both phases were accelerated at the end of the pulse. After relating the ratios of the time constants to the temperature characteristics of Na channel by Q10, we found that the accelerating in Na current kinetics could be related to the average temperature of extracellular solution in the corresponding time span by choosing Q10 = 2.6. The results of this study demonstrated that there was a positive correlation between the acceleration of the Na current kinetics and increases in temperature of the extracellular solution.
Collapse
Affiliation(s)
- Xinyu Li
- College of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian, 116023, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Lumbreras V, Bas E, Gupta C, Rajguru SM. Pulsed infrared radiation excites cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium cycling. J Neurophysiol 2014; 112:1246-55. [PMID: 24920028 DOI: 10.1152/jn.00253.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cochlear implants are currently the most effective solution for profound sensorineural hearing loss, and vestibular prostheses are under development to treat bilateral vestibulopathies. Electrical current spread in these neuroprostheses limits channel independence and, in some cases, may impair their performance. In comparison, optical stimuli that are spatially confined may result in a significant functional improvement. Pulsed infrared radiation (IR) has previously been shown to elicit responses in neurons. This study analyzes the response of neonatal rat spiral and vestibular ganglion neurons in vitro to IR (wavelength = 1,863 nm) using Ca(2+) imaging. Both types of neurons responded consistently with robust intracellular Ca(2+) ([Ca(2+)]i) transients that matched the low-frequency IR pulses applied (4 ms, 0.25-1 pps). Radiant exposures of ∼637 mJ/cm(2) resulted in continual neuronal activation. Temperature or [Ca(2+)] variations in the media did not alter the IR-evoked transients, ruling out extracellular Ca(2+) involvement or primary mediation by thermal effects on the plasma membrane. While blockage of Na(+), K(+), and Ca(2+) plasma membrane channels did not alter the IR-evoked response, blocking of mitochondrial Ca(2+) cycling with CGP-37157 or ruthenium red reversibly inhibited the IR-evoked [Ca(2+)]i transients. Additionally, the magnitude of the IR-evoked transients was dependent on ryanodine and cyclopiazonic acid-dependent Ca(2+) release. These results suggest that IR modulation of intracellular calcium cycling contributes to stimulation of spiral and vestibular ganglion neurons. As a whole, the results suggest selective excitation of neurons in the IR beam path and the potential of IR stimulation in future auditory and vestibular prostheses.
Collapse
Affiliation(s)
- Vicente Lumbreras
- Department of Biomedical Engineering, University of Miami, Miami, Florida; and
| | - Esperanza Bas
- Department of Otolaryngology, University of Miami, Miami, Florida
| | - Chhavi Gupta
- Department of Otolaryngology, University of Miami, Miami, Florida
| | - Suhrud M Rajguru
- Department of Biomedical Engineering, University of Miami, Miami, Florida; and Department of Otolaryngology, University of Miami, Miami, Florida
| |
Collapse
|
26
|
Rettenmaier A, Lenarz T, Reuter G. Nanosecond laser pulse stimulation of spiral ganglion neurons and model cells. BIOMEDICAL OPTICS EXPRESS 2014; 5:1014-25. [PMID: 24761285 PMCID: PMC3986005 DOI: 10.1364/boe.5.001014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/26/2013] [Accepted: 01/13/2014] [Indexed: 05/18/2023]
Abstract
Optical stimulation of the inner ear has recently attracted attention, suggesting a higher frequency resolution compared to electrical cochlear implants due to its high spatial stimulation selectivity. Although the feasibility of the effect is shown in multiple in vivo experiments, the stimulation mechanism remains open to discussion. Here we investigate in single-cell measurements the reaction of spiral ganglion neurons and model cells to irradiation with a nanosecond-pulsed laser beam over a broad wavelength range from 420 nm up to 1950 nm using the patch clamp technique. Cell reactions were wavelength- and pulse-energy-dependent but too small to elicit action potentials in the investigated spiral ganglion neurons. As the applied radiant exposure was much higher than the reported threshold for in vivo experiments in the same laser regime, we conclude that in a stimulation paradigm with nanosecond-pulses, direct neuronal stimulation is not the main cause of optical cochlea stimulation.
Collapse
|
27
|
Chernov MM, Chen G, Roe AW. Histological assessment of thermal damage in the brain following infrared neural stimulation. Brain Stimul 2014; 7:476-82. [PMID: 24529644 DOI: 10.1016/j.brs.2014.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/06/2014] [Accepted: 01/09/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Infrared neural stimulation (INS) is a novel technique for modulating neural function. Its advantages over electrical stimulation include high spatial specificity, lack of electrical artifact and contact-free stimulation. INS acts via a rapid, focal increase in temperature. However, in order to become a viable experimental and therapeutic tool, the safety of INS must be demonstrated. OBJECTIVE/HYPOTHESIS Our aim was to determine the upper limit for the radiant exposure of INS in the brain without causing damage, using an INS sequence previously shown to induce both behavioral and electrophysiological effects in rodents and non-human primates. METHODS We stimulated the brains of anesthetized rodents and two squirrel monkeys using an infrared laser, depositing radiant energies from 0.3 to 0.9 J/cm2 per pulse in 0.5 s-long 200 Hz trains. At the end of the experiment, the animals were euthanized, perfused and the brains processed using standard histological techniques. RESULTS Radiant exposures greater than or equal to 0.4 J/cm2 resulted in identifiable lesions in brain sections. The lesions had a shape of a parabola and could further be subdivided into three concentric zones based on the type of damage observed. CONCLUSIONS The thermal damage threshold following our INS paradigm was between 0.3 and 0.4 J/cm2 per pulse. This value is lower than the one found previously in peripheral nerve. The differences are likely due to the structure of the INS sequence itself, particularly the repetition rate. The results warrant further modeling and experimental work in order to delimit the INS parameter space that is both safe and effective.
Collapse
Affiliation(s)
- Mykyta Mikhailovich Chernov
- Department of Psychology, Vanderbilt University, 111 21st Ave. South, 301 Wilson Hall, Nashville, TN 37240, USA.
| | - Gang Chen
- Department of Psychology, Vanderbilt University, 111 21st Ave. South, 301 Wilson Hall, Nashville, TN 37240, USA
| | - Anna Wang Roe
- Department of Psychology, Vanderbilt University, 111 21st Ave. South, 301 Wilson Hall, Nashville, TN 37240, USA
| |
Collapse
|
28
|
Brown WGA, Needham K, Nayagam BA, Stoddart PR. Whole cell patch clamp for investigating the mechanisms of infrared neural stimulation. J Vis Exp 2013. [PMID: 23929071 DOI: 10.3791/50444] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
It has been demonstrated in recent years that pulsed, infrared laser light can be used to elicit electrical responses in neural tissue, independent of any further modification of the target tissue. Infrared neural stimulation has been reported in a variety of peripheral and sensory neural tissue in vivo, with particular interest shown in stimulation of neurons in the auditory nerve. However, while INS has been shown to work in these settings, the mechanism (or mechanisms) by which infrared light causes neural excitation is currently not well understood. The protocol presented here describes a whole cell patch clamp method designed to facilitate the investigation of infrared neural stimulation in cultured primary auditory neurons. By thoroughly characterizing the response of these cells to infrared laser illumination in vitro under controlled conditions, it may be possible to gain an improved understanding of the fundamental physical and biochemical processes underlying infrared neural stimulation.
Collapse
Affiliation(s)
- William G A Brown
- Biotactical Engineering, Faculty of Engineering and Industrial Science, Swinburne University of Technology
| | | | | | | |
Collapse
|
29
|
Liljemalm R, Nyberg T, von Holst H. Heating during infrared neural stimulation. Lasers Surg Med 2013; 45:469-81. [PMID: 23832680 DOI: 10.1002/lsm.22158] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND OBJECTIVE Infrared neural stimulation (INS) has recently evoked interest as an alternative to electrical stimulation. The mechanism of activation is the heating of water, which induces changes in cell membrane potential but may also trigger heat sensitive receptors. To further elucidate the mechanism, which may be dependent on cell type, a detailed description of the temperature distribution is necessary. A good control of the resulting temperature during INS is also necessary to avoid excessive heating that may damage the cells. Here we present a detailed model for the heating during INS and apply it for INS of in vitro neural networks of rat cerebral cortex neurons. STUDY DESIGN/MATERIALS AND METHODS A model of the heating during INS of a cell culture in a non-turbid media was prepared using multiphysics software. Experimental parameters such as initial temperature, beam distribution, pulse length, pulse duration, frequency and laser-cell distance were used. To verify the model, local temperature measurements using open pipette resistance were conducted. Furthermore, cortical neurons in culture were stimulated by a 500 mW pulsed diode laser (wavelength 1,550 nm) launched into a 200 µm multimodal optical fiber positioned 300 µm from the glass surface. The radiant exposure was 5.2 J/cm(2) . RESULTS The model gave detailed information about the spatial and temporal temperature distribution in the heated volume during INS. Temperature measurements using open pipette resistance verified the model. The peak temperature experienced by the cells was 48°C. Cortical neurons were successfully stimulated using the 1,550 nm laser and single cell activation as well as neural network inhibition were observed. CONCLUSION The model shows the spatial and temporal temperature distribution in the heated volume and could serve as a useful tool for future studies of the heating during INS.
Collapse
Affiliation(s)
- Rickard Liljemalm
- Royal Institute of Technology, School of Technology and Health, Alfred Nobels Allé 10, 14152, Huddinge, Sweden
| | | | | |
Collapse
|