1
|
Piksa M, Lian C, Samuel IC, Pawlik KJ, Samuel IDW, Matczyszyn K. The role of the light source in antimicrobial photodynamic therapy. Chem Soc Rev 2023; 52:1697-1722. [PMID: 36779328 DOI: 10.1039/d0cs01051k] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Antimicrobial photodynamic therapy (APDT) is a promising approach to fight the growing problem of antimicrobial resistance that threatens health care, food security and agriculture. APDT uses light to excite a light-activated chemical (photosensitiser), leading to the generation of reactive oxygen species (ROS). Many APDT studies confirm its efficacy in vitro and in vivo against bacteria, fungi, viruses and parasites. However, the development of the field is focused on exploring potential targets and developing new photosensitisers. The role of light, a crucial element for ROS production, has been neglected. What are the main parameters essential for effective photosensitiser activation? Does an optimal light radiant exposure exist? And finally, which light source is best? Many reports have described the promising antibacterial effects of APDT in vitro, however, its application in vivo, especially in clinical settings remains very limited. The restricted availability may partially be due to a lack of standard conditions or protocols, arising from the diversity of selected photosensitising agents (PS), variable testing conditions including light sources used for PS activation and methods of measuring anti-bacterial activity and their effectiveness in treating bacterial infections. We thus sought to systematically review and examine the evidence from existing studies on APDT associated with the light source used. We show how the reduction of pathogens depends on the light source applied, radiant exposure and irradiance of light used, and type of pathogen, and so critically appraise the current state of development of APDT and areas to be addressed in future studies. We anticipate that further standardisation of the experimental conditions will help the field advance, and suggest key optical and biological parameters that should be reported in all APDT studies. More in vivo and clinical studies are needed and are expected to be facilitated by advances in light sources, leading to APDT becoming a sustainable, alternative therapeutic option for bacterial and other microbial infections in the future.
Collapse
Affiliation(s)
- Marta Piksa
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114, Wroclaw, Poland
| | - Cheng Lian
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, UK.
| | - Imogen C Samuel
- School of Medicine, University of Manchester, Manchester, M13 9PL, UK
| | - Krzysztof J Pawlik
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114, Wroclaw, Poland
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, UK.
| | - Katarzyna Matczyszyn
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
2
|
Nunes IPF, Crugeira PJL, Sampaio FJP, de Oliveira SCPS, Azevedo JM, Santos CLO, Soares LGP, Samuel IDW, Persheyev S, de Ameida PF, Pinheiro ALB. Evaluation of dual application of photodynamic therapy-PDT in Candida albicans. Photodiagnosis Photodyn Ther 2023; 42:103327. [PMID: 36773756 DOI: 10.1016/j.pdpdt.2023.103327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
This study aimed to evaluate, in vitro, the efficacy of photodynamic therapy - PDT using dimethyl methylene blue zinc chloride double salt (DMMB) and red LED light on planktonic cultures of Candida albicans. The tests were performed using the ATCC 90,028 strain grown at 37 °C for 24 h, according to a growth curve of C. albicans. The colonies were resuspended in sterile saline adjusted to a concentration of 2 × 108 cells / mL, with three experimental protocols being tested (Protocol 1, 2 and 3) with a fixed concentration of 750 ɳg/mL obtained through the IC50, and energy density 20 J/cm2. Protocol 1 was carried out using conventional PDT, Protocol 2 was applied double PDT in a single session, and Protocol 3 was applied double PDT in two sessions with a 24 h interval. The results showed logarithmic reductions of 3 (4.252575 ± 0.068526) and 4 logs (2.669533 ± 0.058592) of total fungal load in protocols 3 and 2 respectively in comparison to the Control (6.633547 ± 0.065384). Our results indicated that double application in a single session of PDT was the most effective approach for inhibiting the proliferation of Candida albicans (99.991% inhibition).
Collapse
Affiliation(s)
- Iago P F Nunes
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil
| | - Pedro J L Crugeira
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil; Laboratory of Biotechnology and Ecology of Microorganisms, Institute of Health Science, Federal University of Bahia, Reitor Miguel Calmon Ave, S/N, Salvador, BA CEP:40110-100, Brazil
| | - Fernando J P Sampaio
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil
| | - Susana C P S de Oliveira
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil; School of Dentistry, Ruy Barbosa Wyden University Center University (UniRuy Wyden), Av. Luís Viana Filho, 3172 - Paralela, Salvador - BA CEP: 41720-200, Brazil
| | - Juliana M Azevedo
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil; Department of Biology, Feira de Santana State University, Feira de Santa, BA 44036-900, Brazil
| | - Caio L O Santos
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil
| | - Luiz G P Soares
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics & Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, UK
| | - Saydulla Persheyev
- Organic Semiconductor Centre, SUPA, School of Physics & Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, UK
| | - Paulo F de Ameida
- Laboratory of Biotechnology and Ecology of Microorganisms, Institute of Health Science, Federal University of Bahia, Reitor Miguel Calmon Ave, S/N, Salvador, BA CEP:40110-100, Brazil
| | - Antônio L B Pinheiro
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil.
| |
Collapse
|
3
|
Ozlem-Caliskan S, Ilikci-Sagkan R, Karakas H, Sever S, Yildirim C, Balikci M, Ertabaklar H. Efficacy of malachite green mediated photodynamic therapy on treatment of Cutaneous Leishmaniasis: In vitro study. Photodiagnosis Photodyn Ther 2022; 40:103111. [PMID: 36075521 DOI: 10.1016/j.pdpdt.2022.103111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/18/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Leishmaniasis is a common zoonotic disease that is transmitted by phlebotomus and causes several clinical conditions, from self healing lesion to deadly internal organ involvement. Photodynamic therapy (PDT) is a treatment method that leads to the generation of cytotoxic species and consequently to cell death and tissue destruction by visible light in the presence of a photosensitizer and oxygen. The aim of this study was to investigate effect of malachite green (MG)-mediated PDT in Leishmania tropica (L. tropica) promastigotes. MATERIAL AND METHODS Parasites were incubated with 0.19, 0.39, 1.56, 3.25 and 6.25 μM of MG for one hour and subjected to 46.4 J/cm2 light irradiation. Trypan blue assay was used to evaluate the viability of the cells and mitochondirial activity alteration was determined by MTT. Morphological changes were analyzed by Giemsa staining and Scanning electron microscopy (SEM) analyses. Flow cytometry was used to quantify the fluorescence emitted by cell volume, JC-1, Cell Cycle and Annexin V/PI staining reagents. RESULTS Malachite green mediated photodynamic therapy at 1.56 and 3.125 μM decreased the viability of the L. tropica promastigotes and induced changes in the mitochondrial membrane potential. L.tropica promastigotes was bloked in G0/G1 phase. The morphology of the parasite was affected at the 1.56 and 3.125 μM MG+PDT, resulting in rounded cells with loss of flagellum and irregular shape. CONCLUSIONS This study demonstrated that antileishmanial effects through mitochondrial dysfunction, cell cycle arrest, and apoptosis-like cell death to parasites. This work showed PDT with MG effectedparasites. Therefore, MG-mediated PDT may provide a promising approach for L. tropica promastigotes.
Collapse
Affiliation(s)
| | - Rahsan Ilikci-Sagkan
- Department of Medical Biology, Faculty of Medicine, Usak University, Usak, Turkey
| | - Hatice Karakas
- Faculty of Medicine, Student at Usak University, Usak, Turkey
| | - Sevgi Sever
- Faculty of Medicine, Student at Usak University, Usak, Turkey
| | - Cansu Yildirim
- Faculty of Medicine, Student at Usak University, Usak, Turkey
| | - Misra Balikci
- Faculty of Medicine, Student at Usak University, Usak, Turkey
| | - Hatice Ertabaklar
- Department of Medical Parasitology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| |
Collapse
|
4
|
Ozlem-Caliskan S, Ertabaklar H, Bilgin MD, Ertug S. Evaluation of photodynamic therapy against Leishmania tropica promastigotes using different photosensitizers. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2022; 38:354-364. [PMID: 34897808 DOI: 10.1111/phpp.12758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/24/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Photodynamic therapy is a two-step procedure, involving the use of photosensitizing agents followed by selective illumination of the target lesion with visible light. Photodynamic therapy has been described recently as a promising strategy for treatment of leishmaniasis. This study aims to evaluate the in vitro phototoxic, morphological, and apoptotic effect of methylene blue, toluidine blue, chloro-aluminum phthalocyanine, and pheophorbide a-mediated photodynamic therapy on the viability of Leishmania tropica promastigotes. METHODS Parasites were treated with methylene blue, toluidine blue, chloro-aluminum phthalocyanine, and pheophorbide a or/and methylene blue, toluidine blue, chloro-aluminum phthalocyanine, and pheophorbide a-mediated photodynamic therapy, and cell proliferation, morphological changes, and apoptosis were evaluated by XTT, giemsa staining, DAPI staining, and DNA fragmentation, respectively. RESULTS Parasite viability was significantly different in between the groups treated with methylene blue, toluidine blue, and pheophorbide a, with or without irradiation. chloro-aluminum phthalocyanine treatment did not lead to any alterations in cell viability in Leishmania tropica promastigotes with or without irradiation. DAPI staining results indicated that apoptotic bodies and nucleus fragmentation started to be visible in methylene blue, chloro-aluminum phthalocyanine, and pheophorbide a-mediated photodynamic therapy groups. DNA ladder pattern which is used to define apoptosis was observed in irradiated methylene blue, chloro-aluminum phthalocyanine, and pheophorbide a groups. CONCLUSIONS The results revealed that apoptosis-induced cell death was observed in Leishmania tropica promastigotes after the application of photosensitizers in combination with light irradiation.
Collapse
Affiliation(s)
- Sercin Ozlem-Caliskan
- Department of Biophysics, Institute of Health Sciences, Aydin Adnan Menderes University, Aydin, Turkey
| | - Hatice Ertabaklar
- Department of Parasitology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Mehmet Dincer Bilgin
- Department of Biophysics, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Sema Ertug
- Department of Parasitology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| |
Collapse
|
5
|
Histological evaluation of skin lesions induced by Leishmania braziliensis treated by PACT using Laser light and 1.9 dimethyl-methylene blue. Photodiagnosis Photodyn Ther 2022; 38:102815. [DOI: 10.1016/j.pdpdt.2022.102815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022]
|
6
|
Varzandeh M, Mohammadinejad R, Esmaeilzadeh-Salestani K, Dehshahri A, Zarrabi A, Aghaei-Afshar A. Photodynamic therapy for leishmaniasis: Recent advances and future trends. Photodiagnosis Photodyn Ther 2021; 36:102609. [PMID: 34728420 DOI: 10.1016/j.pdpdt.2021.102609] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
Leishmaniasis has infected more than 12 million people worldwide. This neglected tropical disease, causing 20,000-30,000 deaths per year, is a global health problem. The emergence of resistant parasites and serious side effects of conventional therapies has led to the search for less toxic and non-invasive alternative treatments. Photodynamic therapy is a promising therapeutic strategy to produce reactive oxygen species for the treatment of leishmaniasis. In this regard, natural and synthetic photosensitizers such as curcumin, hypericin, 5-aminolevulinic acid, phthalocyanines, phenothiazines, porphyrins, chlorins and nanoparticles have been applied. In this review, the recent advances on using photodynamic therapy for treating Leishmania species have been reviewed.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Keyvan Esmaeilzadeh-Salestani
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R.Kreutzwaldi 1, EE51014 Tartu, Estonia
| | - Ali Dehshahri
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34485 Istanbul, Turkey
| | - Abbas Aghaei-Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
7
|
The photodynamic and intrinsic effects of Azure B on mitochondrial bioenergetics and the consequences of its intrinsic effects on hepatic energy metabolism. Photodiagnosis Photodyn Ther 2021; 35:102446. [PMID: 34289416 DOI: 10.1016/j.pdpdt.2021.102446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/16/2021] [Accepted: 07/12/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND The present study aimed to characterize the intrinsic and photodynamic effects of azure B (AB) on mitochondrial bioenergetics, as well as the consequences of its intrinsic effects on hepatic energy metabolism. METHODS Two experimental systems were utilized: (a) isolated rat liver mitochondria and (b) isolated perfused rat liver. RESULTS AB interacted with mitochondria regardless of photostimulation, but its binding degree was reduced by mitochondrial energization. Under photostimulation, AB caused lipid peroxidation and protein carbonylation and decreased the content of reduced glutathione (GSH) in mitochondria. AB impaired mitochondrial bioenergetics in at least three distinct ways: (1) uncoupling of oxidative phosphorylation; (2) photoinactivation of complexes I and II; and (3) photoinactivation of the FoF1-ATP synthase complex. Without photostimulation, AB also demonstrated mitochondrial toxicity, which was characterized by the induction of lipid peroxidation, loss of inner mitochondrial membrane integrity, and uncoupling of oxidative phosphorylation. The perfused rat liver experiments showed that mitochondria were one of the major targets of AB, even in intact cells. AB inhibited gluconeogenesis and ureagenesis, two biosynthetic pathways strictly dependent on intramitochondrially generated ATP. Contrariwise, AB stimulated glycogenolysis and glycolysis, which are required compensatory pathways for the inhibited oxidative phosphorylation. Similarly, AB reduced the cellular ATP content and the ATP/ADP and ATP/AMP ratios. CONCLUSIONS Although the properties and severe photodynamic effects of AB on rat liver mitochondria might suggest its usefulness in PDT treatment of liver tumors, this possibility should be considered with precaution given the toxic intrinsic effects of AB on mitochondrial bioenergetics and energy-linked hepatic metabolism.
Collapse
|
8
|
de Souza BTL, Klosowski EM, Mito MS, Constantin RP, Mantovanelli GC, Mewes JM, Bizerra PFV, da Silva FSI, Menezes PVMDC, Gilglioni EH, Utsunomiya KS, Marchiosi R, Dos Santos WD, Ferrarese-Filho O, Caetano W, de Souza Pereira PC, Gonçalves RS, Constantin J, Ishii-Iwamoto EL, Constantin RP. The photosensitiser azure A disrupts mitochondrial bioenergetics through intrinsic and photodynamic effects. Toxicology 2021; 455:152766. [PMID: 33775737 DOI: 10.1016/j.tox.2021.152766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/24/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022]
Abstract
Azure A (AA) is a cationic molecule of the class of phenothiazines that has been applied in vitro as a photosensitising agent in photodynamic antimicrobial chemotherapy. It is a di-demethylated analogue of methylene blue (MB), which has been demonstrated to be intrinsically and photodynamically highly active on mitochondrial bioenergetics. However, as far as we know, there are no studies about the photodynamic effects of AA on mammalian mitochondria. Therefore, this investigation aimed to characterise the intrinsic and photodynamic acute effects of AA (0.540 μM) on isolated rat liver mitochondria, isolated hepatocytes, and isolated perfused rat liver. The effects of AA were assessed by evaluating several parameters of mitochondrial bioenergetics, oxidative stress, cell viability, and hepatic energy metabolism. The photodynamic effects of AA were assessed under simulated hypoxic conditions, a suitable way for mimicking the microenvironment of hypoxic solid tumour cells. AA interacted with the mitochondria and, upon photostimulation (10 min of light exposure), produced toxic amounts of reactive oxygen species (ROS), which damaged the organelle, as demonstrated by the high levels of lipid peroxidation and protein carbonylation. The photostimulated AA also depleted the GSH pool, which could compromise the mitochondrial antioxidant defence. Bioenergetically, AA photoinactivated the complexes I, II, and IV of the mitochondrial respiratory chain and the F1FO-ATP synthase complex, sharply inhibiting the oxidative phosphorylation. Upon photostimulation (10 min of light exposure), AA reduced the efficiency of mitochondrial energy transduction and oxidatively damaged lipids in isolated hepatocytes but did not decrease the viability of cells. Despite the useful photobiological properties, AA presented noticeable dark toxicity on mitochondrial bioenergetics, functioning predominantly as an uncoupler of oxidative phosphorylation. This harmful effect of AA was evidenced in isolated hepatocytes, in which AA diminished the cellular ATP content. In this case, the cells exhibited signs of cell viability reduction in the presence of high AA concentrations, but only after a long time of incubation (at least 90 min). The impairments on mitochondrial bioenergetics were also clearly manifested in intact perfused rat liver, in which AA diminished the cellular ATP content and stimulated the oxygen uptake. Consequently, gluconeogenesis and ureogenesis were strongly inhibited, whereas glycogenolysis and glycolysis were stimulated. AA also promoted the release of cytosolic and mitochondrial enzymes into the perfusate concomitantly with inhibition of oxygen consumption. In general, the intrinsic and photodynamic effects of AA were similar to those of MB, but AA caused some distinct effects such as the photoinactivation of the complex IV of the mitochondrial respiratory chain and a diminution of the ATP levels in the liver. It is evident that AA has the potential to be used in mitochondria-targeted photodynamic therapy, even under low oxygen concentrations. However, the fact that AA directly disrupts mitochondrial bioenergetics and affects several hepatic pathways that are linked to ATP metabolism, along with its ability to perturb cellular membranes and its little potential to reduce cell viability, could result in significant adverse effects especially in long-term treatments.
Collapse
Affiliation(s)
- Byanca Thais Lima de Souza
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Eduardo Makiyama Klosowski
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Márcio Shigueaki Mito
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Renato Polimeni Constantin
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Gislaine Cristiane Mantovanelli
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Juliana Morais Mewes
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Paulo Francisco Veiga Bizerra
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Fernanda Sayuri Itou da Silva
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Paulo Vinicius Moreira da Costa Menezes
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Eduardo Hideo Gilglioni
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Karina Sayuri Utsunomiya
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Rogério Marchiosi
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Wanderley Dantas Dos Santos
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Osvaldo Ferrarese-Filho
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Wilker Caetano
- Department of Chemistry, Research Nucleus in Photodynamic System, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Paulo Cesar de Souza Pereira
- Department of Chemistry, Research Nucleus in Photodynamic System, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Renato Sonchini Gonçalves
- Department of Chemistry, Research Nucleus in Photodynamic System, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Jorgete Constantin
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Emy Luiza Ishii-Iwamoto
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Rodrigo Polimeni Constantin
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil; Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| |
Collapse
|
9
|
Santos MRE, Mendonça PV, Branco R, Sousa R, Dias C, Serra AC, Fernandes JR, Magalhães FD, Morais PV, Coelho JFJ. Light-Activated Antimicrobial Surfaces Using Industrial Varnish Formulations to Mitigate the Incidence of Nosocomial Infections. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7567-7579. [PMID: 33538168 DOI: 10.1021/acsami.0c18930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Evidence has shown that hospital surfaces are one of the major vehicles of nosocomial infections caused by drug-resistant pathogens. Smart surface coatings presenting multiple antimicrobial activity mechanisms have emerged as an advanced approach to safely prevent this type of infection. In this work, industrial waterborne polyurethane varnish formulations containing for the first time cationic polymeric biocides (SPBs) combined with photosensitizer curcumin were developed to afford contact-active and light-responsive antimicrobial surfaces. SPBs were prepared by atom transfer radical polymerization, which allows control over the polymer features that influence antimicrobial efficiency (e.g., molecular weight), while natural curcumin was employed to impart photodynamic activity to the surface. Antibacterial testing against Gram-negative Escherichia coli revealed that glass surfaces coated with the new formulations displayed photokilling effect under white-light (42 mW/cm2) irradiation within only 15 min of exposure. In addition, it was observed a combined antimicrobial effect between the two biocides (cationic SPB and curcumin), with a higher reduction in the number of viable bacteria observed for the surfaces containing cationic SPB/curcumin mixtures in comparison with the one obtained for surfaces only with polymer or without biocides. The waterborne industrial varnish formulations allowed the formation of homogeneous films without the need for addition of a coalescing agent, which can be potentially applied in diverse surface substrates to reduce bacterial transmission infections in healthcare environments.
Collapse
Affiliation(s)
- Madson R E Santos
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal
| | - Patrícia V Mendonça
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal
| | - Rita Branco
- Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, 3001-401 Coimbra, Portugal
| | - Ruben Sousa
- LEPABE Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Carla Dias
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal
| | - Arménio C Serra
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal
| | - José R Fernandes
- Centre for Chemistry, Vila Real (CQVR), Physics Department, School of Science and Technology (ECT), University of Trás-dos-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Fernão D Magalhães
- LEPABE Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Paula V Morais
- Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, 3001-401 Coimbra, Portugal
| | - Jorge F J Coelho
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal
| |
Collapse
|
10
|
Katz S, Barbiéri CL, Soler FPM, Soares AM, Chavantes MC, Zamuner SR. Effect of Isolated Proteins from Crotalus Durissus Terrificus Venom on Leishmania (Leishmania) Amazonensis-Infected Macrophages. Protein Pept Lett 2021; 27:718-724. [PMID: 31994997 DOI: 10.2174/0929866527666200129152954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cutaneous and mucocutaneous leishmaniasis are parasitic diseases characterized by skin manifestations. In Brazil, Leishmania (Leishmania) amazonensis is one of the etiological agents of cutaneous leishmaniasis. The therapeutic arsenal routinely employed to treat infected patients is unsatisfactory, especially for pentavalent antimonials, as they are often highly toxic, poorly tolerated and of variable effectiveness. This study aimed to evaluate in vitro the leishmanicidal activity of toxins isolated from Crotalus durissus terrificus venom as a new approach for the treatment of leishmaniasis. METHODS The comparative effects of crotamine, crotoxin, gyrotoxin, convulxin and PLA2 on bone marrow-derived macrophages infected with L. (L.) amazonensis as well as the release of TGF-β from the treated macrophages were studied. RESULTS AND DISCUSSION Crotamine had the strongest inhibitory effect on parasite growth rate (IC50: 25.65±0.52 μg/mL), while convulxin showed the weakest inhibitory effect (IC50: 52.7±2.21 μg/mL). In addition, TGF-β was significantly reduced after the treatment with all toxins evaluated. CONCLUSION The Crotalus durissus terrificus toxins used in this study displayed significant activity against L. (L.) amazonensis, indicating that all of them could be a potential alternative for the treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Simone Katz
- Department of Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 01504-000, Sao Paulo, SP, Brazil
| | - Clara Lúcia Barbiéri
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, SP, Brazil
| | - Fernanda Paula Martins Soler
- Department of Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 01504-000, Sao Paulo, SP, Brazil
| | | | - Maria Cristina Chavantes
- Department of Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 01504-000, Sao Paulo, SP, Brazil
| | - Stella Regina Zamuner
- Department of Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 01504-000, Sao Paulo, SP, Brazil
| |
Collapse
|
11
|
Monteiro JSC, Rangel EE, de Oliveira SCPS, Crugeira PJL, Nunes IPF, de A Fagnani SRC, Sampaio FJP, de Almeida PF, Pinheiro ALB. Enhancement of photodynamic inactivation of planktonic cultures of Staphylococcus aureus by DMMB-AuNPs. Photodiagnosis Photodyn Ther 2020; 31:101930. [PMID: 32717452 DOI: 10.1016/j.pdpdt.2020.101930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/10/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Photodynamic inactivation is a promising method for the treatment of infectious diseases. Nanotechnology through gold nanoparticles, as a tool to improve the delivery of photosensitizer is an attractive approach to enhance photodynamic inactivation of bacteria. Moreover, gold nanoparticles enchance the absorption of light due to their plasmon resonance. The aim of this study was to evaluate in vitro photodynamic inactivation effects of 1.9-Dimethyl-Methylene Blue (DMMB)-AuNPs associated with the red LED (λ630 ηm ± 20 ηm, 125 mW, 12 J / cm², 192 s) on S. aureus strain. Eight experimental groups were studied: Control, LED, AuNPs, AuNPs + LED, DMMB, DMMB + LED, DMMB + AuNPs, DMMB + AuNPs + LED. After incubation, the number of bacteria surviving each treatment was determined and then enumerated by viable counting (CFU / mL). The logarithm of CFU / mL (CFU/mL log10) was calculated. All experiments realized in triplicate. The statistical analyses included one-way ANOVA tests, Tukey's multiple comparisons and nonlinear regression, p values <0.05 were considered statistically significant. According to results, the photodynamic inactivation of S. aureus on groups DMMB + LED and DMMB-AuNPs + LED, showed a significant reduction of the microbial load (p < 0.0001) when compared to the Control group. The decimal reduction (RD) of these groups were 99.96 % (RD = 3) and 99.994 % (RD = 4) respectively. In conclusion, these findings demonstrated that photodynamic inactivation is enhanced by using DMMB-AuNPs on S. aureus.
Collapse
Affiliation(s)
- Juliana S C Monteiro
- Department of Biology, Feira de Santana State University, Feira de Santa, BA, CEP 44036-900, Brazil; Center of Biophotonics, Federal University of Bahia, 62, Araujo Pinho Ave, Canela, Salvador, BA, CEP 40110-150, Brazil.
| | - Emília E Rangel
- Department of Biology, Feira de Santana State University, Feira de Santa, BA, CEP 44036-900, Brazil.
| | - Susana C P S de Oliveira
- Center of Biophotonics, Federal University of Bahia, 62, Araujo Pinho Ave, Canela, Salvador, BA, CEP 40110-150, Brazil.
| | - Pedro J L Crugeira
- Center of Biophotonics, Federal University of Bahia, 62, Araujo Pinho Ave, Canela, Salvador, BA, CEP 40110-150, Brazil; Laboratory of Biotechnology and Ecology of Micro-organisms, Institute of Health Science, Federal University of Bahia, Reitor Miguel Calmon Ave, S/N, Salvador, BA, CEP:40110-100, Brazil.
| | - Iago P F Nunes
- Department of Biology, Feira de Santana State University, Feira de Santa, BA, CEP 44036-900, Brazil; Center of Biophotonics, Federal University of Bahia, 62, Araujo Pinho Ave, Canela, Salvador, BA, CEP 40110-150, Brazil.
| | - Sandra R C de A Fagnani
- Department of Biology, Feira de Santana State University, Feira de Santa, BA, CEP 44036-900, Brazil; Center of Biophotonics, Federal University of Bahia, 62, Araujo Pinho Ave, Canela, Salvador, BA, CEP 40110-150, Brazil.
| | - Fernando J P Sampaio
- Department of Biology, Feira de Santana State University, Feira de Santa, BA, CEP 44036-900, Brazil; Center of Biophotonics, Federal University of Bahia, 62, Araujo Pinho Ave, Canela, Salvador, BA, CEP 40110-150, Brazil.
| | - Paulo F de Almeida
- Laboratory of Biotechnology and Ecology of Micro-organisms, Institute of Health Science, Federal University of Bahia, Reitor Miguel Calmon Ave, S/N, Salvador, BA, CEP:40110-100, Brazil.
| | - Antônio L B Pinheiro
- Center of Biophotonics, Federal University of Bahia, 62, Araujo Pinho Ave, Canela, Salvador, BA, CEP 40110-150, Brazil; National Institute of Basic Optics and Applied to Life Science, 400, Trabalhador São-Carlense Ave, Parque Arnold Schimidt, São Carlos, SP, CEP:13566-590, Brazil.
| |
Collapse
|
12
|
Nycz–Empel A, Bober K, Wyszomirski M, Kisiel E, Zięba A. The Application of CA and PCA to the Evaluation of Lipophilicity and Physicochemical Properties of Tetracyclic Diazaphenothiazine Derivatives. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:8131235. [PMID: 31781473 PMCID: PMC6855085 DOI: 10.1155/2019/8131235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
The subject of the study was 11 new synthetized tetracyclic diazaphenothiazine derivatives. Using thin-layer chromatography in a reverse phase system (RP-TLC), their R M0 lipophilicity parameter was determined. The mobile phase was composed of 0.2 M Tris buffer (pH = 7.4) and acetone (POCH S.A., Gliwice, Poland) in different concentrations. Using computer programs, based on different computational algorithms, theoretical values of lipophilicity (AClogP, ALOGP, ALOGPs, miLogP, MLOGP, XLOGP2, and XLOGP3) as well as molecular descriptors (molecular weight, volume of a molecule, dipole moment, polar surface, and energy of HOMO orbitals and LUMO orbitals) and parameters of biological activity: human intestinal absorption (HIA), plasma protein binding (PPB), and blood-brain barrier (BBB), were determined. The correlations between the experimental values of lipophilicity and theoretically calculated lipophilic values and also between experimental values of lipophilicity and values of physicochemical or biological properties were assessed. A certain relationship between structure and lipophilicity was found. On the other hand, the relationships between R M0 and physicochemical or biological properties were not statistically significant and therefore unusable. For all analysed values, an analysis of similarities and principal component analyses were also made. The obtained dendrograms for the analysis of lipophilicity and physicochemical and biological properties indicate the relationship between experimental values of lipophilicity and structure in the case of theoretical lipophilicity values only. PCA, on the other hand, showed that ALOGP, MLOGP, miLogP, and BBB and molar volume have the largest share in the description of the entire system. Distribution of compounds on the area of factors also indicates the connections between them related to their structure.
Collapse
Affiliation(s)
- Anna Nycz–Empel
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Katarzyna Bober
- Deparment of Analytical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Mirosław Wyszomirski
- University of Bielsko-Biala, Faculty of Materials, Civil and Environmental Engineering, Willowa 2, 43-309 Bielsko-Biala, Poland
| | - Ewa Kisiel
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Andrzej Zięba
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
13
|
Sundar S, Agrawal N, Singh B. Exploiting knowledge on pharmacodynamics-pharmacokinetics for accelerated anti-leishmanial drug discovery/development. Expert Opin Drug Metab Toxicol 2019; 15:595-612. [PMID: 31174439 DOI: 10.1080/17425255.2019.1629417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Being on the top list of neglected tropical diseases, leishmaniasis has been marked for elimination by 2020. In the light of small armamentarium of drugs and their associated drawbacks, the understanding of pharmacodynamics and/or pharmacokinetics becomes a priority to achieve and sustain disease elimination. Areas covered: The authors have looked into pharmacological aspects of existing and emerging drugs for treatment of leishmaniasis. An in-depth understanding of pharmacodynamics and pharmacokinetics (PKPD) provides a rationale for drug designing and optimizing the treatment strategies. It forms a key to prevent drug resistance and avoid drug-associated adverse effects. The authors have compiled the researches on the PKPD of different anti-leishmanial formulations that have the potential for improved and/or effective disease intervention. Expert opinion: Understanding the pharmacological aspects of drugs forms the basis for the clinical application of novel drugs. Tailoring drug dosage and individualized treatment can avoid the adverse events and bridge gap between the in vitro models and their clinical application. An integrated approach, with pragmatic use of technological advances can improve phenotypic screening and physiochemical properties of novel drugs. Concomitantly, this can serve to improve clinical efficacies, reduce the incidence of relapse and accelerate the drug discovery/development process for leishmaniasis elimination.
Collapse
Affiliation(s)
- Shyam Sundar
- a Department of Medicine , Institute of Medical Sciences, Banaras Hindu University , Varanasi , India
| | - Neha Agrawal
- b Hepatology , Temple University , Philadelphia , PA , USA
| | - Bhawana Singh
- a Department of Medicine , Institute of Medical Sciences, Banaras Hindu University , Varanasi , India.,c Department of Pathology , Wexner Medical Center, The Ohio State University , Columbus , OH , USA
| |
Collapse
|
14
|
Anti–Trypanosoma cruzi effect of the photodynamic antiparasitic chemotherapy using phenothiazine derivatives as photosensitizers. Lasers Med Sci 2019; 35:79-85. [DOI: 10.1007/s10103-019-02795-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023]
|
15
|
Vara J, Gualdesi MS, Aiassa V, Ortiz CS. Evaluation of physicochemical properties and bacterial photoinactivation of phenothiazine photosensitizers. Photochem Photobiol Sci 2019; 18:1576-1586. [DOI: 10.1039/c8pp00584b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report herein the physicochemical properties and antimicrobial activity of a new monobrominated derivative of Azure B and its parent compound.
Collapse
Affiliation(s)
- Jimena Vara
- Departamento de Ciencias Farmacéuticas
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
- Argentina
- UNITEFA-CONICET
| | - María S. Gualdesi
- Departamento de Ciencias Farmacéuticas
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
- Argentina
| | - Virginia Aiassa
- Departamento de Ciencias Farmacéuticas
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
- Argentina
- UNITEFA-CONICET
| | - Cristina S. Ortiz
- Departamento de Ciencias Farmacéuticas
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
- Argentina
| |
Collapse
|
16
|
Gonçalves SVCB, Costa CHN. Treatment of cutaneous leishmaniasis with thermotherapy in Brazil: an efficacy and safety study. An Bras Dermatol 2018; 93:347-355. [PMID: 29924242 PMCID: PMC6001097 DOI: 10.1590/abd1806-4841.20186415] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 03/19/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Pentavalent antimonials remain as the standard drugs in the treatment of cutaneous leishmaniosis. The high cost, difficult administration, long treatment time, toxicity and increasing morbidity are factors that limit the use of these drugs. OBJECTIVES To describe the response to radiofrequency thermotherapy in the treatment of localized cutaneous leishmaniasis in Brazil, and to evaluate its safety and tolerability. METHODS We conducted a non-comparative open trial with a total of 15 patients confirmed to have cutaneous leishmaniasis on parasitological examination. A single radiofrequency thermotherapy session at 50ºC for 30 seconds was applied to the lesion and its edges. In patients with more than one lesion, only the largest one was treated initially. If after 30 days there was no evidence of healing, the smaller lesion was also treated with thermotherapy. Clinical cure was defined as visible healing for three months after treatment. The patients were followed-up for six months and there was no follow-up loss. RESULTS Of all 23 lesions, only two evolved to complete healing without the need of treatment. Of 21 lesions, 18 (85.7%) achieved full healing. The main observed side effects were itching, burning sensation, pain and blisters. STUDY LIMITATIONS Sample with a small number of patients and short follow-up. CONCLUSION Thermotherapy can be considered a therapeutic alternative in localized cutaneous leishmaniasis, especially in cases of single cutaneous lesions and with formal contraindications to conventional treatment with pentavalent antimonials.
Collapse
|
17
|
Dichiara M, Prezzavento O, Marrazzo A, Pittalà V, Salerno L, Rescifina A, Amata E. Recent advances in drug discovery of phototherapeutic non-porphyrinic anticancer agents. Eur J Med Chem 2017; 142:459-485. [DOI: 10.1016/j.ejmech.2017.08.070] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 12/17/2022]
|
18
|
Navasconi TR, Dos Reis VN, Freitas CF, Pereira PCDS, Caetano W, Hioka N, Lonardoni MVC, Aristides SMA, Silveira TGV. Photodynamic Therapy With Bengal Rose and Derivatives Against Leishmania amazonensis. J Lasers Med Sci 2017; 8:46-50. [PMID: 28912944 DOI: 10.15171/jlms.2017.09] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Introduction: The treatment of cutaneous leishmaniasis (CL) is based primarily on the use of pentavalent antimonials, which may lead to many side effects limiting their use. Photodynamic therapy (PDT) is an alternative for the treatment of CL, and some xanthene dyes have the potential for use in PDT. Methods: The xanthenes rose bengal B (RB) and its derivatives rose bengal methyl ester (RBMET), and butyl ester (RBBUT) were analyzed for leishmanicidal activity against promastigotes and intracellular amastigotes of Leishmania amazonensis. Cytotoxicity was assessed in J774.A1 macrophages. Results: RB derivates RBMET (IC50 9.83 μM), and RBBUT (IC50 45.08 μM) showed leishmanicidal activity, however, were toxic to J774.A1 macrophages, resulting in low selectivity index. Conclusion: The RBMET and RBBUT showed to be effective against the L. amazonensis and the low selectivity index presented may not be a limitation for their use in PDT to CL treatment.
Collapse
Affiliation(s)
- Taisa Rocha Navasconi
- Graduate Program in Health Sciences, Universidade Estadual de Maringá, Maringá, Brazil
| | - Vanessa Nesi Dos Reis
- Graduate Program in Health Sciences, Universidade Estadual de Maringá, Maringá, Brazil
| | | | | | - Wilker Caetano
- Department of Chemistry, Universidade Estadual de Maringá, Maringá, Brazil
| | - Noboru Hioka
- Department of Chemistry, Universidade Estadual de Maringá, Maringá, Brazil
| | | | | | | |
Collapse
|
19
|
Antimicrobial activity of new dumbbell-shaped phenothiazine cinnamides. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Aminophthalocyanine-Mediated Photodynamic Inactivation of Leishmania tropica. Antimicrob Agents Chemother 2016; 60:2003-11. [PMID: 26824938 DOI: 10.1128/aac.01879-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/04/2016] [Indexed: 01/29/2023] Open
Abstract
Photodynamic inactivation ofLeishmaniaspp. requires the cellular uptake of photosensitizers, e.g., endocytosis of silicon(IV)-phthalocyanines (PC) axially substituted with bulky ligands. We report here that when substituted with amino-containing ligands, the PCs (PC1 and PC2) were endocytosed and displayed improved potency againstLeishmania tropicapromastigotes and axenic amastigotesin vitro The uptake of these PCs by bothLeishmaniastages followed saturation kinetics, as expected. Sensitive assays were developed for assessing the photodynamic inactivation ofLeishmaniaspp. by rendering them fluorescent in two ways: transfecting promastigotes to express green fluorescent protein (GFP) and loading them with carboxyfluorescein succinimidyl ester (CFSE). PC-sensitizedLeishmania tropicastrains were seen microscopically to lose their motility, structural integrity, and GFP/CFSE fluorescence after exposure to red light (wavelength, ∼650 nm) at a fluence of 1 to 2 J cm(-2) Quantitative fluorescence assays based on the loss of GFP/CFSE from liveLeishmania tropicashowed that PC1 and PC2 dose dependently sensitized both stages for photoinactivation, consistent with the results of a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay.Leishmania tropicastrains are >100 times more sensitive than their host cells or macrophages to PC1- and PC2-mediated photoinactivation, judging from the estimated 50% effective concentrations (EC50s) of these cells. Axial substitution of the PC with amino groups instead of other ligands appears to increase its leishmanial photolytic activity by up to 40-fold. PC1 and PC2 are thus potentially useful for photodynamic therapy of leishmaniasis and for oxidative photoinactivation ofLeishmaniaspp. for use as vaccines or vaccine carriers.
Collapse
|
21
|
Montoya A, Daza A, Muñoz D, Ríos K, Taylor V, Cedeño D, Vélez ID, Echeverri F, Robledo SM. Development of a novel formulation with hypericin to treat cutaneous leishmaniasis based on photodynamic therapy in in vitro and in vivo studies. Antimicrob Agents Chemother 2015; 59:5804-13. [PMID: 26169411 PMCID: PMC4538502 DOI: 10.1128/aac.00545-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/30/2015] [Indexed: 12/12/2022] Open
Abstract
An evaluation of the leishmanicidal activity in vitro and in vivo of hypericin, an expanded-spectrum photosensitizer found in Hypericum perforatum, is presented. Hypericin was evaluated against intracellular amastigotes in vitro of Leishmania (Viannia) panamensis. A topical formulation containing 0.5% hypericin was developed and assayed in vivo in a hamster model of cutaneous leishmaniasis. Results demonstrate that hypericin induces a significant antiamastigote effect in vitro against L. panamensis by decreasing the number of parasites inside infected cells. The topical formulation of 0.5% hypericin allows healing of L. panamensis-induced lesions upon a topical application of 40 mg/day plus visible-light irradiation (5 J/cm(2), 15 min), twice a week for 3 weeks.
Collapse
Affiliation(s)
- Andrés Montoya
- PECET-Medical Research institute, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Alejandro Daza
- PECET-Medical Research institute, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Diana Muñoz
- PECET-Medical Research institute, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Karina Ríos
- PECET-Medical Research institute, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Viviana Taylor
- PECET-Medical Research institute, School of Medicine, University of Antioquia, Medellín, Colombia
| | - David Cedeño
- Department of Chemistry, Illinois State University, Normal, Illinois, USA
| | - Iván D Vélez
- PECET-Medical Research institute, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Fernando Echeverri
- QOPN-Institute of Chemistry, School of Exact and Natural Sciences, University of Antioquia, Medellín, Colombia
| | - Sara M Robledo
- PECET-Medical Research institute, School of Medicine, University of Antioquia, Medellín, Colombia
| |
Collapse
|
22
|
Enk CD, Nasereddin A, Alper R, Dan-Goor M, Jaffe CL, Wulf HC. Cutaneous leishmaniasis responds to daylight-activated photodynamic therapy: proof of concept for a novel self-administered therapeutic modality. Br J Dermatol 2015; 172:1364-70. [PMID: 25363817 DOI: 10.1111/bjd.13490] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cutaneous leishmaniasis (CL) is endemic in Israel, with hundreds of new cases reported in recent years. Photodynamic therapy (PDT) is highly effective for treatment of CL, but requires equipment available only at specialized centres. Daylight-activated PDT (DA-PDT) abolishes the need for artificial light sources and allows the patient to administer the treatment with no professional assistance. OBJECTIVES The objective of this single-centre, open study was to establish proof of concept for the efficacy of DA-PDT in the treatment of CL using clinical, microbiological and molecular clearance as outcome measures. METHODS Thirty-one patients with CL (11 Leishmania major and 20 Leishmania tropica) underwent DA-PDT. Fourteen patients were treated in the hospital garden under professional supervision and 17 patients underwent DA-PDT as a self-administered treatment modality at home. Following application of a thick layer of 16% methyl aminolaevulinate and 30-min occlusion, the lesions were exposed to daylight for 2·5 h. Treatment sessions were repeated at weekly intervals until clinical and microbiological cure. Control lesions were either treated with cryotherapy or left untreated. RESULTS The overall cure rate for DA-PDT was 89% (intention-to-treat cure rate 77%); this was 86% for the hospital-based treatment group and 92% for the self-administered group. CONCLUSIONS DA-PDT proved to be effective in the treatment of CL caused by L. major and L. tropica. More patients were treated according to a self-administered protocol, suggesting that DA-PDT can be adopted even in technologically deprived countries where the majority of Leishmania infections are encountered.
Collapse
Affiliation(s)
- C D Enk
- Department of Dermatology, Hadassah Medical Organization, The Hebrew University Medical School, Jerusalem, Israel
| | - A Nasereddin
- Department of Microbiology and Molecular Genetics, IMRIC, Kuvin Centre for the Study of Infectious and Tropical Diseases, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - R Alper
- Department of Dermatology, Hadassah Medical Organization, The Hebrew University Medical School, Jerusalem, Israel
| | - M Dan-Goor
- Department of Microbiology and Molecular Genetics, IMRIC, Kuvin Centre for the Study of Infectious and Tropical Diseases, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - C L Jaffe
- Department of Microbiology and Molecular Genetics, IMRIC, Kuvin Centre for the Study of Infectious and Tropical Diseases, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - H C Wulf
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Meng S, Xu Z, Hong G, Zhao L, Zhao Z, Guo J, Ji H, Liu T. Synthesis, characterization and in vitro photodynamic antimicrobial activity of basic amino acid-porphyrin conjugates. Eur J Med Chem 2014; 92:35-48. [PMID: 25544685 DOI: 10.1016/j.ejmech.2014.12.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 11/25/2014] [Accepted: 12/18/2014] [Indexed: 12/13/2022]
Abstract
Photodynamic antimicrobial chemotherapy (PACT), as a novel and effective modality for the treatment of infection with the advantage of circumventing multidrug resistance, receives great attention in recent years. The photosensitizer is the crucial element in PACT, and cationic porphyrins have been demonstrated to usually be more efficient than neutral and negatively charged analogues towards bacteria in PACT. In this work, three native basic amino acids, l-lysine, l-histidine and l-arginine, were conjugated with amino porphyrins as cationic auxiliary groups, and 13 target compounds were synthesized. This paper reports their syntheses, structural characterizations, oil-water partition coefficients, singlet oxygen generation yields, photo-stability, as well as their photo inactivation efficacies against methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli and Pseudomonas aeruginosa in vitro. The preliminary structure-activity relationship was discussed. Compound 4i, with porphyrin bearing four lysine moieties, displays the highest photo inactivation efficacy against the tested bacterial strains at 3.91 μM with a low light dose (6 J/cm(2)), and it is stable in serum and lower cytotoxicity to A929 cells. These basic amino acid-porphyrin conjugates are potential photosensitizers for PACT.
Collapse
Affiliation(s)
- Shuai Meng
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Material, Tianjin 300192, China
| | - Zengping Xu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Material, Tianjin 300192, China
| | - Ge Hong
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Material, Tianjin 300192, China
| | - Lihui Zhao
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Material, Tianjin 300192, China
| | - Zhanjuan Zhao
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Material, Tianjin 300192, China
| | - Jianghong Guo
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Material, Tianjin 300192, China
| | - Haiying Ji
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Material, Tianjin 300192, China
| | - Tianjun Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Material, Tianjin 300192, China.
| |
Collapse
|
24
|
Nadhman A, Nazir S, Khan MI, Arooj S, Bakhtiar M, Shahnaz G, Yasinzai M. PEGylated silver doped zinc oxide nanoparticles as novel photosensitizers for photodynamic therapy against Leishmania. Free Radic Biol Med 2014; 77:230-8. [PMID: 25266330 DOI: 10.1016/j.freeradbiomed.2014.09.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 08/22/2014] [Accepted: 09/02/2014] [Indexed: 11/22/2022]
Abstract
We describe daylight responsive silver (Ag) doped semiconductor nanoparticles of zinc oxide (DSNs) for photodynamic therapy (PDT) against Leishmania. The developed materials were characterized by X-ray diffraction analysis (XRD), Rutherford backscattering (RBS), diffused reflectance spectroscopy (DRS), and band-gap analysis. The Ag doped semiconductor nanoparticles of zinc oxide were PEGylated to enhance their biocompatibility. The DSNs demonstrated effective daylight response in the PDT of Leishmania protozoans, through the generation of reactive oxygen species (ROS) with a quantum yield of 0.13 by nondoped zinc oxide nanoparticles (NDSN) whereas 0.28 by DSNs. None of the nanoparticles have shown any antileishmanial activity in dark, confirming that only ROS produced in the daylight were involved in the killing of leishmanial cells. Furthermore, the synthesized nanoparticles were found biocompatible. Using reactive oxygen species scavengers, cell death was attributable mainly to 77-83% singlet oxygen and 18-27% hydroxyl radical. The nanoparticles caused permeability of the cell membrane, leading to the death of parasites. Further, the uptake of nanoparticles by Leishmania cells was confirmed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). We believe that these DSNs are widely applicable for the PDT of leishmaniasis, cancers, and other infections due to daylight response.
Collapse
Affiliation(s)
- Akhtar Nadhman
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan; Nanosciences and Catalysis Division, National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad, Pakistan
| | - Samina Nazir
- Nanosciences and Catalysis Division, National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad, Pakistan.
| | | | - Syeda Arooj
- Nanosciences and Catalysis Division, National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad, Pakistan; Department of Chemistry, Hazara University, KPK, Pakistan
| | | | - Gul Shahnaz
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Masoom Yasinzai
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
25
|
Susceptibility of methicillin-resistant Staphylococcus aureus to photodynamic antimicrobial chemotherapy with α-d-galactopyranosyl zinc phthalocyanines: in vitro study. Lasers Med Sci 2013; 29:1131-8. [DOI: 10.1007/s10103-013-1488-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/03/2013] [Indexed: 10/26/2022]
|