1
|
dos Inocentes RJM, de Almeida Ribeiro A, Marzano-Rodrigues MN, Yatabe-Ioshida MS, Trindade-Suedam IK. Adults with Treacher Collins Syndrome Share Comparable 3D Upper Airway Dimensions with Nonsyndromic Individuals. Int J Dent 2024; 2024:6545790. [PMID: 38962724 PMCID: PMC11221962 DOI: 10.1155/2024/6545790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/27/2024] [Accepted: 05/09/2024] [Indexed: 07/05/2024] Open
Abstract
Purpose Sleep apnea symptoms, such as snoring and daytime somnolence, are commonly observed in individuals with Treacher Collins Syndrome (TCS) and may be related to airway obstruction due to micro- and retro-gnathia. This study aims to three-dimensionally evaluate the upper airway using cone-beam computed tomography (CBCT) exams of adolescents (TCS-ADOL) and adults (TCS-ADUL) with TCS compared to a nonsyndromic group (CON). Materials and Methods Twenty-six CBCT exams were divided into three groups: TCS-ADOL (n = 7) (13.14 ± 1.67 years): CBCT exams of TCS adolescents; TCS-ADUL (n = 10) (21.80 ± 4.39 years): CBCT exams of TCS adults; and CON (n = 9) (25.33 ± 8.57 years): CBCT exams of adult nonsyndromic individuals with Class II skeletal pattern. The variables analyzed were (1) total upper airway volume; (2) nasal cavity volume; (3) total pharyngeal volume; (4) nasopharyngeal volume; (5) oropharyngeal volume; (6) pharyngeal minimal cross-sectional area; (7) pharyngeal length; and (8) pharyngeal depth. Scans were analyzed by two examiners, and intra- and inter-rater agreement was calculated. A p-value of ≤0.05 was considered significant. Results Although not statistically significant, the TCS-ADUL group showed decreased airway volume and minimal cross-sectional areas compared to the CON group. There were also significant differences between TCS-ADOL and TCS-ADUL, with significantly lower airway volumes in the TCS-ADOL group. Strong positive correlations were found between certain airway measurements in the TCS-ADOL group, which were not observed in adults. Conclusions The upper airways of adults with TCS are dimensionally similar to those of nonsyndromic individuals, despite absolute value reductions found in the syndromic group. The reduced airway in the adolescent population suggests significant potential for growth, mainly in pharyngeal dimensions.
Collapse
Affiliation(s)
| | - Alexandre de Almeida Ribeiro
- Laboratory of PhysiologyHospital for Rehabilitation of Craniofacial AnomaliesUniversity of São Paulo, São Paulo, Brazil
| | | | | | - Ivy Kiemle Trindade-Suedam
- Laboratory of PhysiologyHospital for Rehabilitation of Craniofacial AnomaliesBauru School of DentistryUniversity of São Paulo, Rua Silvio Marchione 3-20, Bauru—SP, CEP, São Paulo 17102-900, Brazil
| |
Collapse
|
2
|
Russel SM, Gosman RE, Gonzalez K, Wright J, Frank-Ito DO. Insights into exercise-induced rhinitis based on nasal aerodynamics induced by airway morphology. Respir Physiol Neurobiol 2024; 319:104171. [PMID: 37813324 PMCID: PMC11037931 DOI: 10.1016/j.resp.2023.104171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Exercise-induced rhinitis (EIR) is a poorly understood phenomenon that may be related to increased inspiratory airflow. Characterization of the development of EIR is important to understand contributing factors. OBJECTIVE To characterize how different nasal morphologies respond to airflow-related variables during rapid/deep inspiratory conditions. METHODS Subject-specific nasal airways were reconstructed from radiographic images. Unilateral airways were classified as Standard, Notched, or Elongated accord to their distinct nasal vestibule morphology. Computational fluid dynamics simulations were performed at various airflow rates. RESULTS For all simulated flow rates, average resistance at the nasal vestibule, airflow velocity and wall sheer stress were highest in Notched. Average mucosal heat flux was highest in Standard. Notched phenotypes showed lower mean percent increases from 10 L/min to 50 L/min in all computed variables. CONCLUSION Resistance values and airflow velocities depicted a more constricted nasal vestibule in the Notched phenotypes, while perception of nasal mucosal cooling (heat flux) favored the Standard phenotypes. Different nasal phenotypes may predispose to EIR.
Collapse
Affiliation(s)
- Sarah M Russel
- University of North Carolina - Chapel Hill, Department of Otolaryngology/Head & Neck Surgery, Chapel Hill, NC, USA; Duke University Medical Center, Department of Head and Neck Surgery & Communication Sciences, Durham, NC, USA
| | - Raluca E Gosman
- Duke University Medical Center, Department of Head and Neck Surgery & Communication Sciences, Durham, NC, USA
| | - Katherine Gonzalez
- Duke University Medical Center, Department of Head and Neck Surgery & Communication Sciences, Durham, NC, USA
| | - Joshua Wright
- Duke University Medical Center, Department of Head and Neck Surgery & Communication Sciences, Durham, NC, USA
| | - Dennis O Frank-Ito
- Duke University Medical Center, Department of Head and Neck Surgery & Communication Sciences, Durham, NC, USA.
| |
Collapse
|
3
|
Campos LD, Trindade IEK, Trindade SHK, Pimenta LAF, Kimbell J, Drake A, Marzano-Rodrigues MN, Trindade-Suedam IK. Effects of 3D Airway Geometry on the Airflow of Adults with Cleft Lip and Palate and Obstructive Sleep Apnea: A Functional Imaging Study. Sleep Sci 2023; 16:e430-e438. [PMID: 38197022 PMCID: PMC10773502 DOI: 10.1055/s-0043-1776868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 02/09/2023] [Indexed: 01/11/2024] Open
Abstract
Objective Individuals with cleft lip and palate (CLP) are at a high risk of developing obstructive sleep apnea (OSA). Hypothetically, the severity of OSA might be associated with the morphology of the upper airway (UAW) and the characteristics of the airflow. Thus, the present study aimed to assess and compare, in adults with CLP and skeletal class-III discrepancy, with or without OSA, simulations of airflow resistance and pressure according to the geometrical characteristics of the UAW and cephalometric parameters. Materials and Methods According to the results of type-I polysomnography tests, the sample ( n = 21) was allocated in 2 groups: 1) without OSA (N-OSA; n = 6); and 2) with OSA (OSA; n = 15). Cephalometric measurements were performed on the cone-beam computed tomography (CBCT) scans of the groups. After three-dimensional (3D) reconstructions, the volume (V) and minimal cross-sectional area (mCSA) of the UAW were generated. Computational fluid dynamics (CFD) simulations were used to assess key airflow characteristics. The results were presented at a significance level of 5%. Results The UAW pressure values and airway resistance did not differ between the groups, but there was a tendency for more negative pressures (26%) and greater resistance (19%) in the OSA group. Volume and mCSA showed a moderate negative correlation with resistance and pressure. The more inferior the hyoid bone, the more negative the pressures generated on the pharyngeal walls. Conclusion The position of the hyoid bone and the geometry of the UAW (V and mCSA) exerted effects on the airway-airflow resistance and pressure. However, key airflow characteristics did not differ among subjects with CLP, were they affected or not by OSA.
Collapse
Affiliation(s)
- Leticia Dominguez Campos
- Laboratory of Physiology, Hospital de Reabilitação de Anomalias Craniofaciais, Universidade de São Paulo, Bauru, SP, Brazil
| | - Inge Elly Kiemle Trindade
- Laboratory of Physiology, Hospital de Reabilitação de Anomalias Craniofaciais, Universidade de São Paulo, Bauru, SP, Brazil
- School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Biological Sciences, School of Dentistry, Universidade de São Paulo, Bauru, SP, Brazil
| | - Sergio Henrique Kiemle Trindade
- Laboratory of Physiology, Hospital de Reabilitação de Anomalias Craniofaciais, Universidade de São Paulo, Bauru, SP, Brazil
- Department of Pediatric Dentistry, Orthodontics and Public Health, School of Medicine, Universidade de São Paulo, Bauru, SP, Brazil
| | - Luiz André Freire Pimenta
- Department of Biological Sciences, School of Dentistry, Universidade de São Paulo, Bauru, SP, Brazil
| | - Julia Kimbell
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Amelia Drake
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Maria Noel Marzano-Rodrigues
- Laboratory of Physiology, Hospital de Reabilitação de Anomalias Craniofaciais, Universidade de São Paulo, Bauru, SP, Brazil
| | - Ivy Kiemle Trindade-Suedam
- Laboratory of Physiology, Hospital de Reabilitação de Anomalias Craniofaciais, Universidade de São Paulo, Bauru, SP, Brazil
- School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Biological Sciences, School of Dentistry, Universidade de São Paulo, Bauru, SP, Brazil
| |
Collapse
|
4
|
Gosman RE, Sicard RM, Cohen SM, Frank-Ito DO. A computational analysis on the impact of multilevel laryngotracheal stenosis on airflow and drug particle dynamics in the upper airway. EXPERIMENTAL AND COMPUTATIONAL MULTIPHASE FLOW 2023; 5:235-246. [PMID: 37305073 PMCID: PMC10024600 DOI: 10.1007/s42757-022-0151-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/31/2022] [Accepted: 11/24/2022] [Indexed: 06/13/2023]
Abstract
Laryngotracheal stenosis (LTS) is a type of airway narrowing that is frequently caused by intubation-related trauma. LTS can occur at one or multiple locations in the larynx and/or trachea. This study characterizes airflow dynamics and drug delivery in patients with multilevel stenosis. Two subjects with multilevel stenosis (S1 = glottis + trachea, S2 = glottis + subglottis) and one normal subject were retrospectively selected. Computed tomography scans were used to create subject-specific upper airway models. Computational fluid dynamics modeling was used to simulate airflow at inhalation pressures of 10, 25, and 40 Pa, and orally inhaled drug transport with particle velocities of 1, 5, and 10 m/s, and particle size range of 100 nm-40 µm. Subjects had increased airflow velocity and resistance at stenosis with decreased cross-sectional area (CSA): S1 had the smallest CSA at trachea (0.23 cm2) and resistance = 0.3 Pa·s/mL; S2 had the smallest CSA at glottis (0.44 cm2), and resistance = 0.16 Pa·s/mL. S1 maximal stenotic deposition was 4.15% at trachea; S2 maximal deposition was 2.28% at glottis. Particles of 11-20 µm had the greatest deposition, 13.25% (S1-trachea) and 7.81% (S2-subglottis). Results showed differences in airway resistance and drug delivery between subjects with LTS. Less than 4.2% of orally inhaled particles deposited at stenosis. Particle sizes with most stenotic deposition were 11-20 µm and may not represent typical particle sizes emitted by current-use inhalers.
Collapse
Affiliation(s)
- Raluca E. Gosman
- Duke University School of Medicine, Duke University Medical Center, 40 Duke Medicine Circle, Durham, NC 27708 USA
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, NC 27708 USA
| | - Ryan M. Sicard
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, NC 27708 USA
| | - Seth M. Cohen
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, NC 27708 USA
| | - Dennis O. Frank-Ito
- Duke University School of Medicine, Duke University Medical Center, 40 Duke Medicine Circle, Durham, NC 27708 USA
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, NC 27708 USA
- Computational Biology & Bioinformatics PhD Program, Duke University, Durham, NC 27708 USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| |
Collapse
|
5
|
Chen Y, Feng X, Shi XQ, Cai W, Li B, Zhao Y. Computational fluid-structure interaction analysis of flapping uvula on aerodynamics and pharyngeal vibration in a pediatric airway. Sci Rep 2023; 13:2013. [PMID: 36737491 PMCID: PMC9898500 DOI: 10.1038/s41598-023-28994-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
The uvula flapping is one of the most distinctive features of snoring and is critical in affecting airway aerodynamics and vibrations. This study aimed to elucidate the mechanism of pharyngeal vibration and pressure fluctuation due to uvula flapping employing fluid-structure interaction simulations. The followings are the methodology part: we constructed an anatomically accurate pediatric pharynx model and put attention on the oropharynx region where the greatest level of upper airway compliance was reported to occur. The uvula was assumed to be a rigid body with specific flapping frequencies to guarantee proper boundary conditions with as little complexity as possible. The airway tissue was considered to have a uniform thickness. It was found that the flapping frequency had a more significant effect on the airway vibration than the flapping amplitude, as the flapping uvula influenced the pharyngeal aerodynamics by altering the jet flow from the mouth. Breathing only through the mouth could amplify the effect of flapping uvula on aerodynamic changes and result in more significant oropharynx vibration.
Collapse
Affiliation(s)
- Yicheng Chen
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Xin Feng
- Division of Ear, Nose and Throat Surgery, Akerhus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Xie-Qi Shi
- Department of Clinical Dentistry, Section for Oral and Maxillofacial Radiology, University of Bergen, Bergen, Norway.,Department of Oral Maxillofacial Radiology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Weihua Cai
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, China. .,School of Energy and Power Engineering, Northeast Electric Power University, Jilin, China.
| | - Biao Li
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, China.
| | - Yijun Zhao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
6
|
Chen Y, Feng X, Shi X, Cai W, Li B, Zhao Y. Evaluation of computational fluid dynamics models for predicting pediatric upper airway airflow characteristics. Med Biol Eng Comput 2023; 61:259-270. [PMID: 36369608 DOI: 10.1007/s11517-022-02715-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
Computational fluid dynamics (CFD) has the potential for use as a clinical tool to predict the aerodynamics and respiratory function in the upper airway (UA) of children; however, careful selection of validated computational models is necessary. This study constructed a 3D model of the pediatric UA based on cone beam computed tomography (CBCT) imaging. The pediatric UA was 3D printed for pressure and velocity experiments, which were used as reference standards to validate the CFD simulation models. Static wall pressure and velocity distribution inside of the UA under inhale airflow rates from 0 to 266.67 mL/s were studied by CFD simulations based on the large eddy simulation (LES) model and four Reynolds-averaged Navier-Stokes (RANS) models. Our results showed that the LES performed best for pressure prediction; however, it was much more time-consuming than the four RANS models. Among the RANS models, the Low Reynolds number (LRN) SST k-ω model had the best overall performance at a series of airflow rates. Central flow velocity determined by particle image velocimetry was 3.617 m/s, while velocities predicted by the LES, LRN SST k-ω, and k-ω models were 3.681, 3.532, and 3.439 m/s, respectively. All models predicted jet flow in the oropharynx. These results suggest that the above CFD models have acceptable accuracy for predicting pediatric UA aerodynamics and that the LRN SST k-ω model has the most potential for clinical application in pediatric respiratory studies.
Collapse
Affiliation(s)
- Yicheng Chen
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Xin Feng
- Department of Clinical Dentistry, Section for Oral and Maxillofacial Radiology, University of Bergen, Bergen, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Xieqi Shi
- Department of Clinical Dentistry, Section for Oral and Maxillofacial Radiology, University of Bergen, Bergen, Norway.,Department of Oral Maxillofacial Radiology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Weihua Cai
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, China. .,School of Energy and Power Engineering, Northeast Electric Power University, Jilin City, China.
| | - Biao Li
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, China.
| | - Yijun Zhao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
7
|
Yuk J, Chakraborty A, Cheng S, Chung CI, Jorgensen A, Basu S, Chamorro LP, Jung S. On the design of particle filters inspired by animal noses. J R Soc Interface 2022; 19:20210849. [PMID: 35232280 PMCID: PMC8889202 DOI: 10.1098/rsif.2021.0849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Passive filtering is a common strategy to reduce airborne disease transmission and particulate contaminants across scales spanning orders of magnitude. The engineering of high-performance filters with relatively low flow resistance but high virus- or particle-blocking efficiency is a non-trivial problem of paramount relevance, as evidenced in the variety of industrial filtration systems and face masks. Next-generation industrial filters and masks should retain sufficiently small droplets and aerosols while having low resistance. We introduce a novel 3D-printable particle filter inspired by animals' complex nasal anatomy. Unlike standard random-media-based filters, the proposed concept relies on equally spaced channels with tortuous airflow paths. These two strategies induce distinct effects: a reduced resistance and a high likelihood of particle trapping by altering their trajectories with tortuous paths and induced local flow instability. The structures are tested for pressure drop and particle filtering efficiency over different airflow rates. We have also cross-validated the observed efficiency through numerical simulations. We found that the designed filters exhibit a lower pressure drop, compared to commercial masks and filters, while capturing particles bigger than approximately 10 μm. Our findings could facilitate a novel and scalable filter concept inspired by animal noses.
Collapse
Affiliation(s)
- Jisoo Yuk
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Aneek Chakraborty
- Department of Mechanical Engineering, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Shyuan Cheng
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Chun-I Chung
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Ashley Jorgensen
- Department of Mechanical Engineering, South Dakota State University, Brookings, SD 57007, USA
| | - Saikat Basu
- Department of Mechanical Engineering, South Dakota State University, Brookings, SD 57007, USA
| | - Leonardo P. Chamorro
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Sunghwan Jung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
8
|
Basu S, Akash M, Hochberg N, Senior B, Joseph-McCarthy D, Chakravarty A. From SARS-CoV-2 infection to COVID-19 morbidity: an in silico projection of virion flow rates to the lower airway via nasopharyngeal fluid boluses. RHINOLOGY ONLINE 2022. [DOI: 10.4193/rhinol/21.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: While the nasopharynx is initially the dominant upper airway infection site for SARS-CoV-2, the physiologic mechanism launching the infection at the lower airway is still not well-understood. Based on the rapidity of infection progression to the lungs, it has been hypothesized that the nasopharynx may be acting as the primary seeding zone for subsequent contamination of the lower airway via aspiration of virus-laden boluses of nasopharyngeal fluids. Methodology: To examine the plausibility of the aspiration-driven mechanism, we have computationally tracked the inhalation process in three anatomic airway reconstructions and have quantified the nasopharyngeal liquid volume transmitted to the lower airspace during each aspiration. Results: Extending the numerical trends on aspiration volume to earlier records on aspiration frequencies indicates a total aspirated nasopharyngeal liquid volume of 0.3 – 0.76 ml/day. Subsequently, for mean sputum viral load, our modeling projects that the number of virions reaching the lower airway will range over 2.1×106 – 5.3×106 /day; for peak viral load, the corresponding number hovers between 7.1×108 – 1.8×109. Conclusions: The virion transmission findings fill in a key piece of the mechanistic puzzle on the systemic progression of SARS-CoV-2, and subjectively point to health conditions like dysphagia, with proclivity to increased aspiration, as some of the potential underlying risk factors for aggressive lung infections.
Collapse
|
9
|
Wang H, Qiao X, Qi S, Zhang X, Li S. Effect of adenoid hypertrophy on the upper airway and craniomaxillofacial region. Transl Pediatr 2021; 10:2563-2572. [PMID: 34765480 PMCID: PMC8578754 DOI: 10.21037/tp-21-437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/16/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND In recent years, annual incidences of adenoid hypertrophy (AH), a highly common tissue lesion in children, have increased. Currently, research on AH has focused on its obstruction of nasal cavity function, and little has been written on its influence on the upper airway's bone structure. For this reason, our present study seeks to determine the influence of AH on both the morphological development characteristics of the upper airway and the craniofacial features in children, with the goal being to offer more choices for diagnosing and treating the condition in the future. METHODS From June 2019 to December 2020 in Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, 38 children with AH admitted to the Department of Otolaryngology [research group (RG)] and 35 children [control group (CG)] who underwent orthodontic treatment over the same time span were selected as the research objects. X-ray examination of the lateral position of the head, observation of the maxillofacial structure, and detection of the children's height, growth factors, and sleep status, and analysis of the differences between the two groups. RESULTS The height of RG, insulin-like growth factor-1 (IGF-1) as well as insulin-like growth factor binding protein-3 (IGFBP-3) were all lower than CG (P<0.05), the upper airway became narrower, and the malocclusion was aggravated (P<0.05). Cephalometric measurement showed that the angle between the subspinale and sella at nasion (SNA angle) and the angle between the subspinale and supraemental at nasion (ANB angle) of RG children decreased, and the angle between the supraemental and sella at nasion (SNB angle) increased (P<0.05). In addition, the sleep quality of RG was significantly lower than that of CG (P<0.05). CONCLUSIONS AH can change a child's breathing mode and function by giving rise to upper airway stenosis, and by inducing deformities of their craniomaxillofacial region and oral cavity, thus disrupting their normal growth and development.
Collapse
Affiliation(s)
- Hongwei Wang
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Xiaotong Qiao
- Department of Oral Medicine, College of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Suqing Qi
- Department of Orthodontics, Eye Hospital of Hebei, Xingtai, China
| | - Xiaolan Zhang
- Department of Otolaryngology, Eye Hospital of Hebei, Xingtai, China
| | - Song Li
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Chen S, Wang J, Liu D, Lei L, Wu W, Liu Z, Lee C. Open oral cavity has little effects on upper airway aerodynamics in children with obstructive sleep apnea syndrome: A computational fluid dynamics study based on patient-specific models. J Biomech 2021; 121:110383. [PMID: 33848827 DOI: 10.1016/j.jbiomech.2021.110383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/10/2021] [Accepted: 03/10/2021] [Indexed: 11/15/2022]
Abstract
Obstructive sleep apnea syndrome (OSAS) is a common disorder with recurrent pharyngeal airway collapse and sleep disruption. Recently, great progress has been made in investigating the physical mechanism of OSAS development and treatment using computational fluid dynamics (CFD). However, previous studies always neglected the oral cavity artificially in the patient's upper airway CFD model, but did not give any specific explanation. The oral cavity effect on the OSAS upper airway flow is still a matter of unclear. This paper reconstructed the patient-specific upper airway models based on the cone beam computed tomography images of ten children subjects (seven boys and three girls) and used CFD to simulate both the steady and unsteady expiration and inspiration states in the upper airway model with or without the oral cavity. A series of pressure measurement experiments based on the in vitro 1:1 scaled airway model were performed to validate the reliability of the present CFD methods. Finally, the CFD results indicate that the open oral cavity is almost a region of flow stasis with constant pressure, and both the upper airway aerodynamics with and without the oral cavity have the similar trends, with the maximum average relative difference less than 6%. The present study shows that the open oral cavity causes very little impacts on the upper airway flow of the children patients with OSAS using the nasal respiration only, and confirms the reasonability of ignoring the oral cavity for CFD simulation.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Jingying Wang
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China.
| | - Dongxu Liu
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China.
| | - Li Lei
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Wei Wu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China; Department of Stomatology, Weifang People's Hospital, Weifang 261041, China
| | - Zhenggang Liu
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Chunhian Lee
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
11
|
Frank-Ito DO, Cohen SM. Orally Inhaled Drug Particle Transport in Computerized Models of Laryngotracheal Stenosis. Otolaryngol Head Neck Surg 2021; 164:829-840. [PMID: 33045904 PMCID: PMC8294408 DOI: 10.1177/0194599820959674] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Adjuvant management for laryngotracheal stenosis (LTS) may involve inhaled corticosteroids, but metered dose inhalers are designed for pulmonary drug delivery. Comprehensive analyses of drug particle deposition efficiency for orally inhaled corticosteroids in the stenosis of LTS subjects are lacking. STUDY DESIGN Descriptive research. SETTING Academic medical center. METHODS Anatomically realistic 3-dimensional reconstructions of the upper airway were created from computed tomography images of 4 LTS subjects-2 subglottic stenosis and 2 tracheal stenosis subjects. Computational fluid dynamics modeling was used to simulate airflow and drug particle transport in each airway. Three inhalation pressures were simulated, 10 Pa, 25 Pa, and 40 Pa. Drug particle transport was simulated for 100 to 950 nanoparticles and 1 to 50 micron-particles. Particles were released into the airway to mimic varying inhaler conditions with and without a spacer chamber. RESULTS Based on smallest to largest cross-sectional area ratio, the laryngotracheal stenotic segment shrunk by 57% and 47%, respectively, for subglottic stenosis models and by 53% for both tracheal stenosis models. Airflow resistance at the stenotic segment was lower in subglottic stenosis models than in tracheal stenosis models: 0.001 to 0.011 Pa.s/mL vs 0.024 to 0.082 Pa.s/mL. Drug depositions for micron-particles and nanoparticles at stenosis were 0.06% to 2.48% and 0.10% to 2.60% for subglottic stenosis and tracheal stenosis models, respectively. Particle sizes with highest stenotic deposition were 6 to 20 µm for subglottic stenosis models and 1 to 10 µm for tracheal stenosis models. CONCLUSION This study suggests that at most, 2.60% of inhaled drug particles deposit at the stenosis. Particle size ranges with highest stenotic deposition may not represent typical sizes emitted by inhalers.
Collapse
Affiliation(s)
- Dennis Onyeka Frank-Ito
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, North Carolina, USA
- Computational Biology & Bioinformatics PhD Program, Duke University, Durham, North Carolina, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| | - Seth Morris Cohen
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
12
|
Basu S. Computational characterization of inhaled droplet transport to the nasopharynx. Sci Rep 2021; 11:6652. [PMID: 33758241 PMCID: PMC7988116 DOI: 10.1038/s41598-021-85765-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/05/2021] [Indexed: 01/31/2023] Open
Abstract
How human respiratory physiology and the transport phenomena associated with inhaled airflow in the upper airway proceed to impact transmission of SARS-CoV-2, leading to the initial infection, stays an open question. An answer can help determine the susceptibility of an individual on exposure to a COVID-2019 carrier and can also provide a preliminary projection of the still-unknown infectious dose for the disease. Computational fluid mechanics enabled tracking of respiratory transport in medical imaging-based anatomic domains shows that the regional deposition of virus-laden inhaled droplets at the initial nasopharyngeal infection site peaks for the droplet size range of approximately 2.5-19 [Formula: see text]. Through integrating the numerical findings on inhaled transmission with sputum assessment data from hospitalized COVID-19 patients and earlier measurements of ejecta size distribution generated during regular speech, this study further reveals that the number of virions that may go on to establish the SARS-CoV-2 infection in a subject could merely be in the order of hundreds.
Collapse
Affiliation(s)
- Saikat Basu
- Department of Mechanical Engineering, South Dakota State University, Brookings, SD, 57007, USA.
- Department of Otolaryngology / Head and Neck Surgery, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
13
|
Cherobin GB, Voegels RL, Pinna FR, Gebrim EMMS, Bailey RS, Garcia GJM. Rhinomanometry Versus Computational Fluid Dynamics: Correlated, but Different Techniques. Am J Rhinol Allergy 2020; 35:245-255. [PMID: 32806938 DOI: 10.1177/1945892420950157] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Past studies reported a low correlation between rhinomanometry and computational fluid dynamics (CFD), but the source of the discrepancy was unclear. Low correlation or lack of correlation has also been reported between subjective and objective measures of nasal patency. OBJECTIVE This study investigates (1) the correlation and agreement between nasal resistance derived from CFD (RCFD) and rhinomanometry (RRMN), and (2) the correlation between objective and subjective measures of nasal patency. METHODS Twenty-five patients with nasal obstruction underwent anterior rhinomanometry before and after mucosal decongestion with oxymetazoline. Subjective nasal patency was assessed with a 0-10 visual analog scale (VAS). CFD simulations were performed based on computed tomography scans obtained after mucosal decongestion. To validate the CFD methods, nasal resistance was measured in vitro (REXPERIMENT) by performing pressure-flow experiments in anatomically accurate plastic nasal replicas from 6 individuals. RESULTS Mucosal decongestion was associated with a reduction in bilateral nasal resistance (0.34 ± 0.23 Pa.s/ml to 0.19 ± 0.24 Pa.s/ml, p = 0.003) and improved sensation of nasal airflow (bilateral VAS decreased from 5.2 ± 1.9 to 2.6 ± 1.9, p < 0.001). A statistically significant correlation was found between VAS in the most obstructed cavity and unilateral airflow before and after mucosal decongestion (r = -0.42, p = 0.003). Excellent correlation was found between RCFD and REXPERIMENT (r = 0.96, p < 0.001) with good agreement between the numerical and in vitro values (RCFD/REXPERIMENT = 0.93 ± 0.08). A weak correlation was found between RCFD and RRMN (r = 0.41, p = 0.003) with CFD underpredicting nasal resistance derived from rhinomanometry (RCFD/RRMN = 0.65 ± 0.63). A stronger correlation was found when unilateral airflow at a pressure drop of 75 Pa was used to compare CFD with rhinomanometry (r = 0.76, p < 0.001). CONCLUSION CFD and rhinomanometry are moderately correlated, but CFD underpredicts nasal resistance measured in vivo due in part to the assumption of rigid nasal walls. Our results confirm previous reports that subjective nasal patency correlates better with unilateral than with bilateral measurements and in the context of an intervention.
Collapse
Affiliation(s)
- Giancarlo B Cherobin
- Department of Ophtalmology and Otorhinolaryngology, Universidade de São Paulo, São Paulo, Brazil
| | - Richard L Voegels
- Department of Ophtalmology and Otorhinolaryngology, Universidade de São Paulo, São Paulo, Brazil
| | - Fábio R Pinna
- Department of Ophtalmology and Otorhinolaryngology, Universidade de São Paulo, São Paulo, Brazil
| | - Eloisa M M S Gebrim
- Department of Radiology, Radiology Institute (InRad), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ryan S Bailey
- Department of Biomedical Engineering, Marquette University and The Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Guilherme J M Garcia
- Department of Biomedical Engineering, Marquette University and The Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
14
|
Basu S, Holbrook LT, Kudlaty K, Fasanmade O, Wu J, Burke A, Langworthy BW, Farzal Z, Mamdani M, Bennett WD, Fine JP, Senior BA, Zanation AM, Ebert CS, Kimple AJ, Thorp BD, Frank-Ito DO, Garcia GJM, Kimbell JS. Numerical evaluation of spray position for improved nasal drug delivery. Sci Rep 2020; 10:10568. [PMID: 32601278 PMCID: PMC7324389 DOI: 10.1038/s41598-020-66716-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/26/2020] [Indexed: 11/23/2022] Open
Abstract
Topical intra-nasal sprays are amongst the most commonly prescribed therapeutic options for sinonasal diseases in humans. However, inconsistency and ambiguity in instructions show a lack of definitive knowledge on best spray use techniques. In this study, we have identified a new usage strategy for nasal sprays available over-the-counter, that registers an average 8-fold improvement in topical delivery of drugs at diseased sites, when compared to prevalent spray techniques. The protocol involves re-orienting the spray axis to harness inertial motion of particulates and has been developed using computational fluid dynamics simulations of respiratory airflow and droplet transport in medical imaging-based digital models. Simulated dose in representative models is validated through in vitro spray measurements in 3D-printed anatomic replicas using the gamma scintigraphy technique. This work breaks new ground in proposing an alternative user-friendly strategy that can significantly enhance topical delivery inside human nose. While these findings can eventually translate into personalized spray usage instructions and hence merit a change in nasal standard-of-care, this study also demonstrates how relatively simple engineering analysis tools can revolutionize everyday healthcare. Finally, with respiratory mucosa as the initial coronavirus infection site, our findings are relevant to intra-nasal vaccines that are in-development, to mitigate the COVID-19 pandemic.
Collapse
Affiliation(s)
- Saikat Basu
- Department of Mechanical Engineering, South Dakota State University, Brookings, SD, 57007, United States.
| | - Landon T Holbrook
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Kathryn Kudlaty
- Department of Otolaryngology/Head and Neck Surgery, School of Medicine - University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Olulade Fasanmade
- Department of Otolaryngology/Head and Neck Surgery, School of Medicine - University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Jihong Wu
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Alyssa Burke
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Benjamin W Langworthy
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Zainab Farzal
- Department of Otolaryngology/Head and Neck Surgery, School of Medicine - University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Mohammed Mamdani
- Department of Otolaryngology/Head and Neck Surgery, School of Medicine - University of North Carolina, Chapel Hill, NC, 27599, United States
| | - William D Bennett
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Jason P Fine
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Brent A Senior
- Department of Otolaryngology/Head and Neck Surgery, School of Medicine - University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Adam M Zanation
- Department of Otolaryngology/Head and Neck Surgery, School of Medicine - University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Charles S Ebert
- Department of Otolaryngology/Head and Neck Surgery, School of Medicine - University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Adam J Kimple
- Department of Otolaryngology/Head and Neck Surgery, School of Medicine - University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Brian D Thorp
- Department of Otolaryngology/Head and Neck Surgery, School of Medicine - University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Dennis O Frank-Ito
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, NC, 27708, United States
| | - Guilherme J M Garcia
- Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, 53226, United States
| | - Julia S Kimbell
- Department of Otolaryngology/Head and Neck Surgery, School of Medicine - University of North Carolina, Chapel Hill, NC, 27599, United States
| |
Collapse
|
15
|
Campbell DA, Moghaddam MG, Rhee JS, Garcia GJM. Narrowed Posterior Nasal Airway Limits Efficacy of Anterior Septoplasty. Facial Plast Surg Aesthet Med 2020; 23:13-20. [PMID: 32471319 DOI: 10.1089/fpsam.2020.0081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Predicting symptomatic relief after septoplasty has been difficult. Minimal cross-sectional area (mCSA) measured by acoustic rhinometry and airflow resistance (R) measured by rhinomanometry have been used to select surgical candidates with mixed success. An important assumption is that mCSA and resistance are tightly coupled, but studies have reported weak or no correlation. Recently, we proposed the Bernoulli Obstruction Theory as an explanation, where tight coupling between mCSA and R is only predicted below a critical mCSA (Acrit). Methods: The nasal airway and septum of 10 healthy subjects were reconstructed from computed tomography scans. Simulated anterior septal deviations of increasing severity were created. Computational fluid dynamics simulations were performed to quantify mCSA, resistance, and flow in the healthy septum model and four simulated septal deviation models for each subject (total of 50 models). Results: A tighter coupling between mCSA and resistance was found below Acrit, estimated to be 0.20 cm2 (a very severe deviation). Above Acrit, enlarging the mCSA had a smaller effect in patients with narrower cross-sectional area in the postvalve region (CSAPV). Conclusions: Two patterns of flow increase are expected with septoplasty. Below Acrit, enlarging mCSA predictably increases flow. Above Acrit, the effect size of increasing mCSA depends on CSAPV. Unrecognized small CSAPV may explain persistent sensation of nasal obstruction after septoplasty. Our data suggest that inferior turbinate reduction ipsilateral to a septal deviation may amplify airflow benefits after septoplasty in patients with a narrow CSAPV.
Collapse
Affiliation(s)
- David A Campbell
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Masoud Gh Moghaddam
- Department of Biomedical Engineering, Marquette University & The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - John S Rhee
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Guilherme J M Garcia
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Biomedical Engineering, Marquette University & The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
16
|
Rubinstein M, Hu AC, Chung PS, Kim JH, Osann KE, Schalch P, Armstrong WB, Wong BJF. Intraoperative use of optical coherence tomography to differentiate normal and diseased thyroid and parathyroid tissues from lymph node and fat. Lasers Med Sci 2020; 36:269-278. [PMID: 32337680 DOI: 10.1007/s10103-020-03024-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/16/2020] [Indexed: 11/25/2022]
Abstract
The purpose of this study is twofold: (1) to determine the feasibility of optical coherence tomography (OCT) to differentiate normal and diseased tissue of the neck region intraoperatively and (2) to evaluate how accurately a cohort of test subjects can identify various tissue types when shown a sample set of OCT images. In this in vivo, prospective, single institutional study, an OCT imaging system (Niris, Imalux, Cleveland, OH) was used to image parathyroid, thyroid, lymph node, and fat tissue in 76 patients during neck surgery. Biopsies were performed for comparison of OCT images with histology in select cases (n = 20). Finally, a group of either surgeons or scientists familiar with OCT (n = 17) were shown a sample of OCT images and asked to identify the tissue. A total of 437 OCT images were analyzed, and characteristic features of each tissue type were identified. OCT demonstrated distinct differences in structural architecture and signal intensity that allows differentiation between thyroid and parathyroid tissues, lymph nodes, and fat. OCT images were also compared with histology with good correlation. There was no difference in correctly identifying OCT-imaged tissue type between surgeons and scientists. This study is the first in vivo OCT imaging study to evaluate both normal and diseased tissues that may be encountered during neck surgery. OCT has the potential to become a valuable intraoperative tool to differentiate diseased and normal thyroid tissue intraoperatively to obtain an "optical biopsy" in real time without fixation, staining, or tissue resection.
Collapse
Affiliation(s)
- Marc Rubinstein
- Departement of Otolaryngology - Head and Neck Surgery, University of California Irvine, Orange, CA, USA
- Beckman Laser Institute and Medical Clinic, University of California Irvine, 1002 Health Sciences Rd, Irvine, CA, 92617, USA
| | - Allison C Hu
- Departement of Otolaryngology - Head and Neck Surgery, University of California Irvine, Orange, CA, USA
- Beckman Laser Institute and Medical Clinic, University of California Irvine, 1002 Health Sciences Rd, Irvine, CA, 92617, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Phil-Sang Chung
- Beckman Laser Institute Korea, Dankook University, Cheonan, South Korea
- Department of Otolaryngology - Head and Neck Surgery, College of Medicine, Dankook University, Cheonan, South Korea
| | - Jason H Kim
- Departement of Otolaryngology - Head and Neck Surgery, University of California Irvine, Orange, CA, USA
| | - Kathryn E Osann
- Department of Medicine, University of California Irvine, Orange, CA, USA
| | - Paul Schalch
- Departement of Otolaryngology - Head and Neck Surgery, University of California Irvine, Orange, CA, USA
| | - William B Armstrong
- Departement of Otolaryngology - Head and Neck Surgery, University of California Irvine, Orange, CA, USA
| | - Brian J F Wong
- Departement of Otolaryngology - Head and Neck Surgery, University of California Irvine, Orange, CA, USA.
- Beckman Laser Institute and Medical Clinic, University of California Irvine, 1002 Health Sciences Rd, Irvine, CA, 92617, USA.
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
17
|
Price HB, Kimbell JS, Bu R, Oldenburg AL. Geometric Validation of Continuous, Finely Sampled 3-D Reconstructions From aOCT and CT in Upper Airway Models. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:1005-1015. [PMID: 30334787 PMCID: PMC6476567 DOI: 10.1109/tmi.2018.2876625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Identification and treatment of obstructive airway disorders (OADs) are greatly aided by imaging of the geometry of the airway lumen. Anatomical optical coherence tomography (aOCT) is a promising high-speed and minimally invasive endoscopic imaging modality for providing micrometer-resolution scans of the upper airway. Resistance to airflow in OADs is directly caused by the reduction in luminal cross-sectional area (CSA). It is hypothesized that aOCT can produce airway CSA measurements as accurate as that from computed tomography (CT). Scans of machine hollowed cylindrical tubes were used to develop methods for segmentation and measurement of airway lumen in CT and aOCT. Simulated scans of virtual cones were used to validate 3-D resampling and reconstruction methods in aOCT. Then, measurements of two segments of a 3-D printed pediatric airway phantom from aOCT and CT independently were compared to ground truth CSA. In continuous unobstructed regions, the mean CSA difference for each phantom segment was 2.2 ± 3.5 and 1.5 ± 5.3 mm2 for aOCT, and -3.4 ± 4.3 and -1.9 ± 1.2 mm2 for CT. Because of the similar magnitude of these differences, these results support the hypotheses and underscore the potential for aOCT as a viable alternative to CT in airway imaging, while offering greater potential to capture respiratory dynamics.
Collapse
Affiliation(s)
- Hillel B. Price
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 USA ()
| | - Julia S. Kimbell
- Department of Otolaryngology/Head and Neck Surgery, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7070 USA; Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3216 USA ()
| | - Ruofei Bu
- Department of Biomedical Medical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3216 USA ()
| | - Amy L. Oldenburg
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 USA; Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7513 USA; Department of Biomedical Medical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3216 USA ()
| |
Collapse
|
18
|
Cherobin GB, Voegels RL, Gebrim EMMS, Garcia GJM. Sensitivity of nasal airflow variables computed via computational fluid dynamics to the computed tomography segmentation threshold. PLoS One 2018; 13:e0207178. [PMID: 30444909 PMCID: PMC6239298 DOI: 10.1371/journal.pone.0207178] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 10/26/2018] [Indexed: 01/31/2023] Open
Abstract
Computational fluid dynamics (CFD) allows quantitative assessment of transport phenomena in the human nasal cavity, including heat exchange, moisture transport, odorant uptake in the olfactory cleft, and regional delivery of pharmaceutical aerosols. The first step when applying CFD to investigate nasal airflow is to create a 3-dimensional reconstruction of the nasal anatomy from computed tomography (CT) scans or magnetic resonance images (MRI). However, a method to identify the exact location of the air-tissue boundary from CT scans or MRI is currently lacking. This introduces some uncertainty in the nasal cavity geometry. The radiodensity threshold for segmentation of the nasal airways has received little attention in the CFD literature. The goal of this study is to quantify how uncertainty in the segmentation threshold impacts CFD simulations of transport phenomena in the human nasal cavity. Three patients with nasal airway obstruction were included in the analysis. Pre-surgery CT scans were obtained after mucosal decongestion with oxymetazoline. For each patient, the nasal anatomy was reconstructed using three different thresholds in Hounsfield units (-800HU, -550HU, and -300HU). Our results demonstrate that some CFD variables (pressure drop, flowrate, airflow resistance) and anatomic variables (airspace cross-sectional area and volume) are strongly dependent on the segmentation threshold, while other CFD variables (intranasal flow distribution, surface area) are less sensitive to the segmentation threshold. These findings suggest that identification of an optimal threshold for segmentation of the nasal airway from CT scans will be important for good agreement between in vivo measurements and patient-specific CFD simulations of transport phenomena in the nasal cavity, particularly for processes sensitive to the transnasal pressure drop. We recommend that future CFD studies should always report the segmentation threshold used to reconstruct the nasal anatomy.
Collapse
Affiliation(s)
- Giancarlo B. Cherobin
- Department of Ophtalmology and Otorhinolaryngology, Universidade de São Paulo, São Paulo, Brazil
| | - Richard L. Voegels
- Department of Ophtalmology and Otorhinolaryngology, Universidade de São Paulo, São Paulo, Brazil
| | - Eloisa M. M. S. Gebrim
- Department of Radiology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Guilherme J. M. Garcia
- Department of Biomedical Engineering, Marquette University & The Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|