1
|
He T, Geng X, Zhu L, Lin X, Wang L. Type II Crigler-Najjar syndrome: a case report and literature review. Front Med (Lausanne) 2024; 11:1354514. [PMID: 38784231 PMCID: PMC11112071 DOI: 10.3389/fmed.2024.1354514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Background Crigler-Najjar syndrome (CNS) is caused by mutations in uridine 5'-diphosphate glucuronyltransferase (UGT1A1) resulting in enzyme deficiency and hyperbilirubinemia. Type II CNS patients could respond to phenobarbital treatment and survive. This study presents a rare case of type II CNS. Case summary The proband was a 29-year-old male patient admitted with severe jaundice. A hepatic biopsy showed bullous steatosis of the peri-central veins of the hepatic lobule, sediment of bile pigment, and mild periportal inflammation with normal liver plate structure. The type II CNS was diagnosed by routine genomic sequencing which found that the proband with the Gry71Arg/Tyr486Asp compound heterozygous mutations in the UGT1A1 gene. After treatment with phenobarbital (180 mg/day), his bilirubin levels fluctuated between 100 and 200 μmol/L for 6 months and without severe icterus. Conclusion Type II CNS could be diagnosed by routine gene sequencing and treated by phenobarbital.
Collapse
Affiliation(s)
| | | | - Lei Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | | | - Lixia Wang
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Giuli L, Santopaolo F, Pallozzi M, Pellegrino A, Coppola G, Gasbarrini A, Ponziani FR. Cellular therapies in liver and pancreatic diseases. Dig Liver Dis 2023; 55:563-579. [PMID: 36543708 DOI: 10.1016/j.dld.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/21/2022] [Accepted: 11/22/2022] [Indexed: 04/29/2023]
Abstract
Over the past two decades, developments in regenerative medicine in gastroenterology have been greatly enhanced by the application of stem cells, which can self-replicate and differentiate into any somatic cell. The discovery of induced pluripotent stem cells has opened remarkable perspectives on tissue regeneration, including their use as a bridge to transplantation or as supportive therapy in patients with organ failure. The improvements in DNA manipulation and gene editing strategies have also allowed to clarify the physiopathology and to correct the phenotype of several monogenic diseases, both in vivo and in vitro. Further progress has been made with the development of three-dimensional cultures, known as organoids, which have demonstrated morphological and functional complexity comparable to that of a miniature organ. Hence, owing to its protean applications and potential benefits, cell and organoid transplantation has become a hot topic for the management of gastrointestinal diseases. In this review, we describe current knowledge on cell therapies in hepatology and pancreatology, providing insight into their future applications in regenerative medicine.
Collapse
Affiliation(s)
- Lucia Giuli
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Pallozzi
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Pellegrino
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gaetano Coppola
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
3
|
Cellular Therapies in Pediatric Liver Diseases. Cells 2022; 11:cells11162483. [PMID: 36010561 PMCID: PMC9406752 DOI: 10.3390/cells11162483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/30/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Liver transplantation is the gold standard for the treatment of pediatric end-stage liver disease and liver based metabolic disorders. Although liver transplant is successful, its wider application is limited by shortage of donor organs, surgical complications, need for life long immunosuppressive medication and its associated complications. Cellular therapies such as hepatocytes and mesenchymal stromal cells (MSCs) are currently emerging as an attractive alternative to liver transplantation. The aim of this review is to present the existing world experience in hepatocyte and MSC transplantation and the potential for future effective applications of these modalities of treatment.
Collapse
|
4
|
Anand H, Nulty J, Dhawan A. Cell therapy in congenital inherited hepatic disorders. Best Pract Res Clin Gastroenterol 2021; 56-57:101772. [PMID: 35331403 DOI: 10.1016/j.bpg.2021.101772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 01/31/2023]
Abstract
Congenital inherited hepatic disorders (CIHDs) are a set of diverse and heterogeneous group of genetic disorders leading to a defect in an enzyme or transporter. Most of these disorders are currently treated by liver transplantation as standard of care. Improved surgical techniques and post-operative care has led to a wider availability and success of liver transplantation program worldwide. However liver transplantation has its own limitations due to invasive surgery and lifelong use of immunosuppressive agents. Our experience from auxiliary liver transplantation (where right or the left lobe of the patient liver is replaced with a healthy liver donor) demonstrated successful treatment of the underlying defect of noncirrhotic metabolic disorder suggesting that whole liver replacement may not be necessary to achieve a change in phenotype. Large number of animal studies in human models of CIHD have shown success of hepatocyte transplantation leading to its human use. This review addresses the current state of human hepatocyte transplantation in the management of CIHDs with bottlenecks to its wider application and future perspectives.
Collapse
Affiliation(s)
- Hanish Anand
- King's College Hospital NHS Trust: King's College Hospital NHS Foundation Trust, United Kingdom; DhawanLab, Paediatric Liver GI and Nutrition Center and MowatLabs, Institute of Liver Studies, King's College London, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, London, UK
| | - Jessica Nulty
- King's College Hospital NHS Trust: King's College Hospital NHS Foundation Trust, United Kingdom; DhawanLab, Paediatric Liver GI and Nutrition Center and MowatLabs, Institute of Liver Studies, King's College London, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, London, UK
| | - Anil Dhawan
- King's College Hospital NHS Trust: King's College Hospital NHS Foundation Trust, United Kingdom; DhawanLab, Paediatric Liver GI and Nutrition Center and MowatLabs, Institute of Liver Studies, King's College London, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, London, UK.
| |
Collapse
|
5
|
Al Reza H, Okabe R, Takebe T. Organoid transplant approaches for the liver. Transpl Int 2021; 34:2031-2045. [PMID: 34614263 PMCID: PMC8602742 DOI: 10.1111/tri.14128] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/13/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Organoid technology is a state-of-the-art cell culture tool that has revolutionized study of development, regeneration, and diseases. Human liver organoids (HLOs) are now derived from either adult stem/progenitors or pluripotent stem cells (PSCs), emulating cellular diversity and structural symphony akin to the human liver. With the rapid rise in decompensated liver disease conditions only treated by liver transplant therapy, HLOs represent an alternate source for transplantation to address the ongoing shortage of grafts. Although ongoing advancements in bioengineering technology have moved the organoid transplant approach to the next level, sustained survival of the transplanted tissue still eludes us toward functional organ replacement. Herein, we review the development of HLOs and discuss promises and challenges on organoid transplant approaches.
Collapse
Affiliation(s)
- Hasan Al Reza
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Ryo Okabe
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Takebe
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Communication Design Center, Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Japan
| |
Collapse
|
6
|
Parsons RF, Baquerizo A, Kirchner VA, Malek S, Desai CS, Schenk A, Finger EB, Brennan TV, Parekh KR, MacConmara M, Brayman K, Fair J, Wertheim JA. Challenges, highlights, and opportunities in cellular transplantation: A white paper of the current landscape. Am J Transplant 2021; 21:3225-3238. [PMID: 34212485 DOI: 10.1111/ajt.16740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023]
Abstract
Although cellular transplantation remains a relatively small field compared to solid organ transplantation, the prospects for advancement in basic science and clinical care remain bountiful. In this review, notable historical events and the current landscape of the field of cellular transplantation are reviewed with an emphasis on islets (allo- and xeno-), hepatocytes (including bioartificial liver), adoptive regulatory immunotherapy, and stem cells (SCs, specifically endogenous organ-specific and mesenchymal). Also, the nascent but rapidly evolving field of three-dimensional bioprinting is highlighted, including its major processing steps and latest achievements. To reach its full potential where cellular transplants are a more viable alternative than solid organ transplants, fundamental change in how the field is regulated and advanced is needed. Greater public and private investment in the development of cellular transplantation is required. Furthermore, consistent with the call of multiple national transplant societies for allo-islet transplants, the oversight of cellular transplants should mirror that of solid organ transplants and not be classified under the unsustainable, outdated model that requires licensing as a drug with the Food and Drug Administration. Cellular transplantation has the potential to bring profound benefit through progress in bioengineering and regenerative medicine, limiting immunosuppression-related toxicity, and providing markedly reduced surgical morbidity.
Collapse
Affiliation(s)
- Ronald F Parsons
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia
| | - Angeles Baquerizo
- Scripps Center for Cell and Organ Transplantation, La Jolla, California
| | - Varvara A Kirchner
- Division of Transplantation, Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Sayeed Malek
- Division of Transplant Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Chirag S Desai
- Division of Transplantation, Department of Surgery, University of North Carolina, Chapel Hill, North Carolina
| | - Austin Schenk
- Division of Transplantation, Department of Surgery, Ohio State University, Columbus, Ohio
| | - Erik B Finger
- Division of Transplantation, Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Todd V Brennan
- Department of Surgery, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kalpaj R Parekh
- Division of Cardiothoracic Surgery, Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Malcolm MacConmara
- Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kenneth Brayman
- Division of Transplantation, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Jeffrey Fair
- Division of Transplant Surgery, Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Jason A Wertheim
- Departments of Surgery and Biomedical Engineering, University of Arizona Health Sciences, Tucson, Arizona
| | | |
Collapse
|
7
|
Koshman YE, Wilsey AS, Bird BM, Sadilek S, Weisbecker DA, Ebert PA, Polakowski JS, Gintant GA, Mittelstadt SW, Foley CM. Automated blood sampling in canine telemetry studies: Enabling enhanced assessments of cardiovascular liabilities and safety margins. J Pharmacol Toxicol Methods 2021; 111:107109. [PMID: 34416395 DOI: 10.1016/j.vascn.2021.107109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION A successful integration of automated blood sampling (ABS) into the telemetry instrumented canine cardiovascular model is presented in this study. This combined model provides an efficient means to quickly gain understanding of potential effects on key cardiovascular parameters in dog while providing a complete Pharmacokinetic/Pharmacodynamic (PK/PD) profile for discovery compounds without handling artifacts, reducing the need for a separate pharmacokinetic study. METHODS Male beagle dogs were chronically implanted with telemetry devices (PhysioTel™ model D70-PCTP) and vascular access ports (SPMID-GRIDAC-5NC). BASi Culex-L automated blood sampling (Bioanalytical Systems, Inc) system was used to collect blood samples at multiple time points. A series of four use cases utilizing four different test compounds and analytical endpoints are described to illustrate some of the potential applications of the technique. RESULTS In the four presented use cases, automated blood sampling in telemetry instrumented dogs provides simultaneous cardiovascular (heart rate, arterial blood pressure, and left ventricular pressure), electrophysiological assessment (QTc, PR, and QRS intervals), body temperature, and animal activity, while collecting multiple blood samples for drug analysis. CONCLUSION The combination of automated blood sampling with cardiovascular telemetry monitoring is a novel capability designed to support safety pharmacology cardiovascular assessment of discovery molecules. By combining telemetry and high-fidelity ABS, the model provides an enhanced PK/PD understanding of drug-induced hemodynamic and electrocardiographic effects of discovery compounds in conscious beagles in the same experimental session. Importantly, the model can reduce the need for a separate pharmacokinetic study (positive reduction 3R impact), reduces compound syntheses requirements, and shorten development timelines. Furthermore, implementation of this approach has also improved animal welfare by reducing the animal handling during a study, thereby reducing stress and associated data artifacts (positive refinement 3R impact).
Collapse
Affiliation(s)
- Yevgeniya E Koshman
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America.
| | - Amanda S Wilsey
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Brandan M Bird
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Sabine Sadilek
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Debra A Weisbecker
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Paige A Ebert
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - James S Polakowski
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Gary A Gintant
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Scott W Mittelstadt
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - C Michael Foley
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| |
Collapse
|
8
|
Koshman YE, Wilsey AS, Bird BM, Sadilek S, Weisbecker DA, Ebert PA, Polakowski JS, Gintant GA, Mittelstadt SW, Foley CM. Automated blood sampling in canine telemetry studies: Enabling enhanced assessments of cardiovascular liabilities and safety margins. J Pharmacol Toxicol Methods 2021; 109:107066. [DOI: 10.1016/j.vascn.2021.107066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 01/06/2023]
|
9
|
Papatheodoridi M, Mazza G, Pinzani M. Regenerative hepatology: In the quest for a modern prometheus? Dig Liver Dis 2020; 52:1106-1114. [PMID: 32868215 DOI: 10.1016/j.dld.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
Abstract
As liver-related morbidity and mortality is rising worldwide and orthotopic liver transplantation (OLT) remains the only standard-of-care for end-stage liver disease or acute liver failure, shortage of donor organs is becoming more prominent. Importantly, advances in regenerative Hepatology and liver bioengineering are bringing new hope to the possibility of restoring impaired hepatic functionality in the presence of acute or chronic liver failure. Hepatocyte transplantation and artificial liver-support systems were the first strategies used in regenerative hepatology but have presented various types of efficiency limitations restricting their widespread use. In parallel, liver bioengineering has been a rapidly developing field bringing continuously novel advancements in biomaterials, three dimensional (3D) scaffolds, cell sources and relative methodologies for creating bioengineered liver tissue. The current major task in liver bioengineering is to build small implantable liver mass for treating inherited metabolic disorders, bioengineered bile ducts for congenital biliary defects and large bioengineered liver organs for transplantation, as substitutes to donor-organs, in cases of acute or acute-on-chronic liver failure. This review aims to summarize the state-of-the-art and upcoming technologies of regenerative Hepatology that are emerging as promising alternatives to the current standard-of care in liver disease.
Collapse
Affiliation(s)
- Margarita Papatheodoridi
- Sheila Sherlock Liver Unit, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Giuseppe Mazza
- Sheila Sherlock Liver Unit, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Massimo Pinzani
- Sheila Sherlock Liver Unit, Institute for Liver and Digestive Health, University College London, London, United Kingdom.
| |
Collapse
|
10
|
Phase I/II Trial of Liver-derived Mesenchymal Stem Cells in Pediatric Liver-based Metabolic Disorders: A Prospective, Open Label, Multicenter, Partially Randomized, Safety Study of One Cycle of Heterologous Human Adult Liver-derived Progenitor Cells (HepaStem) in Urea Cycle Disorders and Crigler-Najjar Syndrome Patients. Transplantation 2020; 103:1903-1915. [PMID: 30801523 DOI: 10.1097/tp.0000000000002605] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Regenerative medicine using stem cell technology is an emerging field that is currently tested for inborn and acquired liver diseases. OBJECTIVE This phase I/II prospective, open label, multicenter, randomized trial aimed primarily at evaluating the safety of Heterologous Human Adult Liver-derived Progenitor Cells (HepaStem) in pediatric patients with urea cycle disorders (UCDs) or Crigler-Najjar (CN) syndrome 6 months posttransplantation. The secondary objective included the assessment of safety up to 12 months postinfusion and of preliminary efficacy. METHODS Fourteen patients with UCDs and 6 with CN syndrome were divided into 3 cohorts by body weight and intraportally infused with 3 doses of HepaStem. Clinical status, portal vein hemodynamics, morphology of the liver, de novo detection of circulating anti-human leukocyte antigen antibodies, and clinically significant adverse events (AEs) and serious adverse events to infusion were evaluated by using an intent-to-treat analysis. RESULTS The overall safety of HepaStem was confirmed. For the entire study period, patient-month incidence rate was 1.76 for the AEs and 0.21 for the serious adverse events, of which 38% occurred within 1 month postinfusion. There was a trend of higher events in UCD as compared with CN patients. Segmental left portal vein thrombosis occurred in 1 patient and intraluminal local transient thrombus in a second patient. The other AEs were in line with expectations for catheter placement, cell infusion, concomitant medications, age, and underlying diseases. CONCLUSIONS This study led to European clinical trial authorization for a phase II study in a homogeneous patient cohort, with repeated infusions and intermediate doses.
Collapse
|
11
|
Nguyen MP, Jain V, Iansante V, Mitry RR, Filippi C, Dhawan A. Clinical application of hepatocyte transplantation: current status, applicability, limitations, and future outlook. Expert Rev Gastroenterol Hepatol 2020; 14:185-196. [PMID: 32098516 DOI: 10.1080/17474124.2020.1733975] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Hepatocyte transplantation (HT) is a promising alternative to liver transplantation for the treatment of liver-based metabolic diseases and acute liver failure (ALF). However, shortage of good-quality liver tissues, early cell loss post-infusion, reduced cell engraftment and function restricts clinical application.Areas covered: A comprehensive literature search was performed to cover pre-clinical and clinical HT studies. The review discusses the latest developments to address HT limitations: cell sources from marginal/suboptimal donors to neonatal livers, differentiating pluripotent stem cells into hepatocyte-like cells, in vitro expansion, prevention of immune response to transplanted cells by encapsulation or using innate immunity-inhibiting agents, and enhancing engraftment through partial hepatectomy or irradiation.Expert opinion: To date, published data are highly encouraging specially the alginate-encapsulated hepatocyte treatment of children with ALF. Hepatocyte functions can be further improved through co-culturing with mesenchymal stromal cells. Moreover, ex-vivo genetic correction will enable the use of autologous cells in future personalized medicine.
Collapse
Affiliation(s)
- Minh Phuong Nguyen
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Vandana Jain
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Valeria Iansante
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Ragai R Mitry
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Celine Filippi
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Anil Dhawan
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| |
Collapse
|
12
|
Kruitwagen HS, Oosterhoff LA, van Wolferen ME, Chen C, Nantasanti Assawarachan S, Schneeberger K, Kummeling A, van Straten G, Akkerdaas IC, Vinke CR, van Steenbeek FG, van Bruggen LW, Wolfswinkel J, Grinwis GC, Fuchs SA, Gehart H, Geijsen N, Vries RG, Clevers H, Rothuizen J, Schotanus BA, Penning LC, Spee B. Long-Term Survival of Transplanted Autologous Canine Liver Organoids in a COMMD1-Deficient Dog Model of Metabolic Liver Disease. Cells 2020; 9:cells9020410. [PMID: 32053895 PMCID: PMC7072637 DOI: 10.3390/cells9020410] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/30/2022] Open
Abstract
The shortage of liver organ donors is increasing and the need for viable alternatives is urgent. Liver cell (hepatocyte) transplantation may be a less invasive treatment compared with liver transplantation. Unfortunately, hepatocytes cannot be expanded in vitro, and allogenic cell transplantation requires long-term immunosuppression. Organoid-derived adult liver stem cells can be cultured indefinitely to create sufficient cell numbers for transplantation, and they are amenable to gene correction. This study provides preclinical proof of concept of the potential of cell transplantation in a large animal model of inherited copper toxicosis, such as Wilson’s disease, a Mendelian disorder that causes toxic copper accumulation in the liver. Hepatic progenitors from five COMMD1-deficient dogs were isolated and cultured using the 3D organoid culture system. After genetic restoration of COMMD1 expression, the organoid-derived hepatocyte-like cells were safely delivered as repeated autologous transplantations via the portal vein. Although engraftment and repopulation percentages were low, the cells survived in the liver for up to two years post-transplantation. The low engraftment was in line with a lack of functional recovery regarding copper excretion. This preclinical study confirms the survival of genetically corrected autologous organoid-derived hepatocyte-like cells in vivo and warrants further optimization of organoid engraftment and functional recovery in a large animal model of human liver disease.
Collapse
Affiliation(s)
- Hedwig S. Kruitwagen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
- Correspondence: (H.S.K.); (B.S.)
| | - Loes A. Oosterhoff
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Monique E. van Wolferen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Chen Chen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Sathidpak Nantasanti Assawarachan
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Kerstin Schneeberger
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Anne Kummeling
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Giora van Straten
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Ies C. Akkerdaas
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Christel R. Vinke
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Frank G. van Steenbeek
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Leonie W.L. van Bruggen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Jeannette Wolfswinkel
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Guy C.M. Grinwis
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Sabine A. Fuchs
- Division of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands;
| | - Helmuth Gehart
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands; (H.G.); (H.C.)
| | - Niels Geijsen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands; (H.G.); (H.C.)
| | - Robert G. Vries
- Hubrecht Organoid Technology (HUB), 3584 CT Utrecht, The Netherlands;
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands; (H.G.); (H.C.)
| | - Jan Rothuizen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Baukje A. Schotanus
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Louis C. Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
- Correspondence: (H.S.K.); (B.S.)
| |
Collapse
|
13
|
Kruitwagen HS, Fieten H, Penning LC. Towards Bioengineered Liver Stem Cell Transplantation Studies in a Preclinical Dog Model for Inherited Copper Toxicosis. Bioengineering (Basel) 2019; 6:E88. [PMID: 31557851 PMCID: PMC6955979 DOI: 10.3390/bioengineering6040088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 01/20/2023] Open
Abstract
Wilson Disease is a rare autosomal recessive liver disorder in humans. Although its clinical presentation and age of onset are highly variable, hallmarks include signs of liver disease, neurological features and so-called Kayser-Fleischer rings in the eyes of the patient. Hepatic copper accumulation leads to liver disease and eventually to liver cirrhosis. Treatment options include life-long copper chelation therapy and/or decrease in copper intake. Eventually liver transplantations are indicated. Although clinical outcome of liver transplantations is favorable, the lack of suitable donor livers hampers large numbers of transplantations. As an alternative, cell therapies with hepatocytes or liver stem cells are currently under investigation. Stem cell biology in relation to pets is in its infancy. Due to the specific population structure of dogs, canine copper toxicosis is frequently encountered in various dog breeds. Since the histology and clinical presentation resemble Wilson Disease, we combined genetics, gene-editing, and matrices-based stem cell cultures to develop a translational preclinical transplantation model for inherited copper toxicosis in dogs. Here we describe the roadmap followed, starting from the discovery of a causative copper toxicosis mutation in a specific dog breed and culminating in transplantation of genetically-engineered autologous liver stem cells.
Collapse
Affiliation(s)
- Hedwig S Kruitwagen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, The Netherlands.
| | - Hille Fieten
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, The Netherlands.
| | - Louis C Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, The Netherlands.
| |
Collapse
|
14
|
Innovative application of an implantable venous access system in the portal vein: technique, results and complications in three dogs. BMC Vet Res 2019; 15:240. [PMID: 31296216 PMCID: PMC6621995 DOI: 10.1186/s12917-019-1986-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/30/2019] [Indexed: 11/22/2022] Open
Abstract
Background Vascular access port (VAP) systems are widely used in human medicine to provide long-term venous access. However, in veterinary medicine the use of VAP systems is not common practice and publications on their potential applications have been limited. A VAP system was used as part of an experimental study on liver regeneration and implanted in the canine portal vein to create direct access to the portal venous circulation of the liver. The aim of the present study is to describe the surgical technique, its use, and the complications of a VAP system in three research dogs. Results The VAP system was successfully used for the intraoperative measurement of portal blood pressure, the administration of cell suspensions, and the collection of portal venous blood samples. Long-term complications consisted of dislocation of the VAP system in one dog (2 months after implantation) and thrombus formation at the catheter tip in two dogs (3 months after implantation). Both complications prevented further use of the VAP but had no adverse clinical implications. Conclusions This pilot study suggests that the VAP system is an effective and safe technique to obtain long term access to the portal venous system in dogs. However, complications with port detachment and thrombosis may limit long term use of VAPs in the portal system of dogs.
Collapse
|
15
|
Clinical hepatocyte transplantation. GASTROENTEROLOGIA Y HEPATOLOGIA 2019; 42:202-208. [DOI: 10.1016/j.gastrohep.2018.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/21/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022]
|
16
|
Domino Hepatocyte Transplantation: A Therapeutic Alternative for the Treatment of Acute Liver Failure. Can J Gastroenterol Hepatol 2018; 2018:2593745. [PMID: 30065914 PMCID: PMC6051327 DOI: 10.1155/2018/2593745] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND AIMS Acute liver failure (ALF) is a severe syndrome with an elevated mortality rate, ranging from 40 to 80 %. Currently, liver transplantation is the only definitive treatment for these patients and new therapies aiming to treat ALF include artificial organs implant and stem cells therapy, for example. However, a major limitation of liver donors exists. Living donor liver transplantation (LDLT), split liver transplantation (SLT), and domino liver transplantation (DLT) are some of the available alternatives to treat ALF patients, but these do not reduce the number of patients on waiting lists. Herein, we discuss domino hepatocyte transplantation (DHT) using livers that would not meet transplantation criteria. METHODS We conducted a literature search on PubMed/Medline using acute liver failure, liver transplantation, hepatocyte transplantation, and domino liver transplantation as key words. RESULTS New sources of biochemically functional hepatocytes and therapeutic treatments, in parallel to organ transplantation, may improve liver injury recovery and decrease mortality rates. Moreover, the literature reports hepatocyte transplantation as a therapeutic alternative for organ shortage. However, a major challenge remains for a wide clinical application of hepatocytes therapy, i.e., the availability of sufficient amounts of cells for transplantation. Ideally, hepatocytes isolated from livers rejected for transplantation may be a promising alternative for this problem. CONCLUSION Our review suggests that DHT may be an excellent strategy to increase cell supplies for hepatocyte transplantation.
Collapse
|
17
|
Lee CA, Sinha S, Fitzpatrick E, Dhawan A. Hepatocyte transplantation and advancements in alternative cell sources for liver-based regenerative medicine. J Mol Med (Berl) 2018; 96:469-481. [PMID: 29691598 PMCID: PMC5988761 DOI: 10.1007/s00109-018-1638-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/07/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022]
Abstract
Human hepatocyte transplantation has been actively perused as an alternative to liver replacement for acute liver failure and liver-based metabolic defects. Current challenges in this field include a limited cell source, reduced cell viability following cryopreservation and poor engraftment of cells into the recipient liver with consequent limited life span. As a result, alternative stem cell sources such as pluripotent stem cells, fibroblasts, hepatic progenitor cells, amniotic epithelial cells and mesenchymal stem/stromal cells (MSCs) can be used to generate induced hepatocyte like cells (HLC) with each technique exhibiting advantages and disadvantages. HLCs may have comparable function to primary human hepatocytes and could offer patient-specific treatment. However, long-term functionality of transplanted HLCs and the potential oncogenic risks of using stem cells have yet to be established. The immunomodulatory effects of MSCs are promising, and multiple clinical trials are investigating their effect in cirrhosis and acute liver failure. Here, we review the current status of hepatocyte transplantation, alternative cell sources to primary human hepatocytes and their potential in liver regeneration. We also describe recent clinical trials using hepatocytes derived from stem cells and their role in improving the phenotype of several liver diseases.
Collapse
Affiliation(s)
- Charlotte A Lee
- Dhawan Lab, Institute of Liver Studies, King's College London at King's College Hospital NHS Foundation trust, London, UK
| | - Siddharth Sinha
- Dhawan Lab, Institute of Liver Studies, King's College London at King's College Hospital NHS Foundation trust, London, UK
| | - Emer Fitzpatrick
- Paediatric Liver GI and Nutrition Centre, King's College London at King's College Hospital NHS Foundation Trust, London, UK
| | - Anil Dhawan
- Paediatric Liver GI and Nutrition Centre, King's College London at King's College Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
18
|
Gilgenkrantz H, Collin de l'Hortet A. Understanding Liver Regeneration: From Mechanisms to Regenerative Medicine. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1316-1327. [PMID: 29673755 DOI: 10.1016/j.ajpath.2018.03.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/15/2018] [Accepted: 03/23/2018] [Indexed: 02/06/2023]
Abstract
Liver regeneration is a complex and unique process. When two-thirds of a mouse liver is removed, the remaining liver recovers its initial weight in approximately 10 days. The understanding of the mechanisms responsible for liver regeneration may help patients needing large liver resections or transplantation and may be applied to the field of regenerative medicine. All differentiated hepatocytes are capable of self-renewal, but different subpopulations of hepatocytes seem to have distinct proliferative abilities. In the setting of chronic liver diseases, a ductular reaction ensues in which liver progenitor cells (LPCs) proliferate in the periportal region. Although these LPCs have the capacity to differentiate into hepatocytes and biliary cells in vitro, their ability to participate in liver regeneration is far from clear. Their expansion has even been associated with increased fibrosis and poorer prognosis in chronic liver diseases. Controversies also remain on their origin: lineage studies in experimental mouse models of chronic injury have recently suggested that these LPCs originate from hepatocyte dedifferentiation, whereas in other situations, they seem to come from cholangiocytes. This review summarizes data published in the past 5 years in the liver regeneration field, discusses the mechanisms leading to regeneration disruption in chronic liver disorders, and addresses the potential use of novel approaches for regenerative medicine.
Collapse
Affiliation(s)
- Hélène Gilgenkrantz
- INSERM U1149, Center for Research on Inflammation, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| | | |
Collapse
|
19
|
Abstract
The liver has an important function in the human body and plays a crucial role in its metabolism. Orthotopic liver transplantation (OLT) is the gold standard treatment for patients presenting liver failure or end stage liver diseases, and is also applied for liver based intractable metabolic disorders. Due to organ shortage, invasive surgery and persistent mortality/morbidity, other treatments have to be explored. Amongst these, hepatocyte transplantation is an attractive alternative and has shown promising results in the treatment of miscellaneous metabolic disorders.
Collapse
|
20
|
Heath RD, Ertem F, Romana BS, Ibdah JA, Tahan V. Hepatocyte transplantation: Consider infusion before incision. World J Transplant 2017; 7:317-323. [PMID: 29312860 PMCID: PMC5743868 DOI: 10.5500/wjt.v7.i6.317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/27/2017] [Accepted: 12/06/2017] [Indexed: 02/05/2023] Open
Abstract
Human hepatocyte transplantation is undergoing study as a bridge, or even alternative, to orthotopic liver transplantation (OLT). This technique has undergone multiple developments over the past thirty years in terms of mode of delivery, source and preparation of cell cultures, monitoring of graft function, and use of immunosuppression. Further refinements and improvements in these techniques will likely allow improved graft survival and function, granting patients higher yield from this technique and potentially significantly delaying need for OLT.
Collapse
Affiliation(s)
- Ryan D Heath
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, United States
| | - Furkan Ertem
- Department of Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, United States
| | - Bhupinder S Romana
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, United States
| | - Jamal A Ibdah
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, United States
| | - Veysel Tahan
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, United States
| |
Collapse
|
21
|
Squires JE, Soltys KA, McKiernan P, Squires RH, Strom SC, Fox IJ, Soto-Gutierrez A. Clinical Hepatocyte Transplantation: What Is Next? CURRENT TRANSPLANTATION REPORTS 2017; 4:280-289. [PMID: 29732274 DOI: 10.1007/s40472-017-0165-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose of review Significant recent scientific developments have occurred in the field of liver repopulation and regeneration. While techniques to facilitate liver repopulation with donor hepatocytes and different cell sources have been studied extensively in the laboratory, in recent years clinical hepatocyte transplantation (HT) and liver repopulation trials have demonstrated new disease indications and also immunological challenges that will require the incorporation of a fresh look and new experimental approaches. Recent findings Growth advantage and regenerative stimulus are necessary to allow donor hepatocytes to proliferate. Current research efforts focus on mechanisms of donor hepatocyte expansion in response to liver injury/preconditioning. Moreover, latest clinical evidence shows that important obstacles to HT include optimizing engraftment and limited duration of effectiveness, with hepatocytes being lost to immunological rejection. We will discuss alternatives for cellular rejection monitoring, as well as new modalities to follow cellular graft function and near-to-clinical cell sources. Summary HT partially corrects genetic disorders for a limited period of time and has been associated with reversal of ALF. The main identified obstacles that remain to make HT a curative approach include improving engraftment rates, and methods for monitoring cellular graft function and rejection. This review aims to discuss current state-of-the-art in clinical HT and provide insights into innovative approaches taken to overcome these obstacles.
Collapse
Affiliation(s)
- James E Squires
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Kyle A Soltys
- Thomas E. Starzl Transplant Institute, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Patrick McKiernan
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Robert H Squires
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Stephen C Strom
- Karolinska Institutet, Department of Laboratory Medicine, Division of Pathology, Stockholm, Sweden
| | - Ira J Fox
- Department of Surgery, Children's Hospital of Pittsburgh of UPMC, and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
22
|
Hsu MJ, Prigent J, Dollet PE, Ravau J, Larbanoix L, Van Simaeys G, Bol A, Grégoire V, Goldman S, Deblandre G, Najimi M, Sokal EM, Lombard CA. Long-Term In Vivo Monitoring of Adult-Derived Human Liver Stem/Progenitor Cells by Bioluminescence Imaging, Positron Emission Tomography, and Contrast-Enhanced Computed Tomography. Stem Cells Dev 2017; 26:986-1002. [PMID: 28340549 DOI: 10.1089/scd.2016.0338] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Adult-derived human liver stem/progenitor cells (ADHLSCs) have the potential to alleviate liver injury. However, the optimal delivery route and long-term biodistribution of ADHLSCs remain unclear. In this article, we used a triple fusion reporter system to determine the kinetic differences in the biodistribution of ADHLSCs following intrasplenic (IS) and intrahepatic (IH) administration in severe combined immunodeficiency/beige mice. ADHLSCs were transduced with a lentiviral vector expressing a triple fusion reporter comprising renilla luciferase, monomeric red fluorescent protein, and truncated HSV-1 thymidine kinase. The stability and duration of the transgenes, and the effects of transduction on the cell properties were evaluated in vitro. The acute retention and long-term engraftment in vivo were revealed by positron emission tomography and bioluminescence imaging (BLI), respectively, followed by histochemical analysis. We showed that ADHLSCs can be safely transduced with the triple fusion reporter. Radiolabeled ADHLSCs showed acute cell retention at the sites of injection. The IH group showed a confined BLI signal at the injection site, while the IS group displayed a dispersed distribution at the upper abdominal liver area, and a more intense signal. In conclusion, ADHLSCs could be monitored by BLI for up to 4 weeks with a spread out biodistribution following IS injection.
Collapse
Affiliation(s)
- Mei-Ju Hsu
- 1 Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain , Brussels, Belgium
| | - Julie Prigent
- 1 Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain , Brussels, Belgium
| | - Pierre-Edouard Dollet
- 1 Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain , Brussels, Belgium
| | - Joachim Ravau
- 1 Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain , Brussels, Belgium
| | - Lionel Larbanoix
- 2 Center for Microscopy and Molecular Imaging , Gosselies, Belgium
- 3 NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, Université de Mons , Mons, Belgium
| | - Gaetan Van Simaeys
- 2 Center for Microscopy and Molecular Imaging , Gosselies, Belgium
- 4 Service de Médecine Nucléaire, Hôpital Erasme, Université Libre de Bruxelles , Brussels, Belgium
| | - Anne Bol
- 5 Center of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain , Brussels, Belgium
| | - Vincent Grégoire
- 5 Center of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain , Brussels, Belgium
| | - Serge Goldman
- 2 Center for Microscopy and Molecular Imaging , Gosselies, Belgium
- 4 Service de Médecine Nucléaire, Hôpital Erasme, Université Libre de Bruxelles , Brussels, Belgium
| | - Gisèle Deblandre
- 1 Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain , Brussels, Belgium
| | - Mustapha Najimi
- 1 Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain , Brussels, Belgium
| | - Etienne M Sokal
- 1 Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain , Brussels, Belgium
- 6 Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Catherine A Lombard
- 1 Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain , Brussels, Belgium
| |
Collapse
|
23
|
Nicolas CT, Hickey RD, Chen HS, Mao SA, Lopera Higuita M, Wang Y, Nyberg SL. Concise Review: Liver Regenerative Medicine: From Hepatocyte Transplantation to Bioartificial Livers and Bioengineered Grafts. Stem Cells 2017; 35:42-50. [PMID: 27641427 PMCID: PMC5529050 DOI: 10.1002/stem.2500] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/27/2016] [Accepted: 08/21/2016] [Indexed: 12/13/2022]
Abstract
Donor organ shortage is the main limitation to liver transplantation as a treatment for end-stage liver disease and acute liver failure. Liver regenerative medicine may in the future offer an alternative form of therapy for these diseases, be it through cell transplantation, bioartificial liver (BAL) devices, or bioengineered whole organ liver transplantation. All three strategies have shown promising results in the past decade. However, before they are incorporated into widespread clinical practice, the ideal cell type for each treatment modality must be found, and an adequate amount of metabolically active, functional cells must be able to be produced. Research is ongoing in hepatocyte expansion techniques, use of xenogeneic cells, and differentiation of stem cell-derived hepatocyte-like cells (HLCs). HLCs are a few steps away from clinical application, but may be very useful in individualized drug development and toxicity testing, as well as disease modeling. Finally, safety concerns including tumorigenicity and xenozoonosis must also be addressed before cell transplantation, BAL devices, and bioengineered livers occupy their clinical niche. This review aims to highlight the most recent advances and provide an updated view of the current state of affairs in the field of liver regenerative medicine. Stem Cells 2017;35:42-50.
Collapse
Affiliation(s)
- Clara T Nicolas
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Raymond D Hickey
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Harvey S Chen
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Shennen A Mao
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Manuela Lopera Higuita
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Yujia Wang
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Scott L Nyberg
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
24
|
Abstract
Orthotopic liver transplantation remains the only proven cure for end-stage liver failure. Despite significant advances in the field, the clinical demand for donor organs far outweighs the supply. Hepatocyte transplantation has been proposed as an alternative approach to whole liver transplant in select diseases. Several international centers have reported experimental trials of human hepatocyte transplantation in acute liver failure and liver-based metabolic disorders. This chapter provides an introduction to hepatocyte transplantation from both a technical and clinical perspective. We will also focus on the special needs of pediatric patients, since historically the majority of clinical hepatocyte transplants have involved infants and children.
Collapse
|
25
|
Alternative Cell Sources to Adult Hepatocytes for Hepatic Cell Therapy. Methods Mol Biol 2016; 1506:17-42. [PMID: 27830543 DOI: 10.1007/978-1-4939-6506-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Adult hepatocyte transplantation is limited by scarce availability of suitable donor liver tissue for hepatocyte isolation. New cell-based therapies are being developed to supplement whole-organ liver transplantation, to reduce the waiting-list mortality rate, and to obtain more sustained and significant metabolic correction. Fetal livers and unsuitable neonatal livers for organ transplantation have been proposed as potential useful sources of hepatic cells for cell therapy. However, the major challenge is to use alternative cell sources for transplantation that can be derived from reproducible methods. Different types of stem cells with hepatic differentiation potential are eligible for generating large numbers of functional hepatocytes for liver cell therapy to treat degenerative disorders, inborn hepatic metabolic diseases, and organ failure. Clinical trials are designed to fully establish the safety profile of such therapies and to define target patient groups and standardized protocols.
Collapse
|
26
|
Kokuryo T, Hibino S, Suzuki K, Watanabe K, Yokoyama Y, Nagino M, Senga T, Hamaguchi M. Nek2 siRNA therapy using a portal venous port-catheter system for liver metastasis in pancreatic cancer. Cancer Sci 2016; 107:1315-20. [PMID: 27316377 PMCID: PMC5021025 DOI: 10.1111/cas.12993] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/13/2016] [Accepted: 06/17/2016] [Indexed: 01/16/2023] Open
Abstract
Nek2 (NIMA-related kinase 2) is a serine-threonine kinase and human homolog of the mitotic regulator NIMA of Aspergillus nidulan. We reported the efficiency of Nek2 siRNA in several cancer xenograft models using cholangiocarcinoma, breast cancer and colorectal cancer. Pancreatic cancer is difficult to treat due to its rapid progression and resistance to chemotherapy. Novel treatments are urgently required to improve survival in pancreatic cancer, and siRNA are a promising therapeutic option. However, finding an in vivo drug delivery system of siRNA remains a major problem for clinical application. In this study, the overexpression of Nek2 was identified in pancreatic cancer cell lines. Nek2 siRNA inhibited tumor growth in a subcutaneous xenograft mouse model of pancreatic cancer, prolonged the survival time in an intraperitoneal xenograft mouse model and efficiently prevented the progression of liver metastasis using a portal venous port-catheter system. Taken together, Nek2 is an effective therapeutic target in pancreatic cancer. An adequate delivery system is considered important in treating advanced pancreatic cancer, such as peritoneal dissemination and liver metastasis. Further investigations are required on the safety and side effects of the portal venous port-catheter system. We hope that Nek2 siRNA will be a novel therapeutic strategy for pancreatic cancer with liver metastasis and peritoneal dissemination.
Collapse
Affiliation(s)
- Toshio Kokuryo
- Division of Surgical Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan. .,Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Shigeru Hibino
- Division of Surgical Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazushi Suzuki
- Division of Surgical Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsutaka Watanabe
- Division of Surgical Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Yokoyama
- Division of Surgical Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Nagino
- Division of Surgical Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Senga
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michinari Hamaguchi
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
27
|
Lee JG, Bak SY, Nahm JH, Lee SW, Min SO, Kim KS. Toward angiogenesis of implanted bio-artificial liver using scaffolds with type I collagen and adipose tissue-derived stem cells. KOREAN JOURNAL OF HEPATO-BILIARY-PANCREATIC SURGERY 2015; 19:47-58. [PMID: 26155277 PMCID: PMC4494077 DOI: 10.14701/kjhbps.2015.19.2.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 05/25/2015] [Accepted: 05/28/2015] [Indexed: 12/01/2022]
Abstract
Backgrounds/Aims Stem cell therapies for liver disease are being studied by many researchers worldwide, but scientific evidence to demonstrate the endocrinologic effects of implanted cells is insufficient, and it is unknown whether implanted cells can function as liver cells. Achieving angiogenesis, arguably the most important characteristic of the liver, is known to be quite difficult, and no practical attempts have been made to achieve this outcome. We carried out this study to observe the possibility of angiogenesis of implanted bio-artificial liver using scaffolds. Methods This study used adipose tissue-derived stem cells that were collected from adult patients with liver diseases with conditions similar to the liver parenchyma. Specifically, microfilaments were used to create an artificial membrane and maintain the structure of an artificial organ. After scratching the stomach surface of severe combined immunocompromised (SCID) mice (n=4), artificial scaffolds with adipose tissue-derived stem cells and type I collagen were implanted. Expression levels of angiogenesis markers including vascular endothelial growth factor (VEGF), CD34, and CD105 were immunohistochemically assessed after 30 days. Results Grossly, the artificial scaffolds showed adhesion to the stomach and surrounding organs; however, there was no evidence of angiogenesis within the scaffolds; and VEGF, CD34, and CD105 expressions were not detected after 30 days. Conclusions Although implantation of cells into artificial scaffolds did not facilitate angiogenesis, the artificial scaffolds made with type I collagen helped maintain implanted cells, and surrounding tissue reactions were rare. Our findings indicate that type I collagen artificial scaffolds can be considered as a possible implantable biomaterial.
Collapse
Affiliation(s)
- Jae Geun Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Seon Young Bak
- Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, Seoul, Korea
| | - Ji Hae Nahm
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Woo Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea. ; Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, Seoul, Korea
| | - Seon Ok Min
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea. ; Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, Seoul, Korea
| | - Kyung Sik Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea. ; Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, Seoul, Korea. ; Cell Therapy Center, Severance Hospital, Seoul, Korea
| |
Collapse
|
28
|
Sokal EM, Lombard C, Mazza G. Mesenchymal stem cell treatment for hemophilia: a review of current knowledge. J Thromb Haemost 2015; 13 Suppl 1:S161-6. [PMID: 26149017 DOI: 10.1111/jth.12933] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hemophilia remains a non-curative disease, and patients are constrained to undergo repeated injections of clotting factors. In contrast, the sustained production of endogenous factors VIII (FVIII) or IX (FIX) by the patient's own cells could represent a curative treatment. Gene therapy has thus provided new hope for these patients. However, the issues surrounding the durability of expression and immune responses against gene transfer vectors remain. Cell therapy, involving stem cells expanded in vitro, can provide de novo protein synthesis and, if implanted successfully, could induce a steady-state production of low quantities of factors, which may keep the patient above the level required to prevent spontaneous bleeding. Liver-derived stem cells are already being assessed in clinical trials for inborn errors of metabolism and, in view of their capacity to produce FVIII and FIX in cell culture, they are now also being considered for clinical application in hemophilia patients.
Collapse
Affiliation(s)
- E M Sokal
- Service de gastroentérologie et hépatologie pédiatrique, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Cliniques St Luc, Brussels, Belgium
| | - C Lombard
- Université Catholique de Louvain, Brussels, Belgium
| | - G Mazza
- Division of Medicine, Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London, UK
| |
Collapse
|
29
|
Gramignoli R, Vosough M, Kannisto K, Srinivasan RC, Strom SC. Clinical Hepatocyte Transplantation: Practical Limits and Possible Solutions. Eur Surg Res 2015; 54:162-77. [DOI: 10.1159/000369552] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/04/2014] [Indexed: 01/07/2023]
Abstract
Since the first human hepatocyte transplants (HTx) in 1992, clinical studies have clearly established proof of principle for this therapy as a treatment for patients with acquired or inherited liver disease. Although major accomplishments have been made, there are still some specific limitations to this technology, which, if overcome, could greatly enhance the efficacy and implementation of this therapy. Here, we describe what in our view are the most significant obstacles to the clinical application of HTx and review the solutions currently proposed. The obstacles of significance include the limited number and quality of liver tissues as a cell source, the lack of clinical grade reagents, quality control evaluation of hepatocytes prior to transplantation, hypothermic storage of cells prior to transplantation, preconditioning treatments to enhance engraftment and proliferation of donor cells, tracking or monitoring cells after transplantation, and the optimal immunosuppression protocols for transplant recipients.
Collapse
|
30
|
Hansel MC, Gramignoli R, Skvorak KJ, Dorko K, Marongiu F, Blake W, Davila J, Strom SC. The history and use of human hepatocytes for the treatment of liver diseases: the first 100 patients. CURRENT PROTOCOLS IN TOXICOLOGY 2014; 62:14.12.1-23. [PMID: 25378242 PMCID: PMC4343212 DOI: 10.1002/0471140856.tx1412s62] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Orthotopic liver transplantation remains the only curative treatment for many end-stage liver diseases, yet the number of patients receiving liver transplants remains limited by the number of organs available for transplant. There is a need for alternative therapies for liver diseases. The transplantation of isolated hepatocytes (liver cells) has been used as an experimental therapy for liver disease in a limited number of cases. Recently, the 100th case of hepatocyte transplantation was reported. This review discusses the history of the hepatocyte transplant field, the major discoveries that supported and enabled the first hepatocyte transplants, and reviews the cases and outcomes of the first 100 clinical transplants. Some of the problems that limit the application or efficacy of hepatocyte transplantation are discussed, as are possible solutions to these problems. In conclusion, hepatocyte transplants have proven effective particularly in cases of metabolic liver disease where reversal or amelioration of the characteristic symptoms of the disease is easily quantified. However, no patients have been completely corrected of a metabolic liver disease for a significant amount of time by hepatocyte transplantation alone. It is likely that future developments in new sources of cells for transplantation will be required before this cellular therapy can be fully implemented and available for large numbers of patients.
Collapse
Affiliation(s)
- Marc C Hansel
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Sokal EM. Treating inborn errors of liver metabolism with stem cells: current clinical development. J Inherit Metab Dis 2014; 37:535-9. [PMID: 24668464 PMCID: PMC4088990 DOI: 10.1007/s10545-014-9691-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/04/2014] [Accepted: 02/10/2014] [Indexed: 12/20/2022]
Abstract
Advanced therapies including stem cells are currently a major biotechnological development. Adult liver stem cells can differentiate into hepatocyte like cells and be infused in the recipient's liver to bring a missing metabolic function. These cells can be produced in large quantities in vitro. Allogeneic stem cells are required to treat genetic diseases, and this approach allows to use one single source of tissue to treat different diseases and many recipients. Mesenchymal stem cells can in addition play an immunomodulatory and anti-inflammatory role and possibly prevent the accumulation of fibrous tissue in the liver. From a regulatory point of view, stem cells are considered as medicinal products, and must undergo a pharmaceutical development that goes beyond the research and proof-of-concept phases. Here, we review the track followed from the first hepatocyte transplantation in 2000 to the next generation product issued from stem cell technology, and the start of EMA approved clinical trials to evaluate the safety and potency of liver stem cells for the treatment of inborn errors of the liver metabolism.
Collapse
Affiliation(s)
- Etienne Marc Sokal
- Pediatric Hepatology & Gastroenterology and Cell Transplant Center, Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, 10 av Hippocrate, 1200, Brussels, Belgium,
| |
Collapse
|
32
|
Filippi C, Dhawan A. Current status of human hepatocyte transplantation and its potential for Wilson's disease. Ann N Y Acad Sci 2014; 1315:50-5. [DOI: 10.1111/nyas.12386] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Celine Filippi
- NIHR Biomedical Research Centre at Guy's and St Thomas’ NHS Foundation Trust and King's College London; London United Kingdom
- Hepatocyte Biology and Transplantation Group; Institute of Liver Studies; King's College London; London United Kingdom
| | - Anil Dhawan
- Hepatocyte Biology and Transplantation Group; Institute of Liver Studies; King's College London; London United Kingdom
- Paediatric Liver; GI and Nutrition Centre; King's College Hospital; London United Kingdom
| |
Collapse
|
33
|
Abstract
The treatment of end-stage liver disease and acute liver failure remains a clinically relevant issue. Although orthotopic liver transplantation is a well-established procedure, whole-organ transplantation is invasive and increasingly limited by the unavailability of suitable donor organs. Artificial and bioartificial liver support systems have been developed to provide an alternative to whole organ transplantation, but despite three decades of scientific efforts, the results are still not convincing with respect to clinical outcome. In this Review, conceptual limitations of clinically available liver support therapy systems are discussed. Furthermore, alternative concepts, such as hepatocyte transplantation, and cutting-edge developments in the field of liver support strategies, including the repopulation of decellularized organs and the biofabrication of entirely new organs by printing techniques or induced organogenesis are analysed with respect to clinical relevance. Whereas hepatocyte transplantation shows promising clinical results, at least for the temporary treatment of inborn metabolic diseases, so far data regarding implantation of engineered hepatic tissue have only emerged from preclinical experiments. However, the evolving techniques presented here raise hope for bioengineered liver support therapies in the future.
Collapse
|
34
|
Defresne F, Tondreau T, Stéphenne X, Smets F, Bourgois A, Najimi M, Jamar F, Sokal EM. Biodistribution of adult derived human liver stem cells following intraportal infusion in a 17-year-old patient with glycogenosis type 1A. Nucl Med Biol 2014; 41:371-5. [PMID: 24607438 DOI: 10.1016/j.nucmedbio.2014.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Current treatment of inherited liver inborn errors of metabolism in children consists in appropriate diet and drugs and, for unstable patients, final orthotopic liver transplantation. Unfortunately, liver transplantation remains not easily available because of organ shortage and imposes inherent risks and lifelong immunosuppressive therapy. Therefore alternative treatments are required. Hepatocytes transplantation and its limitations led to consider innovative alternative such as transplantation of adult derived human liver stem cells (ADLHSC). These cells present high proliferative capacity, good resistance to cryopreservation and ability to differentiate into hepatocyte-like cells displaying mature hepatocyte functions. AIM Biodistribution of ADHLSC had never been assessed after infusion through the portal vein in patients. This information is required to determine the safety of the method. METHODS ADHLSC were efficiently labelled with 111-Indium DTPA radiotracer and SPECT imaging was used for the acquisition of whole body imaging to document short term biodistribution of ADHLSC. RESULTS Following infusion through the portal vein, ADHLSC diffused homogenously throughout the liver and remained strictly within the targeted organ. Images were acquired until 5 days after infusion. At that time, no signal was observed in any other organs except the liver. Urinary excretion of 111-Indium DTPA was also monitored. CONCLUSION For the first time, we documented the short term biodistribution of ADHLSC within the liver after infusion through the portal vein.
Collapse
Affiliation(s)
- Florence Defresne
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Paediatric Hepatology and Cell Therapy, Avenue Hippocrate 10, 1200 Brussels, Belgium.
| | - Tatiana Tondreau
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Paediatric Hepatology and Cell Therapy, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Xavier Stéphenne
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Paediatric Hepatology and Cell Therapy, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Françoise Smets
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Paediatric Hepatology and Cell Therapy, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Annick Bourgois
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Paediatric Hepatology and Cell Therapy, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Mustapha Najimi
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Paediatric Hepatology and Cell Therapy, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - François Jamar
- Cliniques universitaires Saint-Luc, Department of Radiology, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Etienne M Sokal
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Paediatric Hepatology and Cell Therapy, Avenue Hippocrate 10, 1200 Brussels, Belgium.
| |
Collapse
|
35
|
Ribes-Koninckx C, Ibars EP, Calzado Agrasot MÁ, Bonora-Centelles A, Miquel BP, Vila Carbó JJ, Aliaga ED, Pallardó JM, Gómez-Lechón MJ, Castell JV. Clinical outcome of hepatocyte transplantation in four pediatric patients with inherited metabolic diseases. Cell Transplant 2013; 21:2267-82. [PMID: 23231960 DOI: 10.3727/096368912x637505] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hepatocyte transplantation (HT) has become an effective therapy for patients with metabolic inborn errors. We report the clinical outcome of four children with metabolic inborn errors that underwent HT, describing the cell infusion protocol and the metabolic outcome of transplanted patients. Cryopreserved hepatocytes were used as this allows scheduling of treatments. Functional competence (viability, cell attachment, major cytochrome P450 and UDP-glucuronosyltransferase 1A1 activities, and urea synthesis) and microbiological safety of cell batches were assessed prior to clinical use. Four pediatric patients with liver metabolic diseases [ornithine transcarbamylase (OTC) deficiency, Crigler-Najjar (CNI) syndrome, glycogen storage disease Ia (GSD-Ia), and tyrosinemia type I (TYR-I)] underwent HT. Indication for HT was based on severity of disease, deterioration of quality of life, and benefits for the patients, with the ultimate goal to improve their clinical status whenever liver transplantation (LT) was not indicated or to bridge LT. Cells were infused into the portal vein while monitoring portal flow. The protocol included antibiotic prophylaxis and immunosuppressant therapy. After HT, analytical data on the disease were obtained. The OTC-deficient patient showed a sustained decrease in plasma ammonia levels and increased urea production after HT. Further cell infusions could not be administered given a fatal nosocomial fungus sepsis 2 weeks after the last HT. The CNI and GSD-Ia patients improved their clinical status after HT. They displayed reduced serum bilirubin levels (by ca. 50%) and absence of hypoglycaemic episodes, respectively. In both cases, the HT contributed to stabilize their clinical status as LT was not indicated. In the infant with TYR-I, HT stabilized temporarily the biochemical parameters, resulting in the amelioration of his clinical status while diagnosis of the disease was unequivocally confirmed by full gene sequencing. In this patient, HT served as a bridge therapy to LT.
Collapse
Affiliation(s)
- Carmen Ribes-Koninckx
- Paediatric Gastroenterology and Hepatology Unit, University La Fe Hospital, Valencia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Raschzok N, Morgül MH, Stelter L, Sauer IM. Noninvasive monitoring of liver cell transplantation. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/iim.13.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
|
38
|
Jorns C, Ellis EC, Nowak G, Fischler B, Nemeth A, Strom SC, Ericzon BG. Hepatocyte transplantation for inherited metabolic diseases of the liver. J Intern Med 2012; 272:201-23. [PMID: 22789058 DOI: 10.1111/j.1365-2796.2012.02574.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inherited metabolic diseases of the liver are characterized by deficiency of a hepatic enzyme or protein often resulting in life-threatening disease. The remaining liver function is usually normal. For most patients, treatment consists of supportive therapy, and the only curative option is liver transplantation. Hepatocyte transplantation is a promising therapy for patients with inherited metabolic liver diseases, which offers a less invasive and fully reversible approach. Procedure-related complications are rare. Here, we review the experience of hepatocyte transplantation for metabolic liver diseases and discuss the major obstacles that need to be overcome to establish hepatocyte transplantation as a reliable treatment option in the clinic.
Collapse
Affiliation(s)
- C Jorns
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
39
|
Hogendorf P, Durczyński A, Kumor A, Strzelczyk J. Prostaglandin E2 (PGE2) in portal blood in patients with pancreatic tumor--a single institution series. J INVEST SURG 2012; 25:8-13. [PMID: 22272632 DOI: 10.3109/08941939.2011.592569] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cyclooxygenase-2 (COX-2) may play a significant role in the development of pancreatic cancer. One of COX-2 main metabolites is prostaglandin E2 (PGE2), which is involved both in inflammation and carcinogenesis. As PGE2 is inactivated in the lungs and the liver we assumed that the best medium to assess the level of PGE2 is not peripheral but portal blood. PATIENTS AND METHODS Fifty-seven patients with pathologically verified diagnosis of pancreatic ductal adenocarcinoma (PDAC group, n = 38) and chronic pancreatitis (CP group, n = 19) were enrolled in this study. Sample of blood from central line was collected before surgery. Intraoperatively portal vein was identified and sampled. PGE2 levels were determined using ELISA test. All the patients were followed-up for 1-35 months. RESULTS PGE2 portal blood levels in patients with PDAC were higher than in patients with CP (190.55 ± 149.86 versus 120.23 ± 132.60; p = .04). PGE2 concentration at a cut-off value of 94.46 pg/ml had a sensitivity of 91.67%, specificity of 50%, AUC = 0.631 (95% CI, 0.489-0.758). CONCLUSION The PGE2 portal blood levels in PDAC patients are higher than in those with CP. The PGE2 portal concentration cannot be a single marker in diagnosing PDAC due to low specificity.
Collapse
Affiliation(s)
- Piotr Hogendorf
- Department of General and Transplant Surgery, Norbert Barlicki Memorial Teaching Hospital, Medical University of Łódź, Poland.
| | | | | | | |
Collapse
|
40
|
Goulinet-Mainot S, Tranchart H, Groyer-Picard MT, Lainas P, Saloum Diop P, Holopherne D, Gonin P, Benihoud K, Ba N, Gauthier O, Franco D, Guettier C, Pariente D, Weber A, Dagher I, Huy Nguyen T. Improved Hepatocyte Engraftment After Portal Vein Occlusion in LDL Receptor-Deficient WHHL Rabbits and Lentiviral-Mediated Phenotypic Correction In Vitro. CELL MEDICINE 2012; 4:85-98. [PMID: 26858856 DOI: 10.3727/215517912x647136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Innovative cell-based therapies are considered as alternatives to liver transplantation. Recent progress in lentivirus-mediated hepatocyte transduction has renewed interest in cell therapy for the treatment of inherited liver diseases. However, hepatocyte transplantation is still hampered by inefficient hepatocyte engraftment. We previously showed that partial portal vein embolization (PVE) improved hepatocyte engraftment in a nonhuman primate model. We developed here an ex vivo approach based on PVE and lentiviral-mediated transduction of hepatocytes from normal (New Zealand White, NZW) and Watanabe heritable hyperlipidemic (WHHL) rabbits: the large animal model of familial hypercholesterolemia type IIa (FH). FH is a life-threatening human inherited autosomal disease caused by a mutation in the low-density lipoprotein receptor (LDLR) gene, which leads to severe hypercholesterolemia and premature coronary heart disease. Rabbit hepatocytes were isolated from the resected left liver lobe, and the portal branches of the median lobes were embolized with Histoacryl® glue under radiologic guidance. NZW and WHHL hepatocytes were each labeled with Hoechst dye or transduced with lentivirus expressing GFP under the control of a liver-specific promoter (mTTR, a modified murine transthyretin promoter) and were then immediately transplanted back into donor animals. In our conditions, 65-70% of the NZW and WHHL hepatocytes were transduced. Liver repopulation after transplantation with the Hoechst-labeled hepatocytes was 3.5 ± 2%. It was 1.4 ± 0.6% after transplantation with either the transduced NZW hepatocytes or the transduced WHHL hepatocytes, which was close to that obtained with Hoechst-labeled cells, given the mean transduction efficacy. Transgene expression persisted for at least 8 weeks posttransplantation. Transduction of WHHL hepatocytes with an LDLR-encoding vector resulted in phenotypic correction in vitro as assessed by internalization of fluorescent LDL ligands. In conclusion, our results have applications for the treatment of inherited metabolic liver diseases, such as FH, by transplantation of lentivirally transduced hepatocytes.
Collapse
Affiliation(s)
| | - Hadrien Tranchart
- INSERM U 972, Univ. Paris-Sud, IFR 93, Bicêtre Hospital , Le Kremlin-Bicêtre , France
| | | | - Panagiotis Lainas
- INSERM U 972, Univ. Paris-Sud, IFR 93, Bicêtre Hospital, Le Kremlin-Bicêtre, France; †Department of General Surgery, Univ. Paris-Sud, Antoine Béclère Hospital, Clamart, France
| | - Papa Saloum Diop
- INSERM U 972, Univ. Paris-Sud, IFR 93, Bicêtre Hospital, Le Kremlin-Bicêtre, France; †Department of General Surgery, Univ. Paris-Sud, Antoine Béclère Hospital, Clamart, France
| | - Delphine Holopherne
- ‡ Department of Animal Surgery, Veterinary School of Nantes , Nantes , France
| | - Patrick Gonin
- ‡ Department of Animal Surgery, Veterinary School of Nantes , Nantes , France
| | - Karim Benihoud
- ¶ CNRS UMR 8203, Institut Gustave Roussy , Villejuif , France
| | - Nathalie Ba
- # IFR 93, Bicêtre Hospital , Le Kremlin-Bicêtre , France
| | - Olivier Gauthier
- ‡ Department of Animal Surgery, Veterinary School of Nantes , Nantes , France
| | - Dominique Franco
- INSERM U 972, Univ. Paris-Sud, IFR 93, Bicêtre Hospital, Le Kremlin-Bicêtre, France; †Department of General Surgery, Univ. Paris-Sud, Antoine Béclère Hospital, Clamart, France
| | - Catherine Guettier
- * Department of Pathology, Bicêtre Hospital , Le Kremlin-Bicêtre , France
| | - Danièle Pariente
- INSERM U 972, Univ. Paris-Sud, IFR 93, Bicêtre Hospital, Le Kremlin-Bicêtre, France; ††Department of Pediatric Radiology, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Anne Weber
- INSERM U 972, Univ. Paris-Sud, IFR 93, Bicêtre Hospital , Le Kremlin-Bicêtre , France
| | - Ibrahim Dagher
- INSERM U 972, Univ. Paris-Sud, IFR 93, Bicêtre Hospital, Le Kremlin-Bicêtre, France; †Department of General Surgery, Univ. Paris-Sud, Antoine Béclère Hospital, Clamart, France
| | - Tuan Huy Nguyen
- ‡‡ INSERM U1064, CHU Hôtel Dieu, Université de Nantes , Nantes , France
| |
Collapse
|
41
|
Pareja E, Cortés M, Bonora A, Mir J. [New alternatives to liver transplantation: transplantation of hepatocytes]. Med Clin (Barc) 2011; 137:513-8. [PMID: 20416905 DOI: 10.1016/j.medcli.2010.02.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 01/26/2010] [Accepted: 02/09/2010] [Indexed: 11/17/2022]
Affiliation(s)
- Eugenia Pareja
- Unidad de Cirugía Hepatobiliopancreática y Trasplante Hepático, Hospital Universitario La Fe, Valencia, Spain.
| | | | | | | |
Collapse
|
42
|
Abstract
Hepatocyte transplantation (HTx) has been developed for use in liver-based metabolic disorders and in acute liver failure. Worldwide, there are around 80 patients that have been transplanted with hepatocytes. Almost all reported studies prove feasibility and safety of the procedure with short- to medium-term success. Availability of good quality hepatocytes (HCs) is the main limiting factor, and therefore alternative sources of cells such as stem cells are being investigated. Other limiting factors include cell engraftment, survival, and function of transplanted cells. It remains to be seen if progress in HTx research can overcome these hurdles leading to the wider use of the technique as an alternative to liver transplantation in the future.
Collapse
Key Words
- ALF, acute liver failure
- Acute liver failure
- ApoB, apolipoprotein B
- EGTA, ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetra-acetic acid
- FVII, factor VII deficiency
- GMP, good manufacturing practice
- HAS, human serum albumin
- HC, hepatocytes
- HTx, hepatocyte transplantation
- LDL, low density lipoprotein
- LTx, liver transplantation
- MRI, magnetic resonance imaging
- OTC, ornithine transcarbamylase
- hepatocyte transplantation
- liver disease
- stem cell transplantation
Collapse
|
43
|
Goto Y, Ohashi K, Utoh R, Yamamoto M, Okano T. Hepatocyte transplantation through the hepatic vein: a new route of cell transplantation to the liver. Cell Transplant 2010; 20:1259-70. [PMID: 21176398 DOI: 10.3727/096368910x547417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The efficiency of hepatocyte transplantation into the liver varies with the method of administration. This study investigated whether retrograde infusion via the hepatic vein provides a sufficient number of donor cells for the liver. Donor hepatocytes were isolated from dipeptidyl peptidase IV (DPPIV(+)) rats and transplanted into DPPIV(-) rat livers either by antegrade portal vein infusion or retrograde hepatic vein infusion. Hepatocyte engraftment ratios and localization were evaluated by histological DPPIV enzymatic staining at 1 week and 8 weeks after the transplantation. No significant differences in engraftment efficiency were observed at either 1 week or 8 weeks after transplantation by either route. However, the localization of the transplanted hepatocytes differed with the administration route. Portal vein infusion resulted in predominantly periportal engraftment, whereas hepatic vein infusion led to pericentral zone engraftment. Immunohistochemical analysis showed that the transplanted hepatocytes engrafted in the pericentral zone after retrograde infusion displayed intense CYP2E1 staining similar to the surrounding native hepatocytes. CYP2E1 staining was further enhanced by administration of isosafrole, an inducing agent for various cytochrome P450 enzymes, including CYP2E1. This study demonstrates a novel approach of transplanting hepatocytes into the liver through retrograde hepatic vein infusion as the means to target cell implantation to the pericentral zone.
Collapse
Affiliation(s)
- Yuichiro Goto
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
44
|
Abstract
Over the last decade the interest in hepatocyte transplantation has been growing continuously and this treatment may represent an alternative clinical approach for patients with acute liver failure and life-threatening liver-based metabolic disorders. The technology also serves as the proof of concept and reference for future development in stem cell technology. This chapter reviews the field of hepatocyte transplantation from bench to bedside.
Collapse
Affiliation(s)
- Anil Dhawan
- King's Cell Isolation Unit, King's College Hospital, London, UK
| | | | | | | |
Collapse
|
45
|
Pareja E, Cortés M, Martínez A, Vila JJ, López R, Montalvá E, Calzado A, Mir J. [Hepatic cell transplantation: a new therapy in liver diseases]. Cir Esp 2010; 88:3-11. [PMID: 20510402 DOI: 10.1016/j.ciresp.2010.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 12/16/2009] [Accepted: 03/12/2010] [Indexed: 12/17/2022]
Abstract
Liver transplantation has been remarkably effective in the treatment in patients with end-stage liver disease. However, disparity between solid-organ supply and increased demand is the greatest limitation, resulting in longer waiting times and increase in mortality of transplant recipients. This situation creates the need to seek alternatives to orthotopic liver transplantation.Hepatocyte transplantation or liver cell transplantation has been proposed as the best method to support patients. The procedure consists of transplanting individual cells to a recipient organ in sufficient quantity to survive and restore the function. The capacity of hepatic regeneration is the biological basis of hepatocyte transplantation. This therapeutic option is an experimental procedure in some patients with inborn errors of metabolism, fulminant hepatic failure and acute and chronic liver failure, as a bridge to orthotopic liver transplantation. In the Hospital La Fe of Valencia, we performed the first hepatocyte transplantation in Spain creating a new research work on transplant program.
Collapse
Affiliation(s)
- Eugenia Pareja
- Unidad de Cirugía y Trasplante Hepático, Hospital Universitario La Fe, Valencia, España.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Hepatocyte transplantation has shown potential as an additional treatment modality for certain diseases of the liver. To date, patients with liver-based metabolic disorders or acute liver failure have undergone hepatocyte transplantation in several centers around the world. Results from individual patients are promising, especially for the treatment of liver-based metabolic disorders, but the lack of controlled trials makes the interpretation of the findings difficult. The current source of isolated hepatocytes is donor organs that are unused or deemed unsuitable for liver transplantation. Hence the major challenge that this field is facing is the limited supply of donor organs that can provide good quality cells. Alternative sources of cells, including stem cells, are under investigation. This Review discusses the current bench-to-bedside issues and future challenges that need to be faced to allow the wider application of hepatocyte transplantation.
Collapse
|
47
|
[Hepatic cell transplantation. Technical and methodological aspects]. Cir Esp 2010; 87:139-47. [PMID: 20079490 DOI: 10.1016/j.ciresp.2009.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 10/06/2009] [Accepted: 10/14/2009] [Indexed: 12/21/2022]
Abstract
Hepatic cell transplantation consists of grafting already differentiated cells such as hepatocytes. Human hepatocytes are viable and functionally active. Liver cell transplantation is carried out by means of a 3-step method: isolation of hepatocytes from donor liver rejected for orthotopic transplantation, preparing a cell suspension for infusion and, finally, hepatocytes are implanted into the recipient. There are established protocols for the isolation of human hepatocytes from unused segments of donor livers, based on collagenase digestion of cannulated liver tissue at 37 degrees C. The hepatocytes can be used fresh or cryopreserved. Cryopreservation of isolated human hepatocytes would then be available for planned use. In cell transplant, the important aspects are: infusion route, number of cells, number of infusions and viability of the cells. The cells are infused into the patient through a catheter inserted via portal vein or splenic artery. Liver cell transplantation allows liver tissue to be used that would, otherwise, be discarded, enabling multiple patients to be treated with hepatocytes from a single tissue donor.
Collapse
|
48
|
Abstract
Hepatocyte transplantation is making its transition from bench to bedside for liver-based metabolic disorders and acute liver failure. Over eighty patients have now been transplanted world wide and the safety of the procedure together with medium-term success has been established. A major limiting factor in the field is the availability of good quality cells as hepatocytes are derived from grafts that are deemed unsuitable for transplantation. Alternative sources of cell, including stem cells may provide a sustainable equivalent to primary hepatocytes. There is also a need to develop techniques that will improve the engraftment, survival and function of transplanted hepatocytes. Such developments may allow hepatocyte transplantation to become an accepted and practical alternative to liver transplantation in the near future.
Collapse
Affiliation(s)
- E Fitzpatrick
- Paediatric Liver Centre, King's College London School of Medicine at King's College Hospital, UK
| | | | | |
Collapse
|
49
|
Meyburg J, Alexandrova K, Barthold M, Kafert-Kasting S, Schneider AS, Attaran M, Hoerster F, Schmidt J, Hoffmann GF, Ott M. Liver cell transplantation: basic investigations for safe application in infants and small children. Cell Transplant 2009; 18:777-86. [PMID: 19796496 DOI: 10.3727/096368909x470775] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cell transplantation (LCT) is a very promising method for the use in pediatric patients. It is significantly less invasive than whole organ transplantation, but has the potential to cure or at least to substantially improve severe disorders like inborn errors of metabolism or acute liver failure. Prior to a widespread use of the technique in children, some important issues regarding safety and efficacy must be addressed. We developed a mathematical model to estimate total hepatocyte counts in relation to bodyweight to make possible more appropriate dose calculations. Different liver cell suspensions were studied at different flow rates and different catheter sizes to determine mechanical damage of cells by shear forces. At moderate flow rates, no significant loss of viability was observed even at a catheter diameter of 4.2F. Addition of heparin to the cell suspension is favored, which is in contrast to previous animal experiments. Mitochondrial function of the hepatocytes was determined with the WST-1 assay and was not substantially altered by cryopreservation. We conclude that especially with the use of small catheters, human LCT should be safe and efficient even in small infants and neonates.
Collapse
Affiliation(s)
- Jochen Meyburg
- Department of General Pediatrics, University Children's Hospital, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Pietrosi G, Vizzini GB, Gruttadauria S, Gridelli B. Clinical applications of hepatocyte transplantation. World J Gastroenterol 2009; 15:2074-7. [PMID: 19418578 PMCID: PMC2678576 DOI: 10.3748/wjg.15.2074] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The shortage of organ donors is a problem worldwide, with approximately 15% of adult patients with life-threatening liver diseases dying while on the waiting list. The use of cell transplantation for liver disease is an attempt to correct metabolic defects, or to support liver function as a bridge to liver transplantation and, as such, has raised a number of expectations. Most of the available studies briefly reported here focus on adult hepatocyte transplantation (HT), and the results are neither reproducible nor comparable, because the means of infusion, amount of injected cells and clinical variability differ among the studies. To better understand the specific role of HT in the management of end-stage liver disease, it is important that controlled studies, designed on the principles of evidence-based medicine, be done in order to guarantee the reproducibility of results.
Collapse
|