1
|
Kahan R, Abraham N, Zhang M, Novokhatny V, Alderete I, Cray P, Chen F, Gao Q, Cywinska G, Neill R, Nakata K, Hassan A, Rush C, Penaflor J, Pollara JJ, Hartwig MG, Hughes B, Barbas AS. Optimizing DCD Liver Grafts With Prolonged Warm Ischemic Time Using Stabilized Plasmin in a Static Cold Storage Orthotopic Rat Liver Transplant Model. Transplant Direct 2024; 10:e1665. [PMID: 38988689 PMCID: PMC11230777 DOI: 10.1097/txd.0000000000001665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/29/2024] [Indexed: 07/12/2024] Open
Abstract
Background The clinical success of liver transplantation has led to increased demand, requiring further expansion of the donor pool. Therapeutic interventions to optimize organs from donation after circulatory death (DCD) have significant potential to mitigate the organ shortage. Dysfunction in DCD liver grafts is mediated by microvascular thrombosis during the warm ischemic period, and strategies that reduce this thrombotic burden may improve graft function. We hypothesized that the administration of the fibrinolytic enzyme plasmin to the donor organ during the cold storage period would reduce the thrombotic burden and improve DCD liver graft function. Methods In 2 separate cohorts, 32 syngeneic orthotopic rat liver transplants were performed in Lewis rats. Livers were procured from donors with 45 min of warm ischemic injury. Liver grafts were flushed with histidine-tryptophan-ketoglutarate preservation solution mixed with either plasmin (experimental group) or albumin (control group). All investigators were blinded to treatment group. After preparing the liver for implant using a modified cuff technique, the liver was stored for 1 h by static cold storage at 4 °C. Immediately before implantation, the liver graft was flushed, and this effluent was analyzed for fibrin degradation products to determine graft clot burden. Twenty-four hours following transplantation, animals were euthanized, and samples were collected. Results Recipient survival was significantly higher for DCD liver grafts treated with plasmin compared with control. Moreover, histology of liver graft tissue immediately before implant reflected significantly reduced congestion in plasmin-treated livers (score, mean ± SD: 0.73 ± 0.59 versus 1.12 ± 0.48; P = 0.0456). The concentration of fibrin degradation products in the final flush before implantation was significantly reduced in plasmin-treated livers (743 ± 136 versus 10 919 ± 4642 pg/mL; P = 0.0001), reflecting decreased clot burden in the graft. Conclusions The present study demonstrates that plasmin improves survival and may reduce thrombotic burden in DCD liver grafts with prolonged warm ischemic injury, meriting further study.
Collapse
Affiliation(s)
- Riley Kahan
- Department of Surgery, Duke University, Durham, NC
| | | | - Min Zhang
- Department of Surgery, Duke University, Durham, NC
| | | | | | - Paul Cray
- Department of Surgery, Duke University, Durham, NC
| | - Fengming Chen
- Department of Pathology, Duke University, Durham, NC
| | - Qimeng Gao
- Department of Surgery, Duke University, Durham, NC
| | | | - Ryan Neill
- Department of Surgery, Duke University, Durham, NC
| | | | - Ahmed Hassan
- Department of Surgery, Duke University, Durham, NC
| | | | | | | | | | | | | |
Collapse
|
2
|
Kiouptsi K, Casari M, Mandel J, Gao Z, Deppermann C. Intravital Imaging of Thrombosis Models in Mice. Hamostaseologie 2023; 43:348-359. [PMID: 37857297 DOI: 10.1055/a-2118-2932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Intravital microscopy is a powerful tool to study thrombosis in real time. The kinetics of thrombus formation and progression in vivo is studied after inflicting damage to the endothelium through mechanical, chemical, or laser injury. Mouse models of atherosclerosis are also used to induce thrombus formation. Vessels of different sizes and from different vascular beds such as carotid artery or vena cava, mesenteric or cremaster arterioles, can be targeted. Using fluorescent dyes, antibodies, or reporter mouse strains allows to visualize key cells and factors mediating the thrombotic processes. Here, we review the latest literature on using intravital microscopy to study thrombosis as well as thromboinflammation following transient middle cerebral artery occlusion, infection-induced immunothrombosis, and liver ischemia reperfusion.
Collapse
Affiliation(s)
- Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Martina Casari
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jonathan Mandel
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Zhenling Gao
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Carsten Deppermann
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
3
|
Mouratidou C, Pavlidis ET, Katsanos G, Kotoulas SC, Mouloudi E, Tsoulfas G, Galanis IN, Pavlidis TE. Hepatic ischemia-reperfusion syndrome and its effect on the cardiovascular system: The role of treprostinil, a synthetic prostacyclin analog. World J Gastrointest Surg 2023; 15:1858-1870. [PMID: 37901735 PMCID: PMC10600776 DOI: 10.4240/wjgs.v15.i9.1858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023] Open
Abstract
Hepatic ischemia-reperfusion syndrome has been the subject of intensive study and experimentation in recent decades since it is responsible for the outcome of several clinical entities, such as major hepatic resections and liver transplantation. In addition to the organ's post reperfusion injury, this syndrome appears to play a central role in the dysfunction of distant tissues and systems. Thus, continuous research should be directed toward finding effective therapeutic options to improve the outcome and reduce the postoperative morbidity and mortality rates. Treprostinil is a synthetic analog of prostaglandin I2, and its experimental administration has shown encouraging results. It has already been approved by the Food and Drug Administration in the United States for pulmonary arterial hypertension and has been used in liver transplantation, where preliminary encouraging results showed its safety and feasibility by using continuous intravenous administration at a dose of 5 ng/kg/min. Treprostinil improves renal and hepatic function, diminishes hepatic oxidative stress and lipid peroxidation, reduces hepatictoll-like receptor 9 and inflammation, inhibits hepatic apoptosis and restores hepatic adenosine triphosphate (ATP) levels and ATP synthases, which is necessary for functional maintenance of mitochondria. Treprostinil exhibits vasodilatory properties and antiplatelet activity and regulates proinflammatory cytokines; therefore, it can potentially minimize ischemia-reperfusion injury. Additionally, it may have beneficial effects on cardiovascular parameters, and much current research interest is concentrated on this compound.
Collapse
Affiliation(s)
| | - Efstathios T Pavlidis
- 2nd Propedeutic Department of Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Georgios Katsanos
- Department of Transplantation, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | | | - Eleni Mouloudi
- Intensive Care Unit, Hippokration General Hospital, Thessaloniki 54642, Greece
| | - Georgios Tsoulfas
- Department of Transplantation, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Ioannis N Galanis
- 2nd Propedeutic Department of Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Theodoros E Pavlidis
- 2nd Propedeutic Department of Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| |
Collapse
|
4
|
Kahan R, Cray PL, Abraham N, Gao Q, Hartwig MG, Pollara JJ, Barbas AS. Sterile inflammation in liver transplantation. Front Med (Lausanne) 2023; 10:1223224. [PMID: 37636574 PMCID: PMC10449546 DOI: 10.3389/fmed.2023.1223224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Sterile inflammation is the immune response to damage-associated molecular patterns (DAMPs) released during cell death in the absence of foreign pathogens. In the setting of solid organ transplantation, ischemia-reperfusion injury results in mitochondria-mediated production of reactive oxygen and nitrogen species that are a major cause of uncontrolled cell death and release of various DAMPs from the graft tissue. When properly regulated, the immune response initiated by DAMP-sensing serves as means of damage control and is necessary for initiation of recovery pathways and re-establishment of homeostasis. In contrast, a dysregulated or overt sterile inflammatory response can inadvertently lead to further injury through recruitment of immune cells, innate immune cell activation, and sensitization of the adaptive immune system. In liver transplantation, sterile inflammation may manifest as early graft dysfunction, acute graft failure, or increased risk of immunosuppression-resistant rejection. Understanding the mechanisms of the development of sterile inflammation in the setting of liver transplantation is crucial for finding reliable biomarkers that predict graft function, and for development of therapeutic approaches to improve long-term transplant outcomes. Here, we discuss the recent advances that have been made to elucidate the early signs of sterile inflammation and extent of damage from it. We also discuss new therapeutics that may be effective in quelling the detrimental effects of sterile inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrew S. Barbas
- Duke Ex-Vivo Organ Lab (DEVOL)—Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| |
Collapse
|
5
|
Machado IF, Palmeira CM, Rolo AP. Preservation of Mitochondrial Health in Liver Ischemia/Reperfusion Injury. Biomedicines 2023; 11:948. [PMID: 36979927 PMCID: PMC10046671 DOI: 10.3390/biomedicines11030948] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Liver ischemia-reperfusion injury (LIRI) is a major cause of the development of complications in different clinical settings such as liver resection and liver transplantation. Damage arising from LIRI is a major risk factor for early graft rejection and is associated with higher morbidity and mortality after surgery. Although the mechanisms leading to the injury of parenchymal and non-parenchymal liver cells are not yet fully understood, mitochondrial dysfunction is recognized as a hallmark of LIRI that exacerbates cellular injury. Mitochondria play a major role in glucose metabolism, energy production, reactive oxygen species (ROS) signaling, calcium homeostasis and cell death. The diverse roles of mitochondria make it essential to preserve mitochondrial health in order to maintain cellular activity and liver integrity during liver ischemia/reperfusion (I/R). A growing body of studies suggest that protecting mitochondria by regulating mitochondrial biogenesis, fission/fusion and mitophagy during liver I/R ameliorates LIRI. Targeting mitochondria in conditions that exacerbate mitochondrial dysfunction, such as steatosis and aging, has been successful in decreasing their susceptibility to LIRI. Studying mitochondrial dysfunction will help understand the underlying mechanisms of cellular damage during LIRI which is important for the development of new therapeutic strategies aimed at improving patient outcomes. In this review, we highlight the progress made in recent years regarding the role of mitochondria in liver I/R and discuss the impact of liver conditions on LIRI.
Collapse
Affiliation(s)
- Ivo F. Machado
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3000 Coimbra, Portugal
- IIIUC—Institute of Interdisciplinary Research, University of Coimbra, 3000 Coimbra, Portugal
| | - Carlos M. Palmeira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3000 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal
| | - Anabela P. Rolo
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3000 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal
| |
Collapse
|
6
|
Kim JS, Chapman WC, Lin Y. Mitochondrial Autophagy in Ischemic Aged Livers. Cells 2022; 11:cells11244083. [PMID: 36552847 PMCID: PMC9816943 DOI: 10.3390/cells11244083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial autophagy (mitophagy) is a central catabolic event for mitochondrial quality control. Defective or insufficient mitophagy, thus, can result in mitochondrial dysfunction, and ultimately cell death. There is a strong causal relationship between ischemia/reperfusion (I/R) injury and mitochondrial dysfunction following liver resection and transplantation. Compared to young patients, elderly patients poorly tolerate I/R injury. Accumulation of abnormal mitochondria after I/R is more prominent in aged livers than in young counterparts. This review highlights how altered autophagy is mechanistically involved in age-dependent hypersensitivity to reperfusion injury.
Collapse
Affiliation(s)
- Jae-Sung Kim
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; (W.C.C.); (Y.L.)
- Department of Cell Biology & Physiology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Correspondence:
| | - William C. Chapman
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; (W.C.C.); (Y.L.)
| | - Yiing Lin
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; (W.C.C.); (Y.L.)
| |
Collapse
|
7
|
Liu Y, Yan P, Bin Y, Qin X, Wu Z. Neutrophil extracellular traps and complications of liver transplantation. Front Immunol 2022; 13:1054753. [PMID: 36466888 PMCID: PMC9712194 DOI: 10.3389/fimmu.2022.1054753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/26/2022] [Indexed: 08/29/2023] Open
Abstract
Many end-stage liver disease etiologies are attributed to robust inflammatory cell recruitment. Neutrophils play an important role in inflammatory infiltration and neutrophil phagocytosis, oxidative burst, and degranulation. It has also been suggested that neutrophils may release neutrophil extracellular traps (NETs) to kill pathogens. It has been proven that neutrophil infiltration within the liver contributes to an inflammatory microenvironment and immune cell activation. Growing evidence implies that NETs are involved in the progression of numerous complications of liver transplantation, including ischemia-reperfusion injury, acute rejection, thrombosis, and hepatocellular carcinoma recurrence. NETs are discussed in this comprehensive review, focusing on their effects on liver transplantation complications. Furthermore, we discuss NETs as potential targets for liver transplantation therapy.
Collapse
Affiliation(s)
- Yanyao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Bin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Qin
- Department of General Surgery and Trauma Surgery, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Matsunaga T, Roesel MJ, Schroeter A, Xiao Y, Zhou H, Tullius SG. Preserving and rejuvenating old organs for transplantation: novel treatments including the potential of senolytics. Curr Opin Organ Transplant 2022; 27:481-487. [PMID: 35950886 PMCID: PMC9490781 DOI: 10.1097/mot.0000000000001019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Older donors have the potential to close the gap between demand and supply in solid organs transplantation. Utilizing older organs, at the same time, has been associated with worse short- and long-term outcomes. Here, we introduce potential mechanisms on how treatments during machine perfusion (MP) may safely improve the utilization of older organs. RECENT FINDINGS Consequences of ischemia reperfusion injury (IRI), a process of acute, sterile inflammation leading to organ injury are more prominent in older organs. Of relevance, organ age and IRI seem to act synergistically, leading to an increase of damage associated molecular patterns that trigger innate and adaptive immune responses. While cold storage has traditionally been considered the standard of care in organ preservation, accumulating data support that both hypothermic and normothermic MP improve organ quality, particularly in older organs. Furthermore, MP provides the opportunity to assess the quality of organs while adding therapeutic agents. Experimental data have already demonstrated the potential of applying treatments during MP. New experimental show that the depletion of senescent cells that accumulate in old organs improves organ quality and transplant outcomes. SUMMARY As the importance of expanding the donor pool is increasing, MP and novel treatments bear the potential to assess and regenerate older organs, narrowing the gap between demand and supply.
Collapse
Affiliation(s)
- Tomohisa Matsunaga
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Maximilian J. Roesel
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Institute of Medical Immunology, Charite Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Schroeter
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Yao Xiao
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hao Zhou
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Oliveira THC, Vanheule V, Vandendriessche S, Poosti F, Teixeira MM, Proost P, Gouwy M, Marques PE. The GAG-Binding Peptide MIG30 Protects against Liver Ischemia-Reperfusion in Mice. Int J Mol Sci 2022; 23:ijms23179715. [PMID: 36077113 PMCID: PMC9456047 DOI: 10.3390/ijms23179715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) drives graft rejection and is the main cause of mortality after liver transplantation. During IRI, an intense inflammatory response marked by chemokine production and neutrophil recruitment occurs. However, few strategies are available to restrain this excessive response. Here, we aimed to interfere with chemokine function during IRI in order to disrupt neutrophil recruitment to the injured liver. For this, we utilized a potent glycosaminoglycan (GAG)-binding peptide containing the 30 C-terminal amino acids of CXCL9 (MIG30) that is able to inhibit the binding of chemokines to GAGs in vitro. We observed that mice subjected to IRI and treated with MIG30 presented significantly lower liver injury and dysfunction as compared to vehicle-treated mice. Moreover, the levels of chemokines CXCL1, CXCL2 and CXCL6 and of proinflammatory cytokines TNF-α and IL-6 were significantly reduced in MIG30-treated mice. These events were associated with a marked inhibition of neutrophil recruitment to the liver during IRI. Lastly, we observed that MIG30 is unable to affect leukocytes directly nor to alter the stimulation by either CXCL8 or lipopolysaccharide (LPS), suggesting that its protective properties derive from its ability to inhibit chemokine activity in vivo. We conclude that MIG30 holds promise as a strategy to treat liver IRI and inflammation.
Collapse
Affiliation(s)
- Thiago Henrique Caldeira Oliveira
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Vincent Vanheule
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Fariba Poosti
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Mauro Martins Teixeira
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
10
|
Gao F, Qiu X, Wang K, Shao C, Jin W, Zhang Z, Xu X. Targeting the Hepatic Microenvironment to Improve Ischemia/Reperfusion Injury: New Insights into the Immune and Metabolic Compartments. Aging Dis 2022; 13:1196-1214. [PMID: 35855339 PMCID: PMC9286916 DOI: 10.14336/ad.2022.0109] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/09/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatic ischemia/reperfusion injury (IRI) is mainly characterized by high activation of immune inflammatory responses and metabolic responses. Understanding the molecular and metabolic mechanisms underlying development of hepatic IRI is critical for developing effective therapies for hepatic IRI. Recent advances in research have improved our understanding of the pathogenesis of IRI. During IRI, hepatocyte injury and inflammatory responses are mediated by crosstalk between the immune cells and metabolic components. This crosstalk can be targeted to treat or reverse hepatic IRI. Thus, a deep understanding of hepatic microenvironment, especially the immune and metabolic responses, can reveal new therapeutic opportunities for hepatic IRI. In this review, we describe important cells in the liver microenvironment (especially non-parenchymal cells) that regulate immune inflammatory responses. The role of metabolic components in the diagnosis and prevention of hepatic IRI are discussed. Furthermore, recent updated therapeutic strategies based on the hepatic microenvironment, including immune cells and metabolic components, are highlighted.
Collapse
Affiliation(s)
- Fengqiang Gao
- 1Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,6Zhejiang University School of Medicine, Hangzhou, China
| | - Xun Qiu
- 1Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,6Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Wang
- 1Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuxiao Shao
- 7Department of Hepatobiliary and Pancreatic Surgery, Affiliated Lishui Hospital, Zhejiang University School of Medicine, Lishui, China
| | - Wenjian Jin
- 8Department of Hepatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhen Zhang
- 6Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Xu
- 1Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,2Zhejiang University Cancer Center, Hangzhou, China.,3Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,4NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,5Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Chen H, Lu D, Yang X, Hu Z, He C, Li H, Lin Z, Yang M, Xu X. One Shoot, Two Birds: Alleviating Inflammation Caused by Ischemia/Reperfusion Injury to Reduce the Recurrence of Hepatocellular Carcinoma. Front Immunol 2022; 13:879552. [PMID: 35634295 PMCID: PMC9130551 DOI: 10.3389/fimmu.2022.879552] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation is crucial to tumorigenesis and the development of metastasis. Hepatic ischemia/reperfusion injury (IRI) is an unresolved problem in liver resection and transplantation which often establishes and remodels the inflammatory microenvironment in liver. More and more experimental and clinical evidence unmasks the role of hepatic IRI and associated inflammation in promoting the recurrence of hepatocellular carcinoma (HCC). Meanwhile, approaches aimed at alleviating hepatic IRI, such as machine perfusion, regulating the gut-liver axis, and targeting key inflammatory components, have been proved to prevent HCC recurrence. This review article highlights the underlying mechanisms and promising therapeutic strategies to reduce tumor recurrence through alleviating inflammation induced by hepatic IRI.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Di Lu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Xinyu Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Zhihang Hu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Chiyu He
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Huigang Li
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Zuyuan Lin
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Modan Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China.,Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, China
| |
Collapse
|
12
|
Liver ischaemia-reperfusion injury: a new understanding of the role of innate immunity. Nat Rev Gastroenterol Hepatol 2022; 19:239-256. [PMID: 34837066 DOI: 10.1038/s41575-021-00549-8] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/29/2021] [Indexed: 02/08/2023]
Abstract
Liver ischaemia-reperfusion injury (LIRI), a local sterile inflammatory response driven by innate immunity, is one of the primary causes of early organ dysfunction and failure after liver transplantation. Cellular damage resulting from LIRI is an important risk factor not only for graft dysfunction but also for acute and even chronic rejection and exacerbates the shortage of donor organs for life-saving liver transplantation. Hepatocytes, liver sinusoidal endothelial cells and Kupffer cells, along with extrahepatic monocyte-derived macrophages, neutrophils and platelets, are all involved in LIRI. However, the mechanisms underlying the responses of these cells in the acute phase of LIRI and how these responses are orchestrated to control and resolve inflammation and achieve homeostatic tissue repair are not well understood. Technological advances allow the tracking of cells to better appreciate the role of hepatic macrophages and platelets (such as their origin and immunomodulatory and tissue-remodelling functions) and hepatic neutrophils (such as their selective recruitment, anti-inflammatory and tissue-repairing functions, and formation of extracellular traps and reverse migration) in LIRI. In this Review, we summarize the role of macrophages, platelets and neutrophils in LIRI, highlight unanswered questions, and discuss prospects for innovative therapeutic regimens against LIRI in transplant recipients.
Collapse
|
13
|
Necroptosis in Solid Organ Transplantation: A Literature Overview. Int J Mol Sci 2022; 23:ijms23073677. [PMID: 35409037 PMCID: PMC8998671 DOI: 10.3390/ijms23073677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is encountered in various stages during solid organ transplantation (SOT). IRI is known to be a multifactorial inflammatory condition involving hypoxia, metabolic stress, leukocyte extravasation, cellular death (including apoptosis, necrosis and necroptosis) and an activation of immune response. Although the cycle of sterile inflammation during IRI is consistent among different organs, the underlying mechanisms are poorly understood. Receptor-interacting protein kinase 3 (RIPK3) and mixed-lineage kinase domain-like pseudokinase (MLKL) are thought to be crucial in the implementation of necroptosis. Moreover, apart from “silent” apoptotic death, necrosis also causes sterile inflammation—necroinflammation, which is triggered by various damage-associated molecular patterns (DAMPs). Those DAMPs activate the innate immune system, causing local and systemic inflammatory responses, which can result in graft failure. In this overview we summarize knowledge on mechanisms of sterile inflammation processes during SOT with special focus on necroptosis and IRI and discuss protective strategies.
Collapse
|
14
|
Goikoetxea‐Usandizaga N, Serrano‐Maciá M, Delgado TC, Simón J, Fernández Ramos D, Barriales D, Cornide M, Jiménez M, Pérez‐Redondo M, Lachiondo‐Ortega S, Rodríguez‐Agudo R, Bizkarguenaga M, Zalamea JD, Pasco ST, Caballero‐Díaz D, Alfano B, Bravo M, González‐Recio I, Mercado‐Gómez M, Gil‐Pitarch C, Mabe J, Gracia‐Sancho J, Abecia L, Lorenzo Ó, Martín‐Sanz P, Abrescia NGA, Sabio G, Rincón M, Anguita J, Miñambres E, Martín C, Berenguer M, Fabregat I, Casado M, Peralta C, Varela‐Rey M, Martínez‐Chantar ML. Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals. Hepatology 2022; 75:550-566. [PMID: 34510498 PMCID: PMC9300136 DOI: 10.1002/hep.32149] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Hepatic ischemia-reperfusion injury (IRI) is the leading cause of early posttransplantation organ failure as mitochondrial respiration and ATP production are affected. A shortage of donors has extended liver donor criteria, including aged or steatotic livers, which are more susceptible to IRI. Given the lack of an effective treatment and the extensive transplantation waitlist, we aimed at characterizing the effects of an accelerated mitochondrial activity by silencing methylation-controlled J protein (MCJ) in three preclinical models of IRI and liver regeneration, focusing on metabolically compromised animal models. APPROACH AND RESULTS Wild-type (WT), MCJ knockout (KO), and Mcj silenced WT mice were subjected to 70% partial hepatectomy (Phx), prolonged IRI, and 70% Phx with IRI. Old and young mice with metabolic syndrome were also subjected to these procedures. Expression of MCJ, an endogenous negative regulator of mitochondrial respiration, increases in preclinical models of Phx with or without vascular occlusion and in donor livers. Mice lacking MCJ initiate liver regeneration 12 h faster than WT and show reduced ischemic injury and increased survival. MCJ knockdown enables a mitochondrial adaptation that restores the bioenergetic supply for enhanced regeneration and prevents cell death after IRI. Mechanistically, increased ATP secretion facilitates the early activation of Kupffer cells and production of TNF, IL-6, and heparin-binding EGF, accelerating the priming phase and the progression through G1 /S transition during liver regeneration. Therapeutic silencing of MCJ in 15-month-old mice and in mice fed a high-fat/high-fructose diet for 12 weeks improves mitochondrial respiration, reduces steatosis, and overcomes regenerative limitations. CONCLUSIONS Boosting mitochondrial activity by silencing MCJ could pave the way for a protective approach after major liver resection or IRI, especially in metabolically compromised, IRI-susceptible organs.
Collapse
Affiliation(s)
- Naroa Goikoetxea‐Usandizaga
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Marina Serrano‐Maciá
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Teresa C. Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Jorge Simón
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - David Fernández Ramos
- Precision Medicine and Liver Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain
| | - Diego Barriales
- Inflammation and Macrophage Plasticity LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Maria E. Cornide
- Liver, Digestive System and Metabolism Department, Liver Transplantation and Graft Viability LabInstituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Mónica Jiménez
- Liver, Digestive System and Metabolism Department, Liver Transplantation and Graft Viability LabInstituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | | | - Sofia Lachiondo‐Ortega
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Rubén Rodríguez‐Agudo
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Maider Bizkarguenaga
- Precision Medicine and Liver Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Juan Diego Zalamea
- Structure and Cell Biology of Viruses Lab Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Samuel T. Pasco
- Inflammation and Macrophage Plasticity LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Daniel Caballero‐Díaz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain,TGF‐β and Cancer GroupOncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)Gran Via de L’HospitaletBarcelonaSpain
| | - Benedetta Alfano
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Miren Bravo
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Irene González‐Recio
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Maria Mercado‐Gómez
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Clàudia Gil‐Pitarch
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Jon Mabe
- Electronics and Communications Unit, IK4‐TeknikerEibarSpain
| | - Jordi Gracia‐Sancho
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain,Liver Vascular Biology Research GroupIDIBAPSBarcelonaSpain
| | - Leticia Abecia
- Inflammation and Macrophage Plasticity LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain,Immunology, Microbiology and Parasitology Department, Medicine and Nursing FacultyUniversity of the Basque CountryLeioaSpain
| | - Óscar Lorenzo
- Laboratory of Diabetes and Vascular PathologyIIS‐Fundación Jiménez Díaz‐Universidad Autónoma de Madrid, Spanish Biomedical Research Centre on Diabetes and Associated Metabolic Disorders (CIBERDEM) NetworkMadridSpain
| | - Paloma Martín‐Sanz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain,Cell Signalling and Metabolism DepartmentInstituto de Investigaciones Biomédicas “Alberto Sols,” CSIC‐UAMMadridSpain
| | - Nicola G. A. Abrescia
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain,Structure and Cell Biology of Viruses Lab Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain,IKERBASQUEBasque Foundation for ScienceBilbaoSpain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones CardiovascularesStress Kinases in Diabetes, Cancer and BiochemistryMadridSpain
| | - Mercedes Rincón
- Department of MedicineImmunobiology DivisionUniversity of VermontBurlingtonVermontUSA
| | - Juan Anguita
- Inflammation and Macrophage Plasticity LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain,IKERBASQUEBasque Foundation for ScienceBilbaoSpain
| | - Eduardo Miñambres
- Transplant Coordination Unit, Marqués de Valdecilla University Hospital–IDIVAL, Cantabria UniversitySantanderSpain
| | - César Martín
- Biofisika Institute, Centro Superior de Investigaciones Científicas, and Department of Biochemisty, Faculty of Science and TechnologyUniversity of Basque CountryLeioaSpain
| | - Marina Berenguer
- Liver UnitHospital Universitario y Politécnico La FeValenciaSpain
| | - Isabel Fabregat
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain,TGF‐β and Cancer GroupOncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)Gran Via de L’HospitaletBarcelonaSpain,Faculty of Medicine and Health SciencesUniversity of BarcelonaL’HospitaletBarcelonaSpain
| | - Marta Casado
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain,Experimental Metabolic Pathology DepartmentInstituto de Biomedicina de ValenciaIBV‐CSICValenciaSpain
| | - Carmen Peralta
- Liver, Digestive System and Metabolism Department, Liver Transplantation and Graft Viability LabInstituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Marta Varela‐Rey
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain
| | - María Luz Martínez‐Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain
| |
Collapse
|
15
|
Ni X, Wu X, Zhu XX, Li JH, Yin XY, Lu L. Carabin Deficiency Aggravates Hepatic Ischemia-Reperfusion Injury Through Promoting Neutrophil Trafficking via Ras and Calcineurin Signaling. Front Immunol 2022; 13:773291. [PMID: 35265067 PMCID: PMC8898835 DOI: 10.3389/fimmu.2022.773291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Neutrophil infiltration plays an important role in the initial phase of hepatic ischemia and reperfusion injury (HIRI). Despite many different key molecules that have been reported to meditate neutrophil trafficking in HIRI, the mechanism of this process has not been fully elucidated. In this study, we found that Carabin deficiency in myeloid cells (LysMCre : Carabinfl/fl) aggravated IRI-induced hepatic injury and apoptosis through increasing the infiltration of CD11b+Ly6G+ neutrophils. ImmGen Datasets further revealed that Carabin was expressed in bone marrow neutrophils (GM.BM) but was significantly downregulated in thio-induced peripheral neutrophils (GN.Thio.PC), which was consistently verified by comparing GM.BM and liver-infiltrating neutrophils induced by IRI. Mechanistically, up-regulation of Carabin in GM.BM in vitro reduced the expression levels of P-selectin, E-selectin, and αvβ3 integrin through inhibiting Ras-ERK and Calcineurin-NFAT signaling. Furthermore, blocking P-selectin, E-selectin, and αvβ3 integrin in LysMCre : Carabinfl/fl mice decreased the frequency and number of CD11b+Ly6G+ neutrophils and reversed hepatic ischemia−reperfusion damage. In conclusion, our results provide a new understanding of Carabin, such that it is expressed and functions not only in adaptive immune cells (T and B cells) but also in innate immune cells (neutrophils), contributing to the migration of neutrophils. These findings provide novel and promising therapeutic targets for the prevention of HIRI during liver transplantation or hepatic surgery.
Collapse
Affiliation(s)
- Xuhao Ni
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao Wu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao-Xu Zhu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian-Hui Li
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao-Yu Yin
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiao-Yu Yin, ; Ling Lu,
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Xiao-Yu Yin, ; Ling Lu,
| |
Collapse
|
16
|
Postoperative Donor Liver Damage Can Predict Recipient Short-Term Survival in Living Donor Liver Transplantation. Transplant Proc 2022; 54:418-423. [DOI: 10.1016/j.transproceed.2021.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 12/29/2021] [Indexed: 11/22/2022]
|
17
|
Kollaras V, Valsami G, Lambropoulou M, Konstandi O, Kostomistsopoulos N, Pikoulis E, Simopoulos C, Tsaroucha A. Effect of silibinin on the expression of MMP2, MMP3, MMP9 and TIMP2 in kidney and lung after hepatic ischemia/reperfusion injury in an experimental rat model. Acta Cir Bras 2021; 36:e360904. [PMID: 34755764 PMCID: PMC8580512 DOI: 10.1590/acb360904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/12/2021] [Indexed: 11/22/2022] Open
Abstract
PURPOSE The protective effect of silibinin on kidney and lung parenchyma during hepatic ischemia/reperfusion injury (IRI) is explored. METHODS Sixty-three Wistar rats were separated into three groups: sham; control (45 min IRI); and silibinin (200 μL silibinin administration after 45 min of ischemia and before reperfusion). Immunohistochemistry and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used to evaluate the expression levels of MMP2, MMP3, MMP9, and TIMP2 on kidney and lung. RESULTS Comparing sham vs. control groups, confirmed that hepatic IRI increased both renal and lung MMP2, MMP3, MMP9 and TIMP2 expressions starting at 180 min (p<0.001). Comparison of the control vs. silibinin groups showed a statistically significant decrease in the expression levels of MMP2, MMP3, and MMP9 and increase of TIMP2 in kidney and lung parenchyma. The starting point of this decrease was at 120 min after reperfusion, both for kidney and lung parameters, and it was statistically significant at 240 min (p<0.001) for kidney, while silibinin showed a peak of lung protection at 180 min after hepatic reperfusion (p<0.001). CONCLUSIONS Hepatic IRI causes distant kidney and lung damage, while a statistically significant protective action, both on kidney and lung parenchyma, is conveyed by the intravenous administration of silibinin.
Collapse
|
18
|
Yildirim D, Sarac F, Degerli MS, Cakir M, Akturk OM, Özcevik H, Isik Saglam ZM, Gecer MO. Rat Model Investigation on the Role of Biomarkers in Hepatic Ischemia-Reperfusion Injury. EXP CLIN TRANSPLANT 2021. [PMID: 34387147 DOI: 10.6002/ect.2021.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Liver function is affected by ischemiareperfusion. Ischemia-reperfusion injury to the liver often follows hepatobiliary surgery. Here, we investigated biomarkers of liver ischemia-reperfusion injury using an animal model. MATERIALS AND METHODS For this study, 24 male Sprague Dawley rats (146-188 g) were divided into 4 groups: group A was the control group, group B was the partial hepatic ischemia-reperfusion group, group C was the total hepatic ischemia-reperfusion group, and group D was the intermittent total hepatic ischemiareperfusion group. Laboratory liver function levels were measured before ischemia, after ischemia, and after reperfusion. We used liver and renal biopsies for histopathological examination at the end of the study. RESULTS After clamping and reperfusion, alanine aminotransferase and cystatin C levels in groups B, C, and D were significantly higher than levels in group A. In group B, after clamping, neutrophil gelatinaseassociated lipocalin levels were higher than in groups A and D, with significantly higher level than in group D after reperfusion. Neutrophil gelatinase-associated lipocalin levels decreased significantly in groups B, C, and D after reperfusion. There was significantly greater hepatic damage in groups B, C, and D compared with group A but no significant differences in renal injury scores among the groups. There was a significant positive correlation between hepatic damage and renal injury. With regard to histopathological examination versus laboratory results, a statistically significant positive correlation was shown between grade of hepatic damage and serum alanine aminotransferase and cystatin C levels. Similarly, there was a positive correlation between renal damage score and alanine aminotransferase level. CONCLUSIONS In our animal model, alanine amino - transferase and cystatin C levels tended to increase with ischemia-reperfusion injury levels but neutrophil gelatinase-associated lipocalin decreased during reperfusion. In liver ischemia, we suggest that neutrophil gelatinase-associated lipocalin may be an important biomarker for distinguishing the reperfusion phase.
Collapse
Affiliation(s)
- Dogan Yildirim
- From the Department of General Surgery, University of Health Sciences, Haseki Training and Research Hospital, Istanbul, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Guan Y, Yao W, Yi K, Zheng C, Lv S, Tao Y, Hei Z, Li M. Nanotheranostics for the Management of Hepatic Ischemia-Reperfusion Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007727. [PMID: 33852769 DOI: 10.1002/smll.202007727] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Hepatic ischemia-reperfusion injury (IRI), in which an insufficient oxygen supply followed by reperfusion leads to an inflammatory network and oxidative stress in disease tissue to cause cell death, always occurs after liver transplantations and sections. Although pharmacological treatments favorably prevent or protect the liver against experimental IRI, there have been few successes in clinical applications for patient benefits because of the incomprehension of complicated IRI-induced signaling events as well as short blood circulation time, poor solubility, and severe side reactions of most antioxidants and anti-inflammatory drugs. Nanomaterials can achieve targeted delivery and controllable release of contrast agents and therapeutic drugs in desired hepatic IRI regions for enhanced imaging sensitivity and improved therapeutic effects, emerging as novel alternative approaches for hepatic IRI diagnosis and therapy. In this review, the application of nanotechnology is summarized in the management of hepatic IRI, including nanomaterial-assisted hepatic IRI diagnosis, nanoparticulate systems-mediated remission of reactive oxygen species-induced tissue injury, and nanoparticle-based targeted drug delivery systems for the alleviation of IRI-related inflammation. The current challenges and future perspectives of these nanoenabled strategies for hepatic IRI treatment are also discussed.
Collapse
Affiliation(s)
- Yu Guan
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Weifeng Yao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chunxiong Zheng
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Shixian Lv
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Ziqing Hei
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| |
Collapse
|
20
|
Hide D, Warren A, Fernández-Iglesias A, Maeso-Díaz R, Peralta C, Le Couteur DG, Bosch J, Cogger VC, Gracia-Sancho J. Ischemia/Reperfusion Injury in the Aged Liver: The Importance of the Sinusoidal Endothelium in Developing Therapeutic Strategies for the Elderly. J Gerontol A Biol Sci Med Sci 2020; 75:268-277. [PMID: 30649272 DOI: 10.1093/gerona/glz012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Indexed: 12/24/2022] Open
Abstract
The liver endothelium plays a key role in the progression and resolution of liver diseases in young and adult individuals. However, its role in older people remains unknown. We have herein evaluated the importance of the sinusoidal endothelium in the pathophysiology of acute liver injury, and investigated the applicability of simvastatin, in aged animals. Eighteen-months-old male Wistar rats underwent 60 minutes of partial warm ischemia followed by 2 hours of reperfusion (WIR). A group of aged rats received simvastatin for 3 days before WIR. Endothelial phenotype, parenchymal injury, oxidative and nitrosative stress, and fenestrae dynamics were analyzed. The effects of WIR and simvastatin were investigated in primary LSEC from aged animals. The results of this study demonstrated that WIR significantly damages the liver endothelium and its effects are markedly worse in old animals. WIR-aged livers exhibited reduced vasodilation and sinusoidal capillarization, associated with liver damage and cellular stress. Simvastatin prevented the detrimental effects of WIR in aged livers. In conclusion, the liver sinusoidal endothelium of old animals is highly vulnerable to acute insult, thus targeted protection is especially relevant in preventing liver damage. Simvastatin represents a useful therapeutic strategy in aging.
Collapse
Affiliation(s)
- Diana Hide
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, University of Barcelona Medical School, Barcelona, Spain.,Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Alessandra Warren
- Center for Education and Research on Ageing & ANZAC Research Institute, University of Sydney and Concord Hospital, Australia
| | - Anabel Fernández-Iglesias
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, University of Barcelona Medical School, Barcelona, Spain.,Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Raquel Maeso-Díaz
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, University of Barcelona Medical School, Barcelona, Spain
| | - Carmen Peralta
- Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain.,Protective Strategies Against Hepatic Ischemia-Reperfusion Group, IDIBAPS, Barcelona, Spain
| | - David G Le Couteur
- Center for Education and Research on Ageing & ANZAC Research Institute, University of Sydney and Concord Hospital, Australia
| | - Jaime Bosch
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, University of Barcelona Medical School, Barcelona, Spain.,Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain.,Hepatology, Department of Biomedical Research, Inselspital, Bern University, Switzerland
| | - Victoria C Cogger
- Center for Education and Research on Ageing & ANZAC Research Institute, University of Sydney and Concord Hospital, Australia
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, University of Barcelona Medical School, Barcelona, Spain.,Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain.,Hepatology, Department of Biomedical Research, Inselspital, Bern University, Switzerland
| |
Collapse
|
21
|
Baidya R, Crawford DHG, Gautheron J, Wang H, Bridle KR. Necroptosis in Hepatosteatotic Ischaemia-Reperfusion Injury. Int J Mol Sci 2020; 21:ijms21165931. [PMID: 32824744 PMCID: PMC7460692 DOI: 10.3390/ijms21165931] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
While liver transplantation remains the sole treatment option for patients with end-stage liver disease, there are numerous limitations to liver transplantation including the scarcity of donor livers and a rise in livers that are unsuitable to transplant such as those with excess steatosis. Fatty livers are susceptible to ischaemia-reperfusion (IR) injury during transplantation and IR injury results in primary graft non-function, graft failure and mortality. Recent studies have described new cell death pathways which differ from the traditional apoptotic pathway. Necroptosis, a regulated form of cell death, has been associated with hepatic IR injury. Receptor-interacting protein kinase 3 (RIPK3) and mixed-lineage kinase domain-like pseudokinase (MLKL) are thought to be instrumental in the execution of necroptosis. The study of hepatic necroptosis and potential therapeutic approaches to attenuate IR injury will be a key factor in improving our knowledge regarding liver transplantation with fatty donor livers. In this review, we focus on the effect of hepatic steatosis during liver transplantation as well as molecular mechanisms of necroptosis and its involvement during liver IR injury. We also discuss the immune responses triggered during necroptosis and examine the utility of necroptosis inhibitors as potential therapeutic approaches to alleviate IR injury.
Collapse
Affiliation(s)
- Raji Baidya
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland QLD 4006, Australia; (R.B.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
| | - Darrell H. G. Crawford
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland QLD 4006, Australia; (R.B.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
| | - Jérémie Gautheron
- Sorbonne University, Inserm, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France;
- Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France
| | - Haolu Wang
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
- Diamantina Institute, The University of Queensland, Brisbane, Queensland QLD 4102, Australia
| | - Kim R. Bridle
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland QLD 4006, Australia; (R.B.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
- Correspondence: ; Tel.: +61-7-3346-0698
| |
Collapse
|
22
|
Sirtuin-1 expression and activity is diminished in aged liver grafts. Sci Rep 2020; 10:11860. [PMID: 32681076 PMCID: PMC7367862 DOI: 10.1038/s41598-020-68314-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/15/2020] [Indexed: 11/09/2022] Open
Abstract
The cellular mechanisms underlying impaired function of aged liver grafts have not been fully elucidated, but mitochondrial dysfunction appears to be contributory. Sirtuin1 has been identified as a key mediator of mitochondrial recovery following ischemia-reperfusion injury. The purpose of this study was to determine whether differences exist in sirtuin-1 expression/activity in old vs. young liver grafts and to determine correlations with mitochondrial function, graft metabolic function, and graft injury. Old and young rat liver grafts (N = 7 per group) were exposed to 12 h of static cold storage (SCS), followed by a 2 h period of graft reperfusion ex vivo. Sirtuin1 expression and activity, mitochondrial function, graft metabolic function, and graft injury were compared. Sirtuin1 expression is upregulated in young, but not old, liver grafts in response to cold storage and reperfusion. This is associated with diminished tissue ATP, antioxidant defense, and graft metabolic function in old liver grafts. There was no evidence of increased inflammation or histologic injury in old grafts. Sirtuin1 expression is diminished in old liver grafts and correlates with mitochondrial and metabolic function. The sirtuin pathway may represent a target for intervention to enhance the function of aged liver grafts.
Collapse
|
23
|
Dickson KM, Martins PN. Implications of liver donor age on ischemia reperfusion injury and clinical outcomes. Transplant Rev (Orlando) 2020; 34:100549. [PMID: 32498978 DOI: 10.1016/j.trre.2020.100549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
The aging process causes detrimental changes in a variety of organ systems. These changes include: lesser ability to cope with stress, impaired repair mechanisms and decreased cellular functional reserve capacity. Not surprisingly, aging has been associated with increased susceptibility of donor heart and kidneys grafts to ischemia reperfusion injury (IRI). In the context of liver transplantation, however, the effect of donor age seems to be less influential in predisposing the graft to IRI. In fact, a widely comprehensive understanding of IRI in the aged liver has yet to be agreed upon in the literature. Nevertheless, there have been many reported implications of increased liver donor age with poor clinical outcomes besides IRI. These other poor outcomes include: earlier HCV recurrence, increased rates of acute rejection and greater resistance to tolerance induction. While these other correlations have been identified, it is important to re-emphasize the fact that a unified consensus in regard to liver donor age and IRI has not yet been reached among researchers in this field. Many researchers have even demonstrated that the extent of IRI in aged livers can be ameliorated by careful donor selection, strict allocation or novel therapeutic modalities to decrease IRI. Thus, the goals of this review paper are twofold: 1) To delineate and summarize the conflicting data in regard to liver donor age and IRI. 2) Suggest that careful donor selection, appropriate allocation and strategic effort to minimize IRI can reduce the frequency of a variety of poor outcomes with aged liver donations.
Collapse
Affiliation(s)
- Kevin M Dickson
- Department of Surgery, Division of Transplantation, University of Massachusetts Medical School, 55 N Lake Ave, Worcester, MA 01605, USA.
| | - Paulo N Martins
- Department of Surgery, Division of Transplantation, University of Massachusetts Medical School, 55 N Lake Ave, Worcester, MA 01605, USA.
| |
Collapse
|
24
|
Anti-Inflammatory and Antioxidant Effect of Eucommia ulmoides Polysaccharide in Hepatic Ischemia-Reperfusion Injury by Regulating ROS and the TLR-4-NF- κB Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1860637. [PMID: 32566664 PMCID: PMC7273391 DOI: 10.1155/2020/1860637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/25/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Abstract
Eucommia ulmoides polysaccharide (EUP) has been shown to have anti-inflammatory and antioxidant effects. However, the mechanism underlying these effects has rarely been reported, and whether EUP can reduce liver injury in hepatic ischemia-reperfusion injury (HIRI) has not been reported. In this study, 40 Sprague-Dawley (SD) rats were randomly divided into 5 groups: the sham group, ischemia-reperfusion (I/R) group, and three EUP pretreatment groups (320 mg/kg, 160 mg/kg, and 80 mg/kg). SD rats were pretreated with EUP by gavage once a day prior to I/R injury for 10 days. Except for the sham group, blood flow in the middle and left liver lobes was blocked in all the other groups, resulting in 70% liver ischemia, and the ischemia and reperfusion times were 1 h and 4 h, respectively. Ischemic liver tissue and serum were obtained to detect biochemical markers and liver histopathological damage. Compared with the I/R group, after EUP pretreatment, serum alanine aminotransferase, aspartate aminotransferase, tumor necrosis factor-α, and interleukin-1β levels were significantly decreased, malondialdehyde levels in liver tissues were significantly decreased, superoxide dismutase levels were significantly increased, and the area of liver necrosis was notably reduced. To understand the specific mechanism involved, we determined the levels of Toll-like receptor- (TLR-) 4-nuclear factor-kappaB (NF-κB) pathway-associated proteins in vivo and in vitro. The data showed that EUP can reduce liver damage by decreasing ROS levels and inhibiting TLR-4-NF-κB pathway activation and may be a promising drug in liver surgery to prevent HIRI.
Collapse
|
25
|
Raigani S, Karimian N, Huang V, Zhang AM, Beijert I, Geerts S, Nagpal S, Hafiz EOA, Fontan FM, Aburawi MM, Mahboub P, Markmann JF, Porte RJ, Uygun K, Yarmush M, Yeh H. Metabolic and lipidomic profiling of steatotic human livers during ex situ normothermic machine perfusion guides resuscitation strategies. PLoS One 2020; 15:e0228011. [PMID: 31978172 PMCID: PMC6980574 DOI: 10.1371/journal.pone.0228011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
There continues to be a significant shortage of donor livers for transplantation. One impediment is the discard rate of fatty, or steatotic, livers because of their poor post-transplant function. Steatotic livers are prone to significant ischemia-reperfusion injury (IRI) and data regarding how best to improve the quality of steatotic livers is lacking. Herein, we use normothermic (37°C) machine perfusion in combination with metabolic and lipidomic profiling to elucidate deficiencies in metabolic pathways in steatotic livers, and to inform strategies for improving their function. During perfusion, energy cofactors increased in steatotic livers to a similar extent as non-steatotic livers, but there were significant deficits in anti-oxidant capacity, efficient energy utilization, and lipid metabolism. Steatotic livers appeared to oxidize fatty acids at a higher rate but favored ketone body production rather than energy regeneration via the tricyclic acid cycle. As a result, lactate clearance was slower and transaminase levels were higher in steatotic livers. Lipidomic profiling revealed ω-3 polyunsaturated fatty acids increased in non-steatotic livers to a greater extent than in steatotic livers. The novel use of metabolic and lipidomic profiling during ex situ normothermic machine perfusion has the potential to guide the resuscitation and rehabilitation of steatotic livers for transplantation.
Collapse
Affiliation(s)
- Siavash Raigani
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Negin Karimian
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Viola Huang
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Anna M. Zhang
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Irene Beijert
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Sharon Geerts
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Sonal Nagpal
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Ehab O. A. Hafiz
- Electron Microscopy Research Division, Theodor Bilharz Research Institute, Giza, Egypt
| | - Fermin M. Fontan
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Mohamed M. Aburawi
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Paria Mahboub
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - James F. Markmann
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert J. Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Korkut Uygun
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Martin Yarmush
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Heidi Yeh
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
26
|
Kojima H, Nakamura K, Kupiec-Weglinski JW. Therapeutic targets for liver regeneration after acute severe injury: a preclinical overview. Expert Opin Ther Targets 2020; 24:13-24. [PMID: 31906729 DOI: 10.1080/14728222.2020.1712361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Liver transplantation is the only viable treatment with a proven survival benefit for acute liver failure (ALF). Donor organ shortage is, however, a major hurdle; hence, alternative approaches that enable liver regeneration and target acute severe hepatocellular damage are necessary.Areas covered: This article sheds light on therapeutic targets for liver regeneration and considers their therapeutic potential. ALF following extensive hepatocyte damage and small-for-size syndrome (SFSS) are illuminated for the reader while the molecular mechanisms of liver regeneration are assessed in accordance with relevant therapeutic strategies. Furthermore, liver background parameters and predictive biomarkers that might associate with liver regeneration are reviewed.Expert opinion: There are established and novel experimental strategies for liver regeneration to prevent ALF resulting from SFSS. Granulocyte-colony stimulating factor (G-CSF) is a promising agent targeting liver regeneration after acute severe injury. Autophagy and hepatocyte senescence represent attractive new targets for liver regeneration in acute severe hepatic injury. Liver support strategies, including tissue engineering, constitute novel regenerative means; the success of this is dependent on stem cell research advances. However, there is no firm clinical evidence that these supportive strategies may alleviate hepatocellular damage until liver transplantation becomes available or successful self-liver regeneration occurs.
Collapse
Affiliation(s)
- Hidenobu Kojima
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kojiro Nakamura
- Department of Surgery, Kyoto University, Kyoto, Japan.,Department of Surgery, Nishi-Kobe Medical Center, Kobe, Japan
| | - Jerzy W Kupiec-Weglinski
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
27
|
El-Sayed LA, Osama E, Mehesen MN, Rashed LA, Aboulkhair AG, Omar AI, Shams Eldeen AM. Contribution of angiotensin II in hepatic ischemia /reperfusion induced lung injury: Acute versus chronic usage of captopril. Pulm Pharmacol Ther 2020; 60:101888. [PMID: 31923459 DOI: 10.1016/j.pupt.2020.101888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/04/2020] [Accepted: 01/04/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acute lung injury is one of the most popular consequences of hepatic ischemia/reperfusion (I/R) injury. Recently it was documented that renin-angiotensin system plays a key role in tissue inflammation, generation of reactive oxygen species (ROS) and tumor necrosis factor-alpha (TNF-α) (the principal liver injury mediators) during I/R. MATERIAL AND METHODS We investigated the effect of acute versus chronic usage of angiotensin converting enzyme inhibitor (captopril) on liver inflammation and lung injury caused by hepatic ischemia for 1h followed by 24h reperfusion. Forty adult Wistar male rats were divided into sham, I/R, I/R-acute captopril (100 mg/kg, 24 and 1.5 h before surgery) and I/R-chronic captopril (10 mg/kg/day for 28 days before surgery) groups. RESULTS We found captopril pretreatment significantly decreased liver damage indices, adhesion molecules, and TNF-α level in hepatic and tracheal tissues. Histologically, acute captopril pretreatment significantly decreased hepatic Kupffer cells number and lung α-smooth muscle actin expression more than chronic pretreatment. Increased tracheal tone, in response to acetylcholine, was suppressed by acute and chronic captopril pretreatment. CONCLUSION Angiotensin II plays a key role in tissue inflammation and airway hyperresponsiveness (AHR) via enhancing production of TNF-α. With more protection observed in lung, acute captopril could attenuate liver-induced lung injury via lowering TNF-α; a suggested possible mediator of airway hyperreactivity.
Collapse
Affiliation(s)
| | - Eman Osama
- Department of Physiology, Faculty of Medicine, Cairo University, Egypt
| | - Marwa Nagi Mehesen
- Department of Pharmacology, Faculty of Medicine, Cairo University, Egypt
| | | | | | - Abeer Ibraheem Omar
- Department of Medical Histology, Faculty of Medicine, Cairo University, Egypt
| | | |
Collapse
|
28
|
Irisin Improves Autophagy of Aged Hepatocytes via Increasing Telomerase Activity in Liver Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6946037. [PMID: 31976032 PMCID: PMC6959141 DOI: 10.1155/2020/6946037] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023]
Abstract
An aged liver has decreased reparative capacity during ischemia-reperfusion (IR) injury. A recent study showed that plasma irisin levels predict telomere length in healthy adults. The aim of the present study is to clarify the role of irisin, telomerase activity, and autophagy during hepatic IR in the elderly. To study this, hepatic IR was established in 22-month- and 3-month-old rats and primary hepatocytes were isolated. The results showed that the old rats exhibited more serious liver injury and lower levels of irisin expression, telomerase activity, autophagy ability, and mitochondrial function than young rats during hepatic IR. Irisin activated autophagy and improved mitochondrial function via increasing telomerase activity in aged hepatocytes. Inhibition of telomerase activity by BIBP1532 abolished the protective role of irisin in hepatocytes during hypoxia and reoxygenation. Additionally, this study proved irisin increased the telomerase activity via inhibition of the phosphorylation of JNK during hepatic IR. Administration of exogenous irisin significantly mitigated the inflammation, oxidative stress, apoptosis, and liver injury in an old rat model of hepatic IR. In conclusion, irisin improves autophagy of aged hepatocytes via increasing telomerase activity in hepatic IR. Irisin exhibits conspicuous benefits in increasing reparative capacity of an aged liver during hepatic IR.
Collapse
|
29
|
Li Y, Ruan DY, Jia CC, Zheng J, Wang GY, Zhao H, Yang Q, Liu W, Yi SH, Li H, Wang GS, Yang Y, Chen GH, Zhang Q. Aging aggravates hepatic ischemia-reperfusion injury in mice by impairing mitophagy with the involvement of the EIF2α-parkin pathway. Aging (Albany NY) 2019; 10:1902-1920. [PMID: 30089704 PMCID: PMC6128434 DOI: 10.18632/aging.101511] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/28/2018] [Indexed: 02/07/2023]
Abstract
Hepatic ischemia-reperfusion (I/R) injury fundamentally influences the performance of aged liver grafts. The significance of mitophagy in the age dependence of sensitivity to I/R injury remains poorly understood. Here, we show that aging aggravated hepatic I/R injury with decreased mitophagy in mice. The enhancement of mitophagy resulted in significant protection against hepatic I/R injury. Parkin, an E3 ubiquitin ligase, was found depleted by I/R in aged livers. In oxygen-glucose deprivation reperfusion (OGD-Rep.)-treated L02 cells, parkin silencing impaired mitophagy and aggravated cell damage through a relative large mitochondrial membrane potential transition. The phosphorylation of the endoplasmic reticulum stress response protein EIF2α, which was also reduced in the aged liver, induced parkin expression both in vivo and vitro. Forty-six hepatic biopsy specimens from liver graft were collected 2 hours after complete revascularization, followed by immunohistochemical analyses. Parkin expression was negatively correlated to donor age and the peak level of aspartate aminotransferase within first week after liver transplantation. Our translational study demonstrates that aging aggravated hepatic I/R injury by impairing the age-dependent mitophagy function via an insufficient parkin expression and identifies a new strategy to evaluate the capacity of an aged liver graft in the process of I/R through the parkin expression.
Collapse
Affiliation(s)
- Yang Li
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.,Guangdong Key laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong 510630, China
| | - Dan-Yun Ruan
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong 510630, China
| | - Chang-Chang Jia
- Department of Biotherapy, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong 510630, China.,Guangdong Key laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong 510630, China
| | - Jun Zheng
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.,Guangdong Key laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong 510630, China
| | - Guo-Ying Wang
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Hui Zhao
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Qing Yang
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Wei Liu
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.,Guangdong Key laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong 510630, China
| | - Shu-Hong Yi
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Hua Li
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Gen-Shu Wang
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yang Yang
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Gui-Hua Chen
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Qi Zhang
- Department of Biotherapy, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong 510630, China.,Guangdong Key laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong 510630, China
| |
Collapse
|
30
|
Lian S, Wang J, Zhang L, Xing Q, Hu N, Liu S, Dai X, Zhang F, Hu X, Bao Z, Wang S. Integration of Biochemical, Cellular, and Genetic Indicators for Understanding the Aging Process in a Bivalve Mollusk Chlamys farreri. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:718-730. [PMID: 31392593 DOI: 10.1007/s10126-019-09917-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
The major causal factors for the irreversible decline in physical vitality during organismal aging are postulated to be a chronic state of cellular redox imbalance, metabolic toxicity, and impaired energy homeostasis. We assessed whether the relevant enzyme activity, oxidative stress, and intracellular ATP might be causally involved in the aging of short-lived Chlamys farreri (life span 4~5 years). A total of eight related biochemical and cellular indicators were chosen for the subsequent analysis. All the indicators were measured in seven different tissues from scallops aged one to four years, and our data support that the aging of C. farreri is associated with attenuated tissue enzyme activity as well as a decreased metabolic rate. Through principal component analysis, we developed an integrated vigor index for each tissue for comprehensive age-related fitness evaluation. Remarkably, all tissue-integrated vigor indexes significantly declined with age, and the kidney was observed to be the most representative tissue. Further transcriptional profiling of the enzymatic genes provided additional detail on the molecular responses that may underlie the corresponding biochemical results. Moreover, these critical molecular responses may be attributed to the conserved hierarchical regulators, e.g., FOXO, AMPKs, mTOR, and IGF1R, which were identified as potentially novel markers for chronic fitness decline with age in bivalves. The present study provides a systematic approach that could potentially benefit the global assessment of the aging process in C. farreri and provide detailed evaluation of the biochemical, cellular, and genetic indicators that might be involved. This information may assist in a better understanding of bivalve adaptability and life span.
Collapse
Affiliation(s)
- Shanshan Lian
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Naina Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Sinuo Liu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Xiaoting Dai
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Fengmei Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
31
|
Abstract
OBJECTIVE To evaluate the use of elderly donors in liver transplantation (LT) and identify risk factors associated with a worse outcome. SUMMARY BACKGROUND DATA Use of livers from very old donors could expand the donor pool but is not universally implemented. METHODS This is a retrospective, single-center medical record review. From January 2001 to December 2014, 1354 LTs were performed. After exclusion of donors <18 years, ABO-incompatible LT, re-LT and UNOS 1 status patients, LT recipients were stratified into 2 groups based on donor age: 18-69 (n=692) vs. ≥70 years (n=515) then matched using a propensity score approach. Two groups were finally matched (young group = 448 cases; old group = 515 cases). RESULTS The median (interquartile range [IQR]) follow-up was 5.0 (2.0-8.4) years. Comparing the 2 identified groups, no differences were observed regarding early retransplants (1.8 vs. 2.9; P = 0.3), HCV-related death (7.6 vs. 8.7%; P = 0.6), vascular (5.8 vs. 5.0%; P = 0.7), and biliary complications (16.5 vs. 18.6%; P = 0.4). On multivariate analysis, independent risk factors for graft loss were: HCV-positive recipient (HR = 2.1; 95% CI = 1.6-2.7; P < 0.001), donor age (HR = 1.0; 95% CI = 1.0-1.0; P < 0.001), cold ischemia time (HR = 1.0; 95% CI = 1.0-1.0; P = 0.042), and donor history of diabetes mellitus (HR = 1.48; 95% CI = 1.03-2.13; P = 0.036). CONCLUSIONS Use of elderly donors is not associated per se with an increased risk of vascular and biliary complications. In the presence of cold ischemia time and diabetes mellitus, appropriate donor-to-recipient matching is warranted.
Collapse
|
32
|
Oxygenated UW Solution Decreases ATP Decay and Improves Survival After Transplantation of DCD Liver Grafts. Transplantation 2019; 103:363-370. [PMID: 30422952 DOI: 10.1097/tp.0000000000002530] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Donation after circulatory death (DCD) liver grafts are known to be predisposed to primary nonfunction and ischemic cholangiopathy. Many DCD grafts are discarded because of older donor age or long warm ischemia times. Thus, it is critical to improve the quality of DCD liver grafts. Here, we have tested whether an enriched oxygen carrier added to the preservation solution can prolong graft survival and reduce biliary damage. METHODS We assessed the adenosine triphosphate (ATP) content decay of mouse liver grafts after cold ischemia, warm ischemia, and combined warm+cold ischemia. In addition, we used a rat model of liver transplantation to compare survival of DCD grafts preserved in high-oxygen solution (preoxygenated perfluorocarbon [PFC] + University of Wisconsin [UW] solution) versus lower oxygen solution (preoxygenated UW solution). RESULTS Adenosine triphosphate levels under UW preservation fall to less than 10% after 30 minutes of warm ischemia. Preoxygenated UW solution with PFC reached a significantly higher PaO2. After 45 minutes of warm ischemia in oxygenated UW + PFC solution, grafts showed 63% higher levels of ATP (P = 0.011). In addition, this was associated with better preservation of morphology when compared to grafts stored in standard UW solution. Animals that received DCD grafts preserved in higher oxygenation solution showed improved survival: 4 out of 6 animals survived long-term whereas all control group animals died within 24 hours. CONCLUSIONS The additional oxygen provided by PFC during static cold preservation of DCD livers can better sustain ATP levels, and thereby reduce the severity of ischemic tissue damage. PFC-based preservation solution extends the tolerance to warm ischemia, and may reduce the rate of ischemic cholangiopathy.
Collapse
|
33
|
Jiang T, Zhan F, Rao Z, Pan X, Zhong W, Sun Y, Wang P, Lu L, Zhou H, Wang X. Combined ischemic and rapamycin preconditioning alleviated liver ischemia and reperfusion injury by restoring autophagy in aged mice. Int Immunopharmacol 2019; 74:105711. [PMID: 31302450 DOI: 10.1016/j.intimp.2019.105711] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/21/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022]
Abstract
Old livers are more damaged by hepatic ischemia and reperfusion (IR) injury than young livers. The aim of this study was to investigate the effects of ischemic and rapamycin preconditioning on IR injury in old livers. Young (8-week-old) and aged (60-week-old) mice were subjected to IR or a sham control procedure. The aged mice were randomly divided into six groups: IR (CON), IR with ischemic preconditioning (IPC), IR with rapamycin preconditioning (RAPA), IR with combined ischemic and rapamycin preconditioning (IPC + RAPA), IR with 3-methyladenine (3-MA), IR with combined ischemic and rapamycin preconditioning with 3-MA pretreatment (IPC + RAPA+3-MA). Liver injury was evaluated 6 h after reperfusion. Hepatocellular autophagy induction was also analyzed by western blotting. The results revealed that aged mice had aggravated liver IR injury as compared to young mice. In aged mice following IR, IPC + RAPA but not IPC or RAPA alleviated liver injury, as evidenced by lower levels of serum ALT, improved preservation of liver architecture with lower Suzuki scores, and decreased caspase-3 activity compared with CON. In addition, western blot analysis revealed increased LC3B II but decreased p62 protein expression levels in the IPC + RAPA group, indicating that autophagic flux was restored by combined ischemic and rapamycin preconditioning. Furthermore, autophagy inhibition by the inhibitor 3-MA abrogated the protective role in the IPC + RAPA group, while no significant effects were observed in the CON group. In conclusions, our results demonstrated that combined ischemic and rapamycin preconditioning protected old livers against IR injury, which was likely attributed to restored autophagy activation.
Collapse
Affiliation(s)
- Tao Jiang
- Hepatobiliary/Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Surgical Oncology, the Bayi Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhan
- Hepatobiliary/Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhuqing Rao
- Department of Anesthesiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiongxiong Pan
- Department of Anesthesiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weizhe Zhong
- Hepatobiliary/Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Sun
- Hepatobiliary/Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Wang
- Hepatobiliary/Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ling Lu
- Hepatobiliary/Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haoming Zhou
- Hepatobiliary/Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Xuehao Wang
- Hepatobiliary/Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
34
|
de Oliveira THC, Souza DG, Teixeira MM, Amaral FA. Tissue Dependent Role of PTX3 During Ischemia-Reperfusion Injury. Front Immunol 2019; 10:1461. [PMID: 31354697 PMCID: PMC6635462 DOI: 10.3389/fimmu.2019.01461] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/10/2019] [Indexed: 01/06/2023] Open
Abstract
Reperfusion of an ischemic tissue is the treatment of choice for several diseases, including myocardial infarction and stroke. However, reperfusion of an ischemic tissue causes injury, known as Ischemia and Reperfusion Injury (IRI), that limits the benefit of blood flow restoration. IRI also occurs during solid organ transplantation. During IRI, there is activation of the innate immune system, especially neutrophils, which contributes to the degree of injury. It has been shown that PTX3 can regulate multiple aspects of innate immunity and tissue inflammation during sterile injury, as observed during IRI. In humans, levels of PTX3 increase in blood and elevated levels associate with extent of IRI. In mice, there is also enhanced expression of PTX3 in tissues and plasma after IRI. In general, absence of PTX3, as seen in PTX3-deficient mice, results in worse outcome after IRI. On the contrary, increased expression of PTX3, as seen in PTX3 transgenic mice and after PTX3 administration, is associated with better outcome after IRI. The exception is the gut where PTX3 seems to have a clear deleterious role. Here, we discuss mechanisms by which PTX3 contributes to IRI and the potential of taming this system for the treatment of injuries associated with reperfusion of solid organs.
Collapse
Affiliation(s)
| | - Danielle G Souza
- Host-Microorganism Interaction Laboratory, Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávio Almeida Amaral
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
35
|
Merlen G, Raymond VA, Cassim S, Lapierre P, Bilodeau M. Oxaloacetate Protects Rat Liver From Experimental Warm Ischemia/Reperfusion Injury by Improving Cellular Energy Metabolism. Liver Transpl 2019; 25:627-639. [PMID: 30663275 DOI: 10.1002/lt.25415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/13/2019] [Indexed: 12/13/2022]
Abstract
Liver ischemia/reperfusion injury (IRI) is an important cause of liver damage especially early after liver transplantation, following liver resection, and in other clinical situations. Using rat experimental models, we identified oxaloacetate (OAA) as a key metabolite able to protect hepatocytes from hypoxia and IRI. In vitro screening of metabolic intermediates beneficial for hepatocyte survival under hypoxia was performed by measures of cell death and injury. In vivo, the effect of OAA was evaluated using the left portal vein ligation (LPVL) model of liver ischemia and a model of warm IRI. Liver injury was evaluated in vivo by serum transaminase levels, liver histology, and liver weight (edema). Levels and activity of caspase 3 were also measured. In vitro, the addition of OAA to hepatocytes kept in a hypoxic environment significantly improved cell viability (P < 0.01), decreased cell injury (P < 0.01), and improved energy metabolism (P < 0.01). Administration of OAA significantly reduced the extent of liver injury in the LPVL model with lower levels of alanine aminotransferase (ALT; P < 0.01), aspartate aminotransferase (AST; P < 0.01), and reduced liver necrosis (P < 0.05). When tested in a warm IRI model, OAA significantly decreased ALT (P < 0.001) and AST levels (P < 0.001), prevented liver edema (P < 0.001), significantly decreased caspase 3 expression (P < 0.01), as well as histological signs of cellular vesiculation and vacuolation (P < 0.05). This was associated with higher adenosine triphosphate (P < 0.05) and energy charge levels (P < 0.01). In conclusion, OAA can significantly improve survival of ischemic hepatocytes. The hepatoprotective effect of OAA was associated with increased levels of liver bioenergetics both in vitro and in vivo. These results suggest that it is possible to support mitochondrial activity despite the presence of ischemia and that OAA can effectively reduce ischemia-induced injury in the liver.
Collapse
Affiliation(s)
- Grégory Merlen
- Laboratoire d'Hépatologie Cellulaire, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Quebec, Canada
| | - Valérie-Ann Raymond
- Laboratoire d'Hépatologie Cellulaire, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Quebec, Canada
| | - Shamir Cassim
- Laboratoire d'Hépatologie Cellulaire, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Quebec, Canada
| | - Pascal Lapierre
- Laboratoire d'Hépatologie Cellulaire, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Quebec, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Marc Bilodeau
- Laboratoire d'Hépatologie Cellulaire, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Quebec, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
36
|
Nakamura K, Kageyama S, Kupiec-Weglinski JW. The Evolving Role of Neutrophils in Liver Transplant Ischemia-Reperfusion Injury. CURRENT TRANSPLANTATION REPORTS 2019; 6:78-89. [PMID: 31602356 PMCID: PMC6786799 DOI: 10.1007/s40472-019-0230-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of Review Hepatic ischemia-reperfusion injury (IRI), an inevitable event during liver transplantation, represents a major risk factor for the primary graft dysfunction as well as the development of acute and chronic rejection. Neutrophils, along macrophages, are pivotal in the innate immune-driven liver IRI, whereas the effective neutrophil-targeting therapies remain to be established. In this review, we summarize progress in our appreciation of the neutrophil biology and discuss neutrophil-based therapeutic perspectives. Recent Findings New technological advances enable to accurately track neutrophil movements and help to understand molecular mechanisms in neutrophil function, such as selective recruitment to IR-stressed tissue, formation of neutrophil extracellular traps, or reverse migration into circulation. In addition to pro-inflammatory and tissue-destructive functions, immune regulatory and tissue-repairing phenotype associated with distinct neutrophil subsets have been identified. Summary Newly recognized and therapeutically attractive neutrophil characteristics warrant comprehensive preclinical and clinical attention to target IRI in transplant recipients.
Collapse
Affiliation(s)
- Kojiro Nakamura
- The Dumont-UCLA Transplant Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Shoichi Kageyama
- The Dumont-UCLA Transplant Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Jerzy W Kupiec-Weglinski
- The Dumont-UCLA Transplant Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| |
Collapse
|
37
|
Rampes S, Ma D. Hepatic ischemia-reperfusion injury in liver transplant setting: mechanisms and protective strategies. J Biomed Res 2019; 33:221-234. [PMID: 32383437 DOI: 10.7555/jbr.32.20180087] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatic ischemia-reperfusion injury is a major cause of liver transplant failure, and is of increasing significance due to increased use of expanded criteria livers for transplantation. This review summarizes the mechanisms and protective strategies for hepatic ischemia-reperfusion injury in the context of liver transplantation. Pharmacological therapies, the use of pre-and post-conditioning and machine perfusion are discussed as protective strategies. The use of machine perfusion offers significant potential in the reconditioning of liver grafts and the prevention of hepatic ischemia-reperfusion injury, and is an exciting and active area of research, which needs more study clinically.
Collapse
Affiliation(s)
- Sanketh Rampes
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1U, UK
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, UK
| |
Collapse
|
38
|
Ischemia-Reperfusion Injury in Aged Livers-The Energy Metabolism, Inflammatory Response, and Autophagy. Transplantation 2018; 102:368-377. [PMID: 29135887 DOI: 10.1097/tp.0000000000001999] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Because of the lack of adequate organs, the number of patients with end-stage liver diseases, acute liver failure or hepatic malignancies waiting for liver transplantation is constantly increasing. Accepting aged liver grafts is one of the strategies expanding the donor pool to ease the discrepancy between the growing demand and the limited supply of donor organs. However, recipients of organs from old donors may show an increased posttransplantation morbidity and mortality due to enhanced ischemia-reperfusion injury. Energy metabolism, inflammatory response, and autophagy are 3 critical processes which are involved in the aging progress as well as in hepatic ischemia-reperfusion injury. Compared with young liver grafts, impairment of energy metabolism in aged liver grafts leads to lower adenosine triphosphate production and an enhanced generation of free radicals, both aggravating the inflammatory response. The aggravated inflammatory response determines the extent of hepatic ischemia-reperfusion injury and augments the liver damage. Autophagy protects cells by removal of damaged organelles, including dysfunctional mitochondria, a process impaired in aging and involved in ischemia-reperfusion-related apoptotic cell death. Furthermore, autophagic degradation of cellular compounds relieves intracellular adenosine triphosphate level for the energy depressed cells. Strategies targeting the mechanisms involved in energy metabolism, inflammatory response, and autophagy might be especially useful to prevent the increased risk for ischemia-reperfusion injury in aged livers after major hepatic surgery.
Collapse
|
39
|
Vilalva KH, Figueira RL, Silveira M, Graf C, Gonçalves FL, Sbragia L, Gomes MC, Mumic F, Vollet-Filho JD, Bagnato VS, D’Albuquerque LAC, Castro-e-Silva O. Prophylactic application of laser light restores L-FABP expression in the livers of rats submitted to partial ischemia. Clinics (Sao Paulo) 2018; 73:e113. [PMID: 29972436 PMCID: PMC6005990 DOI: 10.6061/clinics/2018/e113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 02/27/2018] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES The objective of the present study was to evaluate the protective effect of pre-conditioning treatment with laser light on hepatic injury in rats submitted to partial ischemia using mitochondrial function and liver fatty acid binding protein as markers. METHODS Rats were divided into four groups (n=5): 1) Control, 2) Control + Laser, 3) Partial Ischemia and 4) Partial Ischemia + Laser. Ischemia was induced by clamping the hepatic pedicle of the left and middle lobes of the liver for 60 minutes. Laser light at 660 nm was applied to the liver immediately prior to the induction of ischemia at 22.5 J/cm2, with 30 seconds of illumination at five individual points. The animals were sacrificed after 30 minutes of reperfusion. Blood and liver tissues were collected for analysis of mitochondrial function, determination of malondialdehyde and analysis of fatty acid binding protein expression by Western blot. RESULTS Mitochondrial function decreased in the Partial Ischemia group, especially during adenosine diphosphate-activated respiration (state 3), and the expression of fatty acid binding protein was also reduced. The application of laser light prevented bioenergetic changes and restored the expression of fatty acid binding protein. CONCLUSION Prophylactic application of laser light to the livers of rats submitted to partial ischemia was found to have a protective effect in the liver, with normalization of both mitochondrial function and fatty acid binding protein tissue expression.
Collapse
Affiliation(s)
- Kelvin Henrique Vilalva
- Divisao de Transplante de Figado, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Rebeca Lopes Figueira
- Laboratorio de Cirurgia Fetal Experimental, Divisao de Cirurgia Pediatrica, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Marina Silveira
- Divisao de Transplante de Figado, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Catarina Graf
- Divisao de Transplante de Figado, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Frances Lanhellas Gonçalves
- Laboratorio de Cirurgia Fetal Experimental, Divisao de Cirurgia Pediatrica, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Lourenço Sbragia
- Laboratorio de Cirurgia Fetal Experimental, Divisao de Cirurgia Pediatrica, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Maria Cecília Gomes
- Divisao de Transplante de Figado, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Fabrícia Mumic
- Divisao de Transplante de Figado, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - José Dirceu Vollet-Filho
- Departamento de Fisica e Ciencia dos Materiais, Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, SP, BR
| | - Vanderlei Salvador Bagnato
- Departamento de Fisica e Ciencia dos Materiais, Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, SP, BR
| | | | - Orlando Castro-e-Silva
- Divisao de Transplante de Figado, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
- Departamento de Gastroenterologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
40
|
Upregulation of Krebs cycle and anaerobic glycolysis activity early after onset of liver ischemia. PLoS One 2018; 13:e0199177. [PMID: 29902244 PMCID: PMC6002017 DOI: 10.1371/journal.pone.0199177] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/02/2018] [Indexed: 12/13/2022] Open
Abstract
The liver is a highly vascularized organ receiving a dual input of oxygenated blood from the hepatic artery and portal vein. The impact of decreased blood flow on glucose metabolism and how hepatocytes could adapt to this restrictive environment are still unclear. Using the left portal vein ligation (LPVL) rat model, we found that cellular injury was delayed after the onset of liver ischemia. We hypothesized that a metabolic adaptation by hepatocytes to maintain energy homeostasis could account for this lag phase. Liver glucose metabolism was characterized by 13C- and 1H-NMR spectroscopy and analysis of high-energy metabolites. ALT levels and caspase 3 activity in LPVL animals remained normal during the first 12 h following surgery (P<0.05). Ischemia rapidly led to decreased intrahepatic tissue oxygen tension and blood flow (P<0.05) and increased expression of Hypoxia-inducible factor 1-alpha. Intrahepatic glucose uptake, ATP/ADP ratio and energy charge level remained stable for up to 12 h after ligation. Entry of glucose in the Krebs cycle was impaired with lowered incorporation of 13C from [U-13C]glucose into glutamate and succinate from 0.25 to 12 h after LPVL. However, total hepatic succinate and glutamate increased 6 and 12 h after ischemia (P<0.05). Glycolysis was initially reduced (P<0.05) but reached maximum 13C-lactate (P<0.001) and 13C-alanine (P<0.01) enrichments 12 h after LPVL. In conclusion, early liver homeostasis stems from an inherent ability of ischemic hepatocytes to metabolically adapt through increased Krebs cycle and glycolysis activity to preserve bioenergetics and cell viability. This metabolic plasticity of hepatocytes could be harnessed to develop novel metabolic strategies to prevent ischemic liver damage.
Collapse
|
41
|
Ling Q, Liu J, Zhuo J, Zhuang R, Huang H, He X, Xu X, Zheng S. Development of models to predict early post-transplant recurrence of hepatocellular carcinoma that also integrate the quality and characteristics of the liver graft: A national registry study in China. Surgery 2018; 164:S0039-6060(18)30079-5. [PMID: 29709370 DOI: 10.1016/j.surg.2018.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/11/2018] [Accepted: 01/29/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Donor characteristics and graft quality were recently reported to play an important role in the recurrence of hepatocellular carcinoma after liver transplantation. Our aim was to establish a prognostic model by using both donor and recipient variables. METHODS Data of 1,010 adult patients (training/validation: 2/1) undergoing primary liver transplantation for hepatocellular carcinoma were extracted from the China Liver Transplant Registry database and analyzed retrospectively. A multivariate competing risk regression model was developed and used to generate a nomogram predicting the likelihood of post-transplant hepatocellular carcinoma recurrence. RESULTS Of 673 patients in the training cohort, 70 (10.4%) had hepatocellular carcinoma recurrence with a median recurrence time of 6 months (interquartile range: 4-25 months). Cold ischemia time was the only independent donor prognostic factor for predicting hepatocellular carcinoma recurrence (hazard ratio = 2.234, P = .007). The optimal cutoff value was 12 hours when patients were grouped according to cold ischemia time at 2-hour intervals. Integrating cold ischemia time into the Milan criteria (liver transplantation candidate selection criteria) improved the accuracy for predicting hepatocellular carcinoma recurrence in both training and validation sets (P < .05). A nomogram composed of cold ischemia time, tumor burden, differentiation, and α-fetoprotein level proved to be accurate and reliable in predicting the likelihood of 1-year hepatocellular carcinoma recurrence after liver transplantation. Additionally, donor anti-hepatitis B core antibody positivity, prolonged cold ischemia time, and anhepatic time were linked to the intrahepatic recurrence, whereas older donor age, prolonged donor warm ischemia time, cold ischemia time, and ABO incompatibility were relevant to the extrahepatic recurrence. CONCLUSION The graft quality integrated models exhibited considerable predictive accuracy in early hepatocellular carcinoma recurrence risk assessment. The identification of donor risks can further help understand the mechanism of different patterns of recurrence.
Collapse
Affiliation(s)
- Qi Ling
- Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, China
| | - Jimin Liu
- Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jianyong Zhuo
- Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Runzhou Zhuang
- Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haitao Huang
- Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Xiao Xu
- Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, China; China Liver Transplant Registry, Hangzhou, China
| | - Shusen Zheng
- Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, China; China Liver Transplant Registry, Hangzhou, China.
| |
Collapse
|
42
|
de Oliveira THC, Marques PE, Poosti F, Ruytinx P, Amaral FA, Brandolini L, Allegretti M, Proost P, Teixeira MM. Intravital Microscopic Evaluation of the Effects of a CXCR2 Antagonist in a Model of Liver Ischemia Reperfusion Injury in Mice. Front Immunol 2018; 8:1917. [PMID: 29379500 PMCID: PMC5770890 DOI: 10.3389/fimmu.2017.01917] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022] Open
Abstract
Background Ischemia-reperfusion (IR) is a major contributor to graft rejection after liver transplantation. During IR injury, an intense inflammatory process occurs in the liver. Neutrophils are considered central players in the events that lead to liver injury. CXC chemokines mediate hepatic inflammation following reperfusion. However, few studies have demonstrated in real-time the behavior of recruited neutrophils. We used confocal intravital microscopy (IVM) to image neutrophil migration in the liver and to analyze in real-time parameters of neutrophil recruitment in the inflamed tissue in animals treated or not with reparixin, an allosteric antagonist of CXCR1/2 receptors. Materials and methods WT and LysM-eGFP mice treated with reparixin or saline were subjected to 60 min of ischemia followed by different times of reperfusion. Mice received Sytox orange intravenously to show necrotic DNA in IVM. The effect of reparixin on parameters of local and systemic reperfusion-induced injury was also investigated. Results IR induced liver injury and inflammation, as evidenced by high levels of alanine aminotransferase and myeloperoxidase activity, chemokine and cytokine production, and histological outcome. Treatment with reparixin significantly decreased neutrophil influx. Moreover, reparixin effectively suppressed the increase in serum concentrations of TNF-α, IL-6, and CCL3, and the reperfusion-associated tissue damage. The number of neutrophils in the liver increased between 6 and 24 h of reperfusion, whereas the distance traveled, velocity, neutrophil size and shape, and cluster formation reached a maximum 6 h after reperfusion and then decreased gradually. In vivo imaging revealed that reparixin significantly decreased neutrophil infiltration and movement and displacement of recruited cells. Moreover, neutrophils had a smaller size and less elongated shape in treated mice. Conclusion Imaging of the liver by confocal IVM was successfully implemented to describe neutrophil behavior in vivo during liver injury by IR. Treatment with reparixin decreased not only the recruitment of neutrophils in tissues but also their activation state and capacity to migrate within the liver. CXCR1/2 antagonists may be a promising therapy for patients undergoing liver transplantation.
Collapse
Affiliation(s)
- Thiago Henrique Caldeira de Oliveira
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, Catholic University of Leuven, Leuven, Belgium
| | | | - Fariba Poosti
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, Catholic University of Leuven, Leuven, Belgium
| | - Pieter Ruytinx
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, Catholic University of Leuven, Leuven, Belgium
| | - Flávio Almeida Amaral
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, Catholic University of Leuven, Leuven, Belgium
| | - Mauro Martins Teixeira
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
43
|
Qi X, Ng KTP, Lian Q, Li CX, Geng W, Ling CC, Yeung WH, Ma YY, Liu XB, Liu H, Liu J, Yang XX, Lo CM, Man K. Glutathione Peroxidase 3 Delivered by hiPSC-MSCs Ameliorated Hepatic IR Injury via Inhibition of Hepatic Senescence. Theranostics 2018; 8:212-222. [PMID: 29290803 PMCID: PMC5743470 DOI: 10.7150/thno.21656] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/24/2017] [Indexed: 12/18/2022] Open
Abstract
Background and Aims: Down-regulation of GPx3 accelerated hepatic senescence, which further caused overwhelming inflammation and severe liver graft injury. MSCs derived from human induced pluripotent stem cells (hiPSC-MSCs) have been developed as more efficient delivery vehicle with the property of injury tropism. Here, we aimed to explore the suppressive role of GPx3 in hepatic IR injury using novel delivery system of hiPSC-MSCs. Methods: The mice IR injury model with partial hepatectomy was established. The engineered hiPSC-MSCs delivering GPx3 was constructed. All the mice were segregated into three groups. hiPSC-MSC-GPx3, hiPSC-MSC-pCDH (vector control) or PBS were injected via portal vein after reperfusion. Liver injury was evaluated by histological and serological test. Hepatic apoptosis was detected by Tunel staining and remnant liver regeneration was assessed by Ki67 staining. The role of hepatic senescence in liver graft injury was evaluated in rat orthotopic liver transplantation model. The suppressive effect of GPx3 on hepatic senescence was examined in mice IR injury model and confirmed in vitro. Hepatic senescence was detected by SA-β-Gal and P16/ink4a staining. Results: GPx3 can be successfully delivered by hiPSC-MSCs into liver tissues. Histological examination showed that hiPSC-MSC-GPx3 treatment significantly ameliorated hepatic IR injury post-operation. Significantly lower LDH (891.43±98.45 mU/mL, P<0.05) and AST (305.77±36.22 IU/L, P<0.01) were observed in hiPSC-MSC-GPx3 group compared with control groups. Less apoptotic hepatocytes were observed and the remnant liver regeneration was more active in hiPSC-MSC-GPx3 group. In rat orthotopic liver transplantation model, more senescent hepatocytes were observed in small-for-size liver graft, in which GPx3 expression was significantly compromised. In mice IR injury model, hiPSC-MSC-GPx3 significantly suppressed hepatic senescence. In addition, rGPx3 inhibited cellular senescence of liver cells in a dose dependent manner. Four candidate genes (CD44, Nox4, IFNG, SERPERINB2) were identified to be responsible for suppressive effect of GPx3 on hepatic senescence. Conclusion: Engineered hiPSC-MSCs delivering GPx3 ameliorated hepatic IR injury via inhibition of hepatic senescence.
Collapse
|
44
|
Neutrophils: a cornerstone of liver ischemia and reperfusion injury. J Transl Med 2018; 98:51-62. [PMID: 28920945 DOI: 10.1038/labinvest.2017.90] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/05/2017] [Accepted: 07/09/2017] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is the main cause of morbidity and mortality due to graft rejection after liver transplantation. During IRI, an intense inflammatory process occurs in the liver. This hepatic inflammation is initiated by the ischemic period but occurs mainly during the reperfusion phase, and is characterized by a large neutrophil recruitment to the liver. Production of cytokines, chemokines, and danger signals results in activation of resident hepatocytes, leukocytes, and Kupffer cells. The role of neutrophils as the main amplifiers of liver injury in IRI has been recognized in many publications. Several studies have shown that elimination of excessive neutrophils or inhibition of their function leads to reduction of liver injury and inflammation. However, the mechanisms involved in neutrophil recruitment during liver IRI are not well known. In addition, the molecules necessary for this type of migration are poorly defined, as the liver presents an atypical sinusoidal vasculature in which the classical leukocyte migration paradigm only partially applies. This review summarizes recent advances in neutrophil-mediated liver damage, and its application to liver IRI. Basic mechanisms of activation of neutrophils and their unique mechanisms of recruitment into the liver vasculature are discussed. In particular, the role of danger signals, adhesion molecules, chemokines, glycosaminoglycans (GAGs), and metalloproteinases is explored. The precise definition of the molecular events that govern the recruitment of neutrophils and their movement into inflamed tissue may offer new therapeutic alternatives for hepatic injury by IRI and other inflammatory diseases of the liver.
Collapse
|
45
|
Kanoria S, Robertson FP, Mehta NN, Fusai G, Sharma D, Davidson BR. Effect of Remote Ischaemic Preconditioning on Liver Injury in Patients Undergoing Major Hepatectomy for Colorectal Liver Metastasis: A Pilot Randomised Controlled Feasibility Trial. World J Surg 2017; 41:1322-1330. [PMID: 27933431 PMCID: PMC5394145 DOI: 10.1007/s00268-016-3823-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Liver resection produces excellent long-term survival for patients with colorectal liver metastases but is associated with significant morbidity and mortality from ischaemia reperfusion injury (IRI). Remote ischaemic preconditioning (RIPC) can reduce the effect of IRI. This pilot randomised controlled trial evaluated RIPC in patients undergoing major hepatectomy at the Royal Free Hospital, London. Methods Sixteen patients were randomised to RIPC or sham control. RIPC was induced through three 10-min cycles of alternate ischaemia and reperfusion to the leg. At baseline and immediately post-resection, transaminases and indocyanine green (ICG) clearance were measured. Findings The RIPC group had lower ALT and AST levels immediately post-resection (ALT: 43% lower 497 ± 165 vs 889 ± 170 IU/L; p = 0.019 AST: 54% lower 408 ± 166 vs 836 ± 167 IU/L; p = 0.001) and at 24 h (ALT: 41% lower 412 ± 144 vs 698 ± 137 IU/L; p = 0.026 AST: 50% lower 316 ± 116 vs 668 ± 115 IU/L; p = 0.02). ICG clearance was reduced in controls versus RIPC immediately after resection (ICG-PDR: 11.1 ± 1.1 vs 16.5 ± 1.4%/min; p = 0.035). Conclusions This pilot study shows that RIPC has potential to reduce liver injury following hepatectomy justifying a prospective RCT powered to demonstrate clinical benefits.
Collapse
Affiliation(s)
- Sanjeev Kanoria
- Hepato-Pancreatico-Biliary and Liver Transplant Unit, University Department of Surgery, Royal Free Hospital, London, NW3 2QG, UK.,Department of Surgical and Interventional Science, Royal Free Campus, University College London, 9th Floor Royal Free Hospital, Pond Street, London, NW3 2QG, UK
| | - Francis P Robertson
- Hepato-Pancreatico-Biliary and Liver Transplant Unit, University Department of Surgery, Royal Free Hospital, London, NW3 2QG, UK. .,Department of Surgical and Interventional Science, Royal Free Campus, University College London, 9th Floor Royal Free Hospital, Pond Street, London, NW3 2QG, UK.
| | - Naimish N Mehta
- Hepato-Pancreatico-Biliary and Liver Transplant Unit, University Department of Surgery, Royal Free Hospital, London, NW3 2QG, UK.,Department of Surgical and Interventional Science, Royal Free Campus, University College London, 9th Floor Royal Free Hospital, Pond Street, London, NW3 2QG, UK
| | - Giuseppe Fusai
- Hepato-Pancreatico-Biliary and Liver Transplant Unit, University Department of Surgery, Royal Free Hospital, London, NW3 2QG, UK.,Department of Surgical and Interventional Science, Royal Free Campus, University College London, 9th Floor Royal Free Hospital, Pond Street, London, NW3 2QG, UK
| | - Dinesh Sharma
- Hepato-Pancreatico-Biliary and Liver Transplant Unit, University Department of Surgery, Royal Free Hospital, London, NW3 2QG, UK
| | - Brian R Davidson
- Hepato-Pancreatico-Biliary and Liver Transplant Unit, University Department of Surgery, Royal Free Hospital, London, NW3 2QG, UK.,Department of Surgical and Interventional Science, Royal Free Campus, University College London, 9th Floor Royal Free Hospital, Pond Street, London, NW3 2QG, UK
| |
Collapse
|
46
|
Remote Ischemic Preconditioning: A Novel Strategy in Rescuing Older Livers From Ischemia-reperfusion Injury in a Rodent Model. Ann Surg 2017; 264:797-803. [PMID: 27584570 DOI: 10.1097/sla.0000000000001765] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The aim of this study was to determine whether remote ischemic preconditioning (RIPC) protects aged liver against ischemia reperfusion (IR). SUMMARY OF BACKGROUND DATA The demands for liver surgery in an aging population are growing. Clamping of vessels to prevent blood loss is integral to liver surgery, but the resulting IR injury (IRI) augments postoperative complications. More so, sensitivity to hepatic IRI increases with age; however, no strategies have been developed that specifically protect old liver. RIPC, a novel protective approach, was performed distant to the surgical site. Whether RIPC may also protect old liver from IRI is unknown. METHODS RIPC to the femoral vascular bundle was compared against direct ischemic preconditioning (IPC) and the standard of care intermittent clamping (IC) using a model of partial hepatic ischemia in mice aged 20 to 24 months. Liver injury was measured 6 hours after reperfusion. Protective signaling (serotonin-Vegf-Il10/Mmp8 axis, Kupffer cell polarization) was assessed immediately after preconditioning. Neutralizing antibody was used to test the role of Vegf. Hepatic vasculature was examined by electron microscopy. RESULTS RIPC was superior over other strategies in protecting old liver from IRI, with standard IPC approaches being ineffective. RIPC induced the strongest elevations in circulating Vegf, and Vegf inhibition dampened protective signaling and abrogated the protective effects. RIPC was further associated with improvements in vascular functionality. CONCLUSIONS RIPC is highly effective in protecting old liver from ischemic insults, mainly owing to its ability to induce circulating Vegf. These findings warrant efforts toward clinical translation.
Collapse
|
47
|
Abstract
The process of ageing has an impact on the entire human body including the organ systems. In transplantation, professionals are daily faced with risk assessment of suitable donor offers , whether to accept a liver graft for a specific recipient. In this context, livers from elderly donors are more frequently accepted for transplantation, to increase the donor pool and compensate the high waiting list mortality. In the current practice it is not unusual to accept 60-year old donor livers for transplantation, as the donor demographics have significantly changed over the years. However, controversy exists regarding the use of livers from donors above 70 or 80 years, particular in combination with other risk factors, e.g. liver steatosis, warm ischaemia or long cold storage. This review focuses first on the impact of ageing on liver morphology and function. Second, we will highlight outcome after transplantation from elderly donors. Finally, we describe further risk factors and donor-recipient selection under the scope of old donor organs and include our institutional experience and policy.
Collapse
|
48
|
Otis JP, Pike AC, Torrealba JR, Carey HV. Hibernation reduces cellular damage caused by warm hepatic ischemia-reperfusion in ground squirrels. J Comp Physiol B 2017; 187:639-648. [PMID: 28144740 DOI: 10.1007/s00360-017-1056-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/06/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022]
Abstract
During the hibernation season, livers from 13-lined ground squirrels (Ictidomys tridecemlineatus) are resistant to damage induced by ex vivo, cold ischemia-warm reperfusion (IR) compared with livers from summer squirrels or rats. Here, we tested the hypothesis that hibernation also reduces damage to ground squirrel livers in an in vivo, warm IR model, which more closely resembles complications associated with traumatic injury or surgical interventions. We also examined whether protection is mediated by two metabolites, inosine and biliverdin, that are elevated in ground squirrel liver during interbout arousals. Active squirrels in spring and hibernators during natural arousals to euthermia (body temperature 37 °C) were subject to liver IR or sham treatments. A subset of hibernating squirrels was pre-treated with compounds that inhibit inosine synthesis/signaling or biliverdin production. This model of liver IR successfully induced hepatocellular damage as indicated by increased plasma liver enzymes (ALT, AST) and hepatocyte apoptosis index compared to sham in both seasons, with greater elevations in spring squirrels. In addition, liver congestion increased after IR to a similar degree in spring and hibernating groups. Microvesicular steatosis was not affected by IR within the same season but was greater in sham squirrels in both seasons. Plasma IL-6 increased ~twofold in hibernators pre-treated with a biliverdin synthesis inhibitor (SnPP) prior to IR, but was not altered by IR in untreated squirrels. The results show that hibernation provides protection to ground squirrel livers subject to warm IR. Further research is needed to clarify mechanisms responsible for endogenous protection of liver tissue under ischemic stress.
Collapse
Affiliation(s)
- Jessica P Otis
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA
| | - Amanda C Pike
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA
| | - Jose R Torrealba
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hannah V Carey
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA.
| |
Collapse
|
49
|
Ikegami T, Yoshizumi T, Sakata K, Uchiyama H, Harimoto N, Harada N, Itoh S, Nagatsu A, Soejima Y, Maehara Y. Left lobe living donor liver transplantation in adults: What is the safety limit? Liver Transpl 2016; 22:1666-1675. [PMID: 27540888 DOI: 10.1002/lt.24611] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/01/2016] [Indexed: 12/29/2022]
Abstract
Small-for-size syndrome (SFSS) is the most significant cause of graft loss after living donor liver transplantation (LDLT), especially after left lobe (LL) LDLT in adults. The safety limit of applying LL-LDLT in adults without severe SFSS with a high rate of lethality needs to be determined. A total of 207 LL-LDLTs in adults since September 2005 were evaluated to analyze the risk factors for severe SFSS, defined as a serum total bilirubin concentration of ≥20.0 mg/dL after LDLT. Although there were no significant differences in cumulative graft survival after LDLT between medium grafts (graft volume [GV] to standard liver volume [SLV] ratio ≥ 40.0%), small grafts (35.0% ≤ GV/SLV < 40.0%), and extra small grafts (GV/SLV < 35.0%), patients with severe SFSS showed a significantly lower 5-year graft survival rate than those without (42.9% versus 94.3%, respectively; P < 0.001). Multivariate analysis for severe SFSS after LL-LDLT showed that donor age of ≥48 years (P = 0.01), Model for End-Stage Liver Disease (MELD) score of ≥ 19 (P < 0.01), and end portal venous pressure of ≥19 mm Hg (P = 0.04) were the significant and independent factors for severe SFSS after LL-LDLT. Within such high-risk subgroups of patients with a donor age of ≥48 years or MELD score of ≥ 19 before LDLT, operative blood loss volume of ≥8.0 L was a risk factor for severe SFSS. LL-LDLT in adults could be indicated and provide acceptable outcomes for the combinations of donors aged < 48 years and recipients with a MELD score of <19. Smaller grafts might yield acceptable outcomes in appropriately selected donor-recipient combinations. Liver Transplantation 22 1666-1675 2016 AASLD.
Collapse
Affiliation(s)
- Toru Ikegami
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhito Sakata
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideaki Uchiyama
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Norifumi Harimoto
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noboru Harada
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Itoh
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akihisa Nagatsu
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Soejima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
50
|
Cannistrà M, Ruggiero M, Zullo A, Gallelli G, Serafini S, Maria M, Naso A, Grande R, Serra R, Nardo B. Hepatic ischemia reperfusion injury: A systematic review of literature and the role of current drugs and biomarkers. Int J Surg 2016; 33 Suppl 1:S57-70. [PMID: 27255130 DOI: 10.1016/j.ijsu.2016.05.050] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatic ischemia reperfusion injury (IRI) is not only a pathophysiological process involving the liver, but also a complex systemic process affecting multiple tissues and organs. Hepatic IRI can seriously impair liver function, even producing irreversible damage, which causes a cascade of multiple organ dysfunction. Many factors, including anaerobic metabolism, mitochondrial damage, oxidative stress and secretion of ROS, intracellular Ca(2+) overload, cytokines and chemokines produced by KCs and neutrophils, and NO, are involved in the regulation of hepatic IRI processes. Matrix Metalloproteinases (MMPs) can be an important mediator of early leukocyte recruitment and target in acute and chronic liver injury associated to ischemia. MMPs and neutrophil gelatinase-associated lipocalin (NGAL) could be used as markers of I-R injury severity stages. This review explores the relationship between factors and inflammatory pathways that characterize hepatic IRI, MMPs and current pharmacological approaches to this disease.
Collapse
Affiliation(s)
- Marco Cannistrà
- Department of Surgery, Annunziata Hospital of Cosenza, Cosenza, Italy.
| | - Michele Ruggiero
- Department of Surgery, Annunziata Hospital of Cosenza, Cosenza, Italy.
| | - Alessandra Zullo
- Department of Medical and Surgical Sciences, University of Catanzaro, Italy.
| | - Giuseppe Gallelli
- Department of Emergency, Pugliese-Ciaccio Hospital, Catanzaro, Italy.
| | - Simone Serafini
- Department of Surgery, Annunziata Hospital of Cosenza, Cosenza, Italy.
| | - Mazzitelli Maria
- Department of Primary Care, Provincial Health Authority of Vibo Valentia, 89900 Vibo Valentia, Italy.
| | - Agostino Naso
- Department of Medical and Surgical Sciences, University of Catanzaro, Italy.
| | - Raffaele Grande
- Department of Medical and Surgical Sciences, University of Catanzaro, Italy.
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, University of Catanzaro, Italy.
| | - Bruno Nardo
- Department of Surgery, Annunziata Hospital of Cosenza, Cosenza, Italy; Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital, University of Bologna, Italy.
| |
Collapse
|