1
|
Dokur M, Uysal E, Kucukdurmaz F, Altinay S, Polat S, Batcioglu K, Yilmaztekin Y, Guney T, Sapmaz Ercakalli T, Yaylali A, Sezgin E, Cetin Z, Saygili EI, Barut O, Kazimoglu H, Maralcan G, Koc S, Sokucu M, Dokur Yeni SN. Targeting the PANoptosome Using Necrostatin-1 Reduces PANoptosis and Protects the Kidney Against Ischemia-Reperfusion Injury in a Rat Model of Controlled Experimental Nonheart-Beating Donor. Transplant Proc 2024; 56:2268-2279. [PMID: 39632197 DOI: 10.1016/j.transproceed.2024.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE Reducing renal ischemia is crucial for the function and survival of grafts from nonheartbeat donors, as it leads to inflammatory responses and tubulointerstitial damage. The primary concern with organs from nonheartbeat donors is the long warm ischemia period and reperfusion injury following renal transplantation. This study had two main goals; one goal is to determine how Necrostatin-1 targeting the PANoptosome affects PANoptosis in the nonheart-beating donor rat model. The other goal is to find out if Necrostatin-1 can protect the kidney from ischemic injury for renal transplantation surgery. METHODS Twenty-four rats were grouped randomly as control and Necrostatin-1 in this experimental animal study, and we administered 1.65 mg/kg of Necrostatin-1 intraperitoneally to the experimental group for 30 minutes before cardiac arrest. We removed the rats' left kidneys and measured various oxidative stress marker measures such as malondialdehyde, superoxide dismutase, catalase, GPx, and 8-hydroxy-2-deoxyguanosine levels. We then subjected the tissues to immunohistochemical analysis, electron microscopy, and histopathological analysis. FINDINGS The Necrostatin-1 group had a lower total tubular injury score (P < .001) and less Caspase-3, gasdermin D, and mixed lineage kinase domain-like protein expression. Additionally, the apoptotic index of the study group was lower (P < .001). Furthermore, the study group had higher levels of superoxide dismutase and GPx (P < .05), whereas malondialdehyde levels were reduced (P = .009). Electron microscopy also revealed a significant improvement in tissue structure in the Necrostatin-1 group. CONCLUSION Necrostatin-1 protects against ischemic acute kidney injury in nonheart-beating donor rats by inhibiting PANoptosis via the blockade of RIPK1. As a result of this, Necrostatin-1 may offer novel opportunities for protecting donor kidneys from renal ischemia-reperfusion injury during transplantation in patients with end-stage kidney disease requiring a renal transplantation.
Collapse
Affiliation(s)
- Mehmet Dokur
- Department of Emergency Medicine, Biruni University Faculty of Medicine, Istanbul, Turkey.
| | - Erdal Uysal
- Department of General Surgery, Sanko University Faculty of Medicine, Gaziantep, Turkey
| | | | - Serdar Altinay
- Deparment of Pathology, University of Health Sciences Faculty of Medicine, Antalya City Hospital, Antalya, Turkey
| | - Sait Polat
- Department of Histology and Embryology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Kadir Batcioglu
- Department of Biochemistry, Inonu University Faculty of Pharmacy, Malatya, Turkey
| | - Yakup Yilmaztekin
- Department of Biochemistry, Inonu University Faculty of Pharmacy, Malatya, Turkey
| | - Turkan Guney
- Department of Medical Biochemistry, Bilecik Şeyh Edebali University Faculty of Medicine, Bilecik, Turkey
| | - Tugce Sapmaz Ercakalli
- Department of Histology and Embryology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Asli Yaylali
- Department of Histology and Embryology and IVF Center, Kahramanmaras Sutçu Imam University Faculty of Medicine, Kahramanmaras, Turkey
| | - Efe Sezgin
- Department of Food Engineering, Izmir Institute of Technology, Izmir, Turkey
| | - Zafer Cetin
- Department of Medical Biology, Sanko University Faculty of Medicine, Gaziantep, Turkey
| | - Eyup Ilker Saygili
- Department of Medical Biochemistry, Sanko University Faculty of Medicine, Gaziantep, Turkey
| | - Osman Barut
- Department of Urology, Kahramanmaras Sutcu Imam University Faculty of Medicine, Kahramanmaras, Turkey
| | - Hatem Kazimoglu
- Department of Urology, Sanko University School of Medicine, Gaziantep, Turkey
| | - Gokturk Maralcan
- Department of General Surgery, Sanko University Faculty of Medicine, Gaziantep, Turkey
| | - Suna Koc
- Department of Anesthesiology and Reanimation, Biruni University Faculty of Medicine, Istanbul, Turkey
| | - Mehmet Sokucu
- Department of Pathology, Sanko University Faculty of Medicine, Gaziantep, Turkey
| | - Sema Nur Dokur Yeni
- Department of Internal Medicine, Marmara University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
2
|
Wu S, Qian H, Zou X, Liu R. Combination of Deferoxamine With Cyclosporine Synergistically Blunt Renal Cold Ischemia-Reperfusion Injury in Rat Transplantation Model. Transplant Proc 2024; 56:1732-1739. [PMID: 39242312 DOI: 10.1016/j.transproceed.2024.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
OBJECTIVES Ferroptosis plays a pivotal role in the pathogenesis of renal ischemia-reperfusion injury, where the processes are mediated by free ferrous ions and mitochondrial-released reactive oxygen species. However, the administration of high doses of cyclosporine A (CsA) or deferoxamine (DFO) poses a significant risk of renotoxicity. In contrast, low doses of DFO act as a ferrous iron chelator, and CsA functions as a mitochondrial reactive oxygen species blocker. This study aims to explore the potential protective effects of donor treatment with low-dose CsA, DFO, or their combination against ischemia-reperfusion injury during renal transplantation in a rat model. MATERIALS AND METHODS In an ex vivo cold storage (CS) model utilizing renal slices, the impact of incorporating DFO, CsA, and a combination of both into the University of Wisconsin solution was assessed through the measurement of lactate dehydrogenase leakage. Additionally, their potential benefits were investigated in a rat donation after circulatory death (DCD) kidney transplant model, where the extent of damage was evaluated based on graft function, tubular necrosis, and inflammation. RESULTS The co-administration of DFO and CsA effectively decreased the release of lactate dehydrogenase induced by CS ( P ≥ .05). In the in vivo model, this combined supplementation demonstrated a mitigating effect on reperfusion injury, evidenced by lower blood urea nitrogen levels and acute tubular necrosis scores compared to the control group (allP ≤ .05). Furthermore, the combined treatment significantly reduced apoptotic levels compared to the control group (P ≥ .05). CONCLUSIONS The combined treatment with DFO and CsA mitigated the cold ischemia-reperfusion injury in the DCD kidney. Hence, this presents a new strategy for the CS of DCD kidney in clinical transplants.
Collapse
Affiliation(s)
- Shaohua Wu
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
| | - Huaying Qian
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
| | - Xunfeng Zou
- Tianjin First Center Hospital, Tianjin, China
| | - Rui Liu
- Tianjin Union Medical Centre, Tianjin, China.
| |
Collapse
|
3
|
Guo S, Li Z, Liu Y, Cheng Y, Jia D. Ferroptosis: a new target for hepatic ischemia-reperfusion injury? Free Radic Res 2024; 58:396-416. [PMID: 39068663 DOI: 10.1080/10715762.2024.2386075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Ischemia-reperfusion injury (IRI) can seriously affect graft survival and prognosis and is an unavoidable event during liver transplantation. Ferroptosis is a novel iron-dependent form of cell death characterized by iron accumulation and overwhelming lipid peroxidation; it differs morphologically, genetically, and biochemically from other well-known cell death types (autophagy, necrosis, and apoptosis). Accumulating evidence has shown that ferroptosis is involved in the pathogenesis of hepatic IRI, and targeting ferroptosis may be a promising therapeutic approach. Here, we review the pathways and phenomena involved in ferroptosis, explore the associations and implications of ferroptosis and hepatic IRI, and discuss possible strategies for modulating ferroptosis to alleviate the hepatic IRI.
Collapse
Affiliation(s)
- Shanshan Guo
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zexin Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Ying Cheng
- Department of Organ Transplantation, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Degong Jia
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Li C, Wu Y, Chen K, Chen R, Xu S, Yang B, Lian Z, Wang X, Wang K, Xie H, Zheng S, Liu Z, Wang D, Xu X. Gp78 deficiency in hepatocytes alleviates hepatic ischemia-reperfusion injury via suppressing ACSL4-mediated ferroptosis. Cell Death Dis 2023; 14:810. [PMID: 38065978 PMCID: PMC10709349 DOI: 10.1038/s41419-023-06294-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Ferroptosis, which is driven by iron-dependent lipid peroxidation, plays an essential role in liver ischemia-reperfusion injury (IRI) during liver transplantation (LT). Gp78, an E3 ligase, has been implicated in lipid metabolism and inflammation. However, its role in liver IRI and ferroptosis remains unknown. Here, hepatocyte-specific gp78 knockout (HKO) or overexpressed (OE) mice were generated to examine the effect of gp78 on liver IRI, and a multi-omics approach (transcriptomics, proteomics, and metabolomics) was performed to explore the potential mechanism. Gp78 expression decreased after reperfusion in LT patients and mice with IRI, and gp78 expression was positively correlated with liver damage. Gp78 absence from hepatocytes alleviated liver damage in mice with IRI, ameliorating inflammation. However, mice with hepatic gp78 overexpression showed the opposite phenotype. Mechanistically, gp78 overexpression disturbed lipid homeostasis, remodeling polyunsaturated fatty acid (PUFA) metabolism, causing oxidized lipids accumulation and ferroptosis, partly by promoting ACSL4 expression. Chemical inhibition of ferroptosis or ACSL4 abrogated the effects of gp78 on ferroptosis and liver IRI. Our findings reveal a role of gp78 in liver IRI pathogenesis and uncover a mechanism by which gp78 promotes hepatocyte ferroptosis by ACSL4, suggesting the gp78-ACSL4 axis as a feasible target for the treatment of IRI-associated liver damage.
Collapse
Affiliation(s)
- Changbiao Li
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Yichao Wu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Kangchen Chen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Ronggao Chen
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shengjun Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Beng Yang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhengxing Lian
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Xiaodong Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Kai Wang
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Haiyang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, 311112, China
| | - Zhikun Liu
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
| | - Di Wang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
| |
Collapse
|
5
|
Vinke JSJ, Francke MI, Eisenga MF, Hesselink DA, de Borst MH. Iron deficiency after kidney transplantation. Nephrol Dial Transplant 2020; 36:1976-1985. [PMID: 32910168 PMCID: PMC8577626 DOI: 10.1093/ndt/gfaa123] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Indexed: 12/30/2022] Open
Abstract
Iron deficiency (ID) is highly prevalent in kidney transplant recipients (KTRs) and has been independently associated with an excess mortality risk in this population. Several causes lead to ID in KTRs, including inflammation, medication and an increased iron need after transplantation. Although many studies in other populations indicate a pivotal role for iron as a regulator of the immune system, little is known about the impact of ID on the immune system in KTRs. Moreover, clinical trials in patients with chronic kidney disease or heart failure have shown that correction of ID, with or without anaemia, improves exercise capacity and quality of life, and may improve survival. ID could therefore be a modifiable risk factor to improve graft and patient outcomes in KTRs; prospective studies are warranted to substantiate this hypothesis.
Collapse
Affiliation(s)
- Joanna Sophia J Vinke
- Department of Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marith I Francke
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Michele F Eisenga
- Department of Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Martin H de Borst
- Department of Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Ghafourian K, Chang H, Ardehali H. Intravenous iron therapy in heart failure: a different perspective. Eur J Heart Fail 2019; 21:703-714. [DOI: 10.1002/ejhf.1434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
- Kambiz Ghafourian
- Feinberg Cardiovascular Research Institute, and Department of Medicine, Feinberg School of MedicineNorthwestern University Chicago IL USA
| | - Hsiang‐Chun Chang
- Feinberg Cardiovascular Research Institute, and Department of Medicine, Feinberg School of MedicineNorthwestern University Chicago IL USA
| | - Hossein Ardehali
- Feinberg Cardiovascular Research Institute, and Department of Medicine, Feinberg School of MedicineNorthwestern University Chicago IL USA
| |
Collapse
|
7
|
Uysal E, Dokur M, Altınay S, Saygılı Eİ, Batcıoglu K, Ceylan MS, Kazımoglu H, Uyumlu BA, Karadag M. Investigation of the Effect of Milrinone on Renal Damage in an Experimental Non-Heart Beating Donor Model. J INVEST SURG 2017; 31:402-411. [DOI: 10.1080/08941939.2017.1343880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Erdal Uysal
- Department of General Surgery, Sanko University School of Medicine, Gaziantep, Turkey
| | - Mehmet Dokur
- Emergency, Dr. Necip Fazil City Hospital, Kahramanmaras, Turkey
| | - Serdar Altınay
- Department of Pathology, Bakırköy Dr Sadi Konuk Health Application and Research Center, Istanbul, Turkey
| | - Eyup İlker Saygılı
- Department of Biochemistry, Sanko University School of Medicine, Gaziantep, Turkey
| | - Kadir Batcıoglu
- Department of Biochemistry, Inonu University Faculty of Pharmacy, Malatya, Turkey
| | | | - Hatem Kazımoglu
- Department of Urology, Sanko Universitesi Tip Fakultesi, Gaziantep, Turkey
| | | | - Mehmet Karadag
- Biostatistic and Medical Informatics, Health Sciences Institute, Inonu University, Malatya, Turkey
| |
Collapse
|
8
|
Nenkova G, Stefanov R, Chervenkov M, Alexandrova A. Preventive effect of Desferal on sperm motility and morphology. Cell Biochem Funct 2016; 34:423-8. [PMID: 27470902 DOI: 10.1002/cbf.3203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 11/09/2022]
Abstract
Transition metal ions, mainly iron, are involved in the generation of highly reactive hydroxyl radicals, which are the most powerful inducers of oxidative damage to all biomolecules. The lipids in sperm membranes are highly susceptible to oxidation. Sperm lipid peroxidation (LPO) leads to decrease of motility and reduction of likelihood for sperm-oocyte fusion. The excess radical production may affect also the spermatozoa morphology. The aim of the present study was to investigate the effect of Desferal on the LPO, motility, and morphology of boar sperm subjected to oxidative stress. After collection, the ejaculates were equally separated and diluted in a commercial semen extender (experiment 1) or in physiological saline (experiment 2). The ejaculates of the 2 experiments were divided into aliquots, which were incubated with one of the following agents: FeSO4 (0.1mM), H2 O2 (0.5mM), or FeSO4 + H2 O2 (Fenton system), in the presence or absence of Desferal. The application of Desferal in the incubation medium had a protective effect against FeSO4 + H2 O2 -induced sperm damage, namely, decrease of LPO; decrease the quantity of immotile spermatozoa and decrease the number of morphological abnormalities, regardless of the used medium. In experiment 2, the presence of FeSO4 in the incubation medium induced LPO in the same range as the combination FeSO4 + H2 O2 , in which the effect was reduced by Desferal. Thus, the supplement of Desferal to media used for sperm storage and processing could be a useful tool for diminishing oxidative injury and improving the quality of the semen.
Collapse
Affiliation(s)
- Galina Nenkova
- Laboratory of Free Radical Processes, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Rossen Stefanov
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mihail Chervenkov
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Albena Alexandrova
- Laboratory of Free Radical Processes, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
9
|
Wakiya T, Sanada Y, Urahashi T, Ihara Y, Yamada N, Okada N, Hirata Y, Hakamada K, Yasuda Y, Mizuta K. Impact of the serum ferritin concentration in liver transplantation. Liver Transpl 2015. [PMID: 26224663 DOI: 10.1002/lt.24222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The serum ferritin (SF) concentration is a widely available and objective laboratory parameter. SF is also widely recognized as an acute-phase reactant. The purpose of the present study was to identify the chronological changes in the recipient's SF concentration during liver transplantation (LT) and to clarify factors having an effect on the recipient's intraoperative SF level. In addition, the study retrospectively evaluated the usefulness of measuring SF during LT. Ninety-eight pediatric recipients were retrospectively analyzed. The data were analyzed and compared according to the SF level in the recipient. Patients were classified into 2 groups based on the intraoperative peak SF levels of ≤ 1000 ng/mL (low-SF group) or >1000 ng/mL (high-SF group). The SF value increased dramatically after reperfusion and fell to normal levels within the early postoperative period. The warm ischemia time (WIT) was significantly longer in the high-SF group (47.0 versus 58.5 minutes; P = 0.003). In addition, a significant positive correlation was observed between the peak SF value and WIT (r = 0.35; P < 0.001). There were significant positive correlations between the peak SF value and the donors' preoperative laboratory data, including transaminases, cholinesterase, hemoglobin, transferrin saturation, and SF, of which SF showed the strongest positive correlation (r = 0.74; P < 0.001). The multivariate analysis revealed that WIT and donor's SF level were a significant risk factor for high SF level in the recipient (P = 0.007 and 0.02, respectively). In conclusion, the SF measurement can suggest the degree of ischemia/reperfusion injury (IRI). A high SF level in the donor is associated with the risk of further acute reactions, such as IRI, in the recipient.
Collapse
Affiliation(s)
- Taiichi Wakiya
- Departments of Transplant Surgery, Jichi Medical University, Shimotsuke City, Japan.,Department of Gastroenterological Surgery, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Yukihiro Sanada
- Departments of Transplant Surgery, Jichi Medical University, Shimotsuke City, Japan
| | - Taizen Urahashi
- Departments of Transplant Surgery, Jichi Medical University, Shimotsuke City, Japan
| | - Yoshiyuki Ihara
- Departments of Transplant Surgery, Jichi Medical University, Shimotsuke City, Japan
| | - Naoya Yamada
- Departments of Transplant Surgery, Jichi Medical University, Shimotsuke City, Japan
| | - Noriki Okada
- Departments of Transplant Surgery, Jichi Medical University, Shimotsuke City, Japan
| | - Yuta Hirata
- Departments of Transplant Surgery, Jichi Medical University, Shimotsuke City, Japan
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Yoshikazu Yasuda
- Department of Surgery, Jichi Medical University, Shimotsuke City, Japan
| | - Koichi Mizuta
- Departments of Transplant Surgery, Jichi Medical University, Shimotsuke City, Japan
| |
Collapse
|
10
|
Schaefer B, Effenberger M, Zoller H. Iron metabolism in transplantation. Transpl Int 2014; 27:1109-17. [PMID: 24964028 DOI: 10.1111/tri.12374] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/02/2014] [Accepted: 06/17/2014] [Indexed: 01/19/2023]
Abstract
Recipient's iron status is an important determinant of clinical outcome in transplantation medicine. This review addresses iron metabolism in solid organ transplantation, where the role of iron as a mediator of ischemia-reperfusion injury, as an immune-modulatory element, and as a determinant of organ and graft function is discussed. Although iron chelators reduce ischemia-reperfusion injury in cell and animal models, these benefits have not yet been implemented into clinical practice. Iron deficiency and iron overload are associated with reduced immune activation, whose molecular mechanisms are reviewed in detail. Furthermore, iron overload and hyperferritinemia are associated with poor prognosis in end-stage organ failure in patients awaiting kidney, or liver transplantation. This negative prognostic impact of iron overload appears to persist after transplantation, which highlights the need for optimizing iron management before and after solid organ transplantation. In contrast, iron deficiency and anemia are also associated with poor prognosis in patients with end-stage heart failure. Intravenous iron supplementation should be managed carefully because parenterally induced iron overload could persist after successful transplantation. In conclusion, current evidence shows that iron overload and iron deficiency are important risk factors before and after solid organ transplantation. Iron status should therefore be actively managed in patients on the waiting list and after transplantation.
Collapse
Affiliation(s)
- Benedikt Schaefer
- Department of Medicine II, Gastroenterology and Hepatology, Medical University of Innsbruck, Innsbruck, Austria
| | | | | |
Collapse
|