1
|
Coppola B, Menotti F, Longo F, Banche G, Mandras N, Palmero P, Allizond V. New Generation of Osteoinductive and Antimicrobial Polycaprolactone-Based Scaffolds in Bone Tissue Engineering: A Review. Polymers (Basel) 2024; 16:1668. [PMID: 38932017 PMCID: PMC11207319 DOI: 10.3390/polym16121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
With respect to other fields, bone tissue engineering has significantly expanded in recent years, leading not only to relevant advances in biomedical applications but also to innovative perspectives. Polycaprolactone (PCL), produced in the beginning of the 1930s, is a biocompatible and biodegradable polymer. Due to its mechanical and physicochemical features, as well as being easily shapeable, PCL-based constructs can be produced with different shapes and degradation kinetics. Moreover, due to various development processes, PCL can be made as 3D scaffolds or fibres for bone tissue regeneration applications. This outstanding biopolymer is versatile because it can be modified by adding agents with antimicrobial properties, not only antibiotics/antifungals, but also metal ions or natural compounds. In addition, to ameliorate its osteoproliferative features, it can be blended with calcium phosphates. This review is an overview of the current state of our recent investigation into PCL modifications designed to impair microbial adhesive capability and, in parallel, to allow eukaryotic cell viability and integration, in comparison with previous reviews and excellent research papers. Our recent results demonstrated that the developed 3D constructs had a high interconnected porosity, and the addition of biphasic calcium phosphate improved human cell attachment and proliferation. The incorporation of alternative antimicrobials-for instance, silver and essential oils-at tuneable concentrations counteracted microbial growth and biofilm formation, without affecting eukaryotic cells' viability. Notably, this challenging research area needs the multidisciplinary work of material scientists, biologists, and orthopaedic surgeons to determine the most suitable modifications on biomaterials to design favourable 3D scaffolds based on PCL for the targeted healing of damaged bone tissue.
Collapse
Affiliation(s)
- Bartolomeo Coppola
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (B.C.); (P.P.)
| | - Francesca Menotti
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| | - Fabio Longo
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| | - Giuliana Banche
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| | - Narcisa Mandras
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| | - Paola Palmero
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (B.C.); (P.P.)
| | - Valeria Allizond
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| |
Collapse
|
2
|
Piatti E, Miola M, Liverani L, Verné E, Boccaccini AR. Poly(ε-caprolactone)/bioactive glass composite electrospun fibers for tissue engineering applications. J Biomed Mater Res A 2023; 111:1692-1709. [PMID: 37300320 DOI: 10.1002/jbm.a.37578] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
In this work, composite electrospun fibers containing innovative bioactive glass nanoparticles were produced and characterized. Poly(ε-caprolactone), benign solvents, and sol-gel B- and Cu-doped bioactive glass powders were used to fabricate fibrous scaffolds. The retention of bioactive glass nanoparticles in the polymer matrix, the electrospinnability of this novel solution and the obtained electrospun composites were extensively characterized. As a result, composite electrospun fibers characterized by biocompatibility, bioactivity, and exhibiting overall properties adequate for both hard and soft tissue engineering applications, have been produced. The addition of these bioactive glass nanoparticles was, indeed, able to impart bioactive properties to the fibers. Cell culture studies show promising results, demonstrating proliferation and growth of cells on the composite fibers. Wettability, degradation rate, and mechanical performance were also tested and are in line with previous results.
Collapse
Affiliation(s)
- Elisa Piatti
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Turin, Italy
| | - Marta Miola
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Turin, Italy
| | - Liliana Liverani
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nürnberg, Erlangen, Germany
- DGS S.p.A., Rome, Italy
| | - Enrica Verné
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Turin, Italy
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
3
|
Tolba E, Salama A, Saleh AK, Cruz-Maya I, Guarino V. Sodium Alginate- and Cationic Cellulose-Functionalized Polycaprolactone Nanofibers for In Vitro and Antibacterial Applications. Molecules 2023; 28:7305. [PMID: 37959725 PMCID: PMC10648260 DOI: 10.3390/molecules28217305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The use of polyelectrolytes is emerging as a fascinating strategy for the functionalization of biomedical membranes, due to their ability to enhance biological responses using the interaction effect of charged groups on multiple interface properties. Herein, two different polyelectrolytes were used to improve the antibacterial properties of polycaprolactone (PCL) nanofibers fabricated via electrospinning. First, a new cationic cellulose derivative, cellulose-bearing imidazolium tosylate (CIMD), was prepared via the nucleophilic substitution of the tosyl group using 1-methylimidazole, as confirmed by NMR analyses, and loaded into the PCL nanofibers. Secondly, sodium alginate (SA) was used to uniformly coat the fibers' surface via self-assembly, as remarked through SEM-EDX analyses. Polyelectrolyte interactions between the CIMD and the SA, initially detected using a FTIR analysis, were confirmed via Z potential measurements: the formation of a CMID/SA complex promoted a substantial charge neutralization of the fibers' surfaces with effects on the physical properties of the membrane in terms of water adsorption and in vitro degradation. Moreover, the presence of SA contributed to the in vitro response of human mesenchymal stem cells (hMSCs), as confirmed by a significant increase in the cells' viability after 7 days in the case of the PCL/CMID/SA complex with respect to the PCL and PCL/CMID membranes. Contrariwise, SA did not nullify the antibacterial effect of CMID, as confirmed by the comparable resistance exhibited by S. mutans, S. aureus, and E. coli to the PCL/CIMD and PCL/CIMD/SA membranes. All the reported results corroborate the idea that the CIMD/SA functionalization of PCL nanofibers has a great potential for the fabrication of efficient antimicrobial membranes for wound healing.
Collapse
Affiliation(s)
- Emad Tolba
- Polymers and Pigments Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo 12622, Egypt;
| | - Ahmed Salama
- Cellulose & Paper Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Ahmed K. Saleh
- Cellulose & Paper Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Iriczalli Cruz-Maya
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra d’Oltremare, V.le J.F. Kennedy 54, 80125 Naples, Italy
| | - Vincenzo Guarino
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra d’Oltremare, V.le J.F. Kennedy 54, 80125 Naples, Italy
| |
Collapse
|
4
|
Canales D, Moyano D, Alvarez F, Grande-Tovar CD, Valencia-Llano CH, Peponi L, Boccaccini AR, Zapata PA. Preparation and characterization of novel poly (lactic acid)/calcium oxide nanocomposites by electrospinning as a potential bone tissue scaffold. BIOMATERIALS ADVANCES 2023; 153:213578. [PMID: 37572597 DOI: 10.1016/j.bioadv.2023.213578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/04/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Calcium oxide nanoparticles (n-CaO) ca. 22 nm were obtained from eggshell waste. The n-CaO was incorporated into the PLA matrix in 10 and 20 wt% of filler content by electrospinning process to get PLA/n-CaO fibers with homogenous morphology and diameter as a potential use in scaffold for bone tissue regeneration. The incorporation of n-CaO into PLA modifies the mechanical properties, having a reinforcement effect on the matrix. The Young modulus for PLA/n-CaO nanocomposites increased between 122 and 138 % concerning neat PLA fibers, showing a more rigid behavior. The PLA/n-CaO nanocomposite fibers showed in vitro bioactivity, capable of inducing the precipitation of hydroxyapatite (HA) layer in the fiber surface after seven days in SBF solution. The biocidal and biological properties of PLA/n-Cao with 20 wt% showed a 30 % reduction in bacterial viability against S. aureus and 11 % against E. coli after 6 h of bacterial exposure. Furthermore, the fibers did not show a cytotoxic effect on the bone marrow ST-2 cell line, allowing cell adhesion and proliferation in the RPMI medium. The PLA/n-CaO with 20 wt% of nanoparticles showed a higher capacity to promote osteogenic differentiation, significantly increasing the alkaline phosphatase (ALP) expression after seven days compared to PLA and cell control. The in vivo analysis corroborated the biocompatibility of the prepared scaffolds; the presence of n-CaO in PLA reduced the formation of fibrous encapsulation of the material, improving the healing process. These results validated using n-CaO to enhance the functionality of polymer matrices as a PLA, bringing bioactive, biocide, and biocompatible properties, opening a new and interesting route to develop new biomaterials as a scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Daniel Canales
- Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile; Laboratorio de Biomecánica y Biomateriales, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Santiago de Chile, USACH, Santiago, Chile.
| | - Dominique Moyano
- Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile
| | - Fabian Alvarez
- Laboratorio de Biomecánica y Biomateriales, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Carlos David Grande-Tovar
- Grupo de Investigación en Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Carlos H Valencia-Llano
- Grupo de Investigación en Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Madrid, Spain
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; Bavarian Polymer Institute, 91058 Erlangen, Germany
| | - Paula A Zapata
- Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile.
| |
Collapse
|
5
|
Barbosa F, Garrudo FFF, Alberte PS, Resina L, Carvalho MS, Jain A, Marques AC, Estrany F, Rawson FJ, Aléman C, Ferreira FC, Silva JC. Hydroxyapatite-filled osteoinductive and piezoelectric nanofibers for bone tissue engineering. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2242242. [PMID: 37638280 PMCID: PMC10453998 DOI: 10.1080/14686996.2023.2242242] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/15/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023]
Abstract
Osteoporotic-related fractures are among the leading causes of chronic disease morbidity in Europe and in the US. While a significant percentage of fractures can be repaired naturally, in delayed-union and non-union fractures surgical intervention is necessary for proper bone regeneration. Given the current lack of optimized clinical techniques to adequately address this issue, bone tissue engineering (BTE) strategies focusing on the development of scaffolds for temporarily replacing damaged bone and supporting its regeneration process have been gaining interest. The piezoelectric properties of bone, which have an important role in tissue homeostasis and regeneration, have been frequently neglected in the design of BTE scaffolds. Therefore, in this study, we developed novel hydroxyapatite (HAp)-filled osteoinductive and piezoelectric poly(vinylidene fluoride-co-tetrafluoroethylene) (PVDF-TrFE) nanofibers via electrospinning capable of replicating the tissue's fibrous extracellular matrix (ECM) composition and native piezoelectric properties. The developed PVDF-TrFE/HAp nanofibers had biomimetic collagen fibril-like diameters, as well as enhanced piezoelectric and surface properties, which translated into a better capacity to assist the mineralization process and cell proliferation. The biological cues provided by the HAp nanoparticles enhanced the osteogenic differentiation of seeded human mesenchymal stem/stromal cells (MSCs) as observed by the increased ALP activity, cell-secreted calcium deposition and osteogenic gene expression levels observed for the HAp-containing fibers. Overall, our findings describe the potential of combining PVDF-TrFE and HAp for developing electroactive and osteoinductive nanofibers capable of supporting bone tissue regeneration.
Collapse
Affiliation(s)
- Frederico Barbosa
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Fábio F. F. Garrudo
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Department of Bioengineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Paola S. Alberte
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Leonor Resina
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Departament d’Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Marta S. Carvalho
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Akhil Jain
- Bioelectronics Laboratory, Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Ana C. Marques
- CERENA, Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Francesc Estrany
- Departament d’Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Frankie J. Rawson
- Bioelectronics Laboratory, Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Carlos Aléman
- Departament d’Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - João C. Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
6
|
Augustine R, Nikolopoulos VK, Camci-Unal G. Hydrogel-Impregnated Self-Oxygenating Electrospun Scaffolds for Bone Tissue Engineering. Bioengineering (Basel) 2023; 10:854. [PMID: 37508881 PMCID: PMC10376476 DOI: 10.3390/bioengineering10070854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Bone defects resulting from trauma, disease, or aging present significant challenges in the clinic. Although biomaterial scaffolds for bone-tissue engineering have shown promising results, challenges remain, including the need for adequate mechanical strength and suitable bioactive agents within scaffolds to promote bone formation. Oxygen is a critical factor for successful bone formation, and low oxygen tension inhibits it. In this study, we developed gelatin methacryloyl (GelMA) hydrogel-impregnated electrospun polycaprolactone (PCL) scaffolds that can release oxygen over 3 weeks. We investigated the potential of composite scaffolds for cell survival in bone-tissue engineering. Our results showed that the addition of an increased amount of CaO2 nanoparticles to the PCL scaffolds significantly increased oxygen generation, which was modulated by GelMA impregnation. Moreover, the resulting scaffolds showed improved cytocompatibility, pre-osteoblast adhesion, and proliferation under hypoxic conditions. This finding is particularly relevant since hypoxia is a prevalent feature in various bone diseases. In addition to providing oxygen, CaO2 nanoparticles also act as reinforcing agents improving the mechanical property of the scaffolds, while the incorporation of GelMA enhances cell adhesion and proliferation properties. Overall, our newly developed self-oxygenating composite biomaterials are promising scaffolds for bone-tissue engineering applications.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (R.A.); (V.K.N.)
| | - Vasilios K. Nikolopoulos
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (R.A.); (V.K.N.)
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (R.A.); (V.K.N.)
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
7
|
Ghafari F, Karbasi S, Eslaminejad MB, Sayahpour FA, Kalantari N. Biological evaluation and osteogenic potential of polyhydroxybutyrate-keratin/Al 2O 3 electrospun nanocomposite scaffold: A novel bone regeneration construct. Int J Biol Macromol 2023; 242:124602. [PMID: 37141963 DOI: 10.1016/j.ijbiomac.2023.124602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023]
Abstract
In this study, the effect of alumina nanowire on the physical and biological properties of polyhydroxybutyrate-keratin (PHB-K) electrospun scaffold was investigated. First, PHB-K/alumina nanowire nanocomposite scaffolds were made with an optimal concentration of 3 wt% alumina nanowire by using the electrospinning method. The samples were examined in terms of morphology, porosity, tensile strength, contact angle, biodegradability, bioactivity, cell viability, ALP activity, mineralization ability, and gene expression. The nanocomposite scaffold provided a porosity of >80 % and a tensile strength of about 6.72 Mpa, which were noticeable for an electrospun scaffold. AFM images showed an increase in the surface roughness with the presence of alumina nanowires. This led to an improvement in the degradation rate and bioactivity of PHB-K/alumina nanowire scaffolds. The viability of mesenchymal cells, alkaline phosphatase secretion, and mineralization significantly increased with the presence of alumina nanowire compared to PHB and PHB-K scaffolds. In addition, the expression level of collagen I, osteocalcin, and RUNX2 genes in nanocomposite scaffolds increased significantly compared to other groups. In general, this nanocomposite scaffold could be a novel and interesting construct for osteogenic induction in bone tissue engineering.
Collapse
Affiliation(s)
- Fereshte Ghafari
- Department of Tissue Engineering, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advance Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Tissue Engineering, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran; Department of Stem Cells and Departmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Forough Azam Sayahpour
- Department of Stem Cells and Departmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar Kalantari
- Department of Stem Cells and Departmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
8
|
Quilez-Molina AI, Barroso-Solares S, Hurtado-García V, Heredia-Guerrero JA, Rodriguez-Mendez ML, Rodríguez-Pérez MÁ, Pinto J. Encapsulation of Copper Nanoparticles in Electrospun Nanofibers for Sustainable Removal of Pesticides. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20385-20397. [PMID: 37061951 PMCID: PMC10141258 DOI: 10.1021/acsami.3c00849] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
The excellent catalytic properties of copper nanoparticles (CuNPs) for the degradation of the highly toxic and recalcitrant chlorpyrifos pesticide are widely known. However, CuNPs generally present low stability caused by their high sensitivity to oxidation, which leads to a change of the catalytic response over time. In the current work, the immobilization of CuNPs into a polycaprolactone (PCL) matrix via electrospinning was demonstrated to be a very effective method to retard air and solvent oxidation and to ensure constant catalytic activity in the long term. CuNPs were successfully anchored into PCL electrospun fibers in the form of Cu2O at different concentrations (from 1.25 wt % to 5 wt % with respect to the PCL), with no signs of loss by leaching out. The PCL mats loaded with 2.5 wt % Cu (PCL-2.5Cu) almost halved the initial concentration of pesticide (40 mg/L) after 96 h. This process was performed in two unprompted and continuous steps that consisted of adsorption, followed by degradation. Interestingly, the degradation process was independent of the light conditions (i.e., not photocatalytic), expanding the application environments (e.g., groundwaters). Moreover, the PCL-2.5Cu composite presents high reusability, retaining the high elimination capability for at least five cycles and eliminating a total of 100 mg/L of chlorpyrifos, without exhibiting any sign of morphological damages.
Collapse
Affiliation(s)
- Ana Isabel Quilez-Molina
- Cellular
Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography,
and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
- BioEcoUVA
Research Institute on Bioeconomy, Calle Dr. Mergelina, Valladolid 47011, Spain
| | - Suset Barroso-Solares
- Cellular
Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography,
and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
- BioEcoUVA
Research Institute on Bioeconomy, Calle Dr. Mergelina, Valladolid 47011, Spain
- Archaeological
and Historical Materials (AHMAT) Research Group, Condensed Matter
Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
| | - Violeta Hurtado-García
- Cellular
Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography,
and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
- Archaeological
and Historical Materials (AHMAT) Research Group, Condensed Matter
Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
| | - José Alejandro Heredia-Guerrero
- Instituto
de Hortofruticultura Subtropical y Mediterránea “La
Mayora”, Universidad de Málaga-Consejo
Superior de Investigaciones Científicas (IHSM, UMA-CSIC), Bulevar Louis Pasteur 49, Málaga 29010, Spain
| | - María Luz Rodriguez-Mendez
- BioEcoUVA
Research Institute on Bioeconomy, Calle Dr. Mergelina, Valladolid 47011, Spain
- Group
UVaSens, Escuela de Ingenierías Industriales, Universidad de Valladolid, Paseo del Cauce, 59, Valladolid 47011, Spain
| | - Miguel Ángel Rodríguez-Pérez
- Cellular
Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography,
and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
- BioEcoUVA
Research Institute on Bioeconomy, Calle Dr. Mergelina, Valladolid 47011, Spain
| | - Javier Pinto
- Cellular
Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography,
and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
- BioEcoUVA
Research Institute on Bioeconomy, Calle Dr. Mergelina, Valladolid 47011, Spain
- Archaeological
and Historical Materials (AHMAT) Research Group, Condensed Matter
Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
| |
Collapse
|
9
|
Turhan EA, Akbaba S, Tezcaner A, Evis Z. Boron nitride nanofiber/Zn-doped hydroxyapatite/polycaprolactone scaffolds for bone tissue engineering applications. BIOMATERIALS ADVANCES 2023; 148:213382. [PMID: 36963343 DOI: 10.1016/j.bioadv.2023.213382] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
In this study, Zn doped hydroxyapatite (Zn HA)/boron nitride nanofiber (BNNF)/poly-ε-caprolactone (PCL) composite aligned fibrous scaffolds are produced with rotary jet spinning (RJS) for bone tissue engineering applications. It is hypothesized that addition of Zn HA and BNNF will contribute to cell viability as well as mechanical and osteogenic properties of the PCL scaffolds. Zn HA was synthesized by mixing Ca and P sources followed by sonication and aging whereas BNNF was obtained by the reaction of melamine with boric acid followed by freeze-drying for annealing of fibers. It is found that incorporation of both Zn HA and BNNF in PCL fibers resulted in higher calcium phosphate (CaP) precipitation on the scaffolds. Also, in vitro cell culture studies showed that presence of both Zn HA and BNNF also had synergistic effect for enhanced proliferation and osteogenic activity of Saos-2 cells. Mechanical properties of PCL-Zn HA-BNNF were found similar to that of non-load bearing bones. Furthermore, the presence of Zn HA and BNNF had synergistic effects to cell attachment, proliferation and spreading without causing cytotoxic effect on cells. The highest ALP activity was obtained in the PCL-Zn HA- BNNF group at days 7 and 14 due to release of zinc, calcium, phosphate and boron. Considering its mechanical and bioactivity properties, PCL-Zn HA-BNNF composite scaffolds hold promise as non-load bearing bone substitutes.
Collapse
Affiliation(s)
- Emine Ayşe Turhan
- Department of Micro and Nanotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Sema Akbaba
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey; Boron Research Institute, Turkish Energy Nuclear and Mineral Research Agency, Ankara 06520, Turkey
| | - Ayşen Tezcaner
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey; Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey; Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Zafer Evis
- Department of Micro and Nanotechnology, Middle East Technical University, Ankara 06800, Turkey; Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey.
| |
Collapse
|
10
|
Canales DA, Piñones N, Saavedra M, Loyo C, Palza H, Peponi L, Leonés A, Baier RV, Boccaccini AR, Grünelwald A, Zapata PA. Fabrication and assessment of bifunctional electrospun poly(l-lactic acid) scaffolds with bioglass and zinc oxide nanoparticles for bone tissue engineering. Int J Biol Macromol 2023; 228:78-88. [PMID: 36565827 DOI: 10.1016/j.ijbiomac.2022.12.195] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/11/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Electrospun scaffolds based on poly(l-lactic acid) (PLLA) with bioglass (n-BG) and zinc oxide (n-ZnO), and mixture of both, were developed to design bifunctional biomaterials with enhanced bioactive and biocidal properties. The presence of n-BG increased the fiber diameter of the pure PLA from 1.5 ± 0.3 μm to 3.0 ± 0.8 μm for 20 wt%. ZnO and the mixed nanoparticles did not significantly affect the morphology. The mechanical properties decreased with the presence of nanoparticles. Scaffolds based on PLA/n-BG promoted hydroxyapatite (HA) formation in simulated body fluid (SBF) that was inhibited with the presence of ZnO. Notably, mixed particles produced bioactivity although at longer times. The incorporation of n-ZnO produced a biocidal capacity against S. aureus in the polymeric scaffold, reaching a viability reduction of 60 % after 6 h of exposure. When both types of nanoparticles were combined, the bacterial viability reduction was 30 %. Pure PLA scaffolds and the composites with n-BG showed good ST-2 bone marrow-derived cell line viability, scaffolds with n-BG (pure or mixture) presented lower viability. Results validated the use of both n-BG and n-ZnO fillers for the development of novel bifunctional PLA-based scaffolds with both bioactive and biocidal properties for bone tissue engineering applications.
Collapse
Affiliation(s)
- Daniel A Canales
- Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile.
| | - Natalia Piñones
- Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile
| | - Marcela Saavedra
- Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile
| | - Carlos Loyo
- Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile
| | - Humberto Palza
- Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Chile
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Madrid, Spain
| | - Adrián Leonés
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Madrid, Spain
| | - Raúl Vallejos Baier
- Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich Alexander-University Erlangen-Nuremberg, Erlangen, Germany; Bavarian Polymer Institute, 91058 Erlangen, Germany
| | - Alina Grünelwald
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Paula A Zapata
- Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile.
| |
Collapse
|
11
|
Low viscosity of spinning liquid to prepare organic-inorganic hybrid ultrafine nanofiber membrane for high-efficiency filtration application. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
12
|
Preparation of poly(ε-caprolactone) nanofibrous mats incorporating graphene oxide-silver nanoparticle hybrid composite by electrospinning method for potential antibacterial applications. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Alert Patches Embedding Conjugated Polymeric Lamellar and Metal Nanoparticles Generating Optoelectronic Responses against Thermal Stresses. Macromol Res 2022. [DOI: 10.1007/s13233-022-0096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Ekambaram R, Dharmalingam S. Design and development of biomimetic electrospun sulphonated polyether ether ketone nanofibrous scaffold for bone tissue regeneration applications: in vitro and in vivo study. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:947-975. [PMID: 34985405 DOI: 10.1080/09205063.2022.2025637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Bone defect restoration remains challenging in orthopedic medical practices. In this study an attempt is carried out to probe the use of new biomimetic SPEEK (sulfonated polyether ether ketone) based nanofibrous scaffold to deliver amine functionalized hydroxyapatite nanoparticles loaded resveratrol for its potent functionality in osteogenic differentiation. SPEEK polymer with reactive functional group SO3H was synthesized through process of sulphonation reaction. Amine functionalized nanoparticles with protonated amino groups revamp the molecular interaction by the formation of hydrogen bonds that in turn intensify the bioactivity of the nanofibrous scaffold. Osteoconductive functionalized nanohydroxyapatite enhances the cell proliferation and osteogenicity with improved cell attachment and spreading. The results of FT-IR, XRD, Carbon-Silica NMR and EDX analysis confirmed the amine functionalization of the hydroxyapatite nanoparticles. Surface morphological analysis of the fabricated nanofibers through SEM and AFM analysis shows vastly interconnected porous structure that mimics the bone extracellular matrix, which enhances the cell compatibility. Cell adhesion and live dead assay of the nanoscaffolds express less cytotoxicity. Mineralization and alkaline phosphatase assay establish the osteogenic differentiation of the nanofibrous scaffold. The in vitro biocompatibility studies reveal that the fabricated scaffold was osteo-compatible with MG63 cell lines. Hemocompatibility study further proved that the designed biomimetic nanofibrous scaffold was highly suitable for bone tissue engineering. The results of in vivo analysis in zebrafish model for the fabricated nanofibers demonstrated significant increase in the caudal fin regeneration indicating mineralization of osteoblast. Thus, the commending results obtained instigate the potentiality of the composite nanofibrous scaffold as an effective biomimetic substrate for bone tissue regeneration.
Collapse
|
15
|
Ghelich P, Kazemzadeh-Narbat M, Najafabadi AH, Samandari M, Memic A, Tamayol A. (Bio)manufactured Solutions for Treatment of Bone Defects with Emphasis on US-FDA Regulatory Science Perspective. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100073. [PMID: 35935166 PMCID: PMC9355310 DOI: 10.1002/anbr.202100073] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bone defects, with second highest demand for surgeries around the globe, may lead to serious health issues and negatively influence patient lives. The advances in biomedical engineering and sciences have led to the development of several creative solutions for bone defect treatment. This review provides a brief summary of bone graft materials, an organized overview of top-down and bottom-up (bio)manufacturing approaches, plus a critical comparison between advantages and limitations of each method. We specifically discuss additive manufacturing techniques and their operation mechanisms in detail. Next, we review the hybrid methods and promising future directions for bone grafting, while giving a comprehensive US-FDA regulatory science perspective, biocompatibility concepts and assessments, and clinical considerations to translate a technology from a research laboratory to the market. The topics covered in this review could potentially fuel future research efforts in bone tissue engineering, and perhaps could also provide novel insights for other tissue engineering applications.
Collapse
Affiliation(s)
- Pejman Ghelich
- Department of Biomedical Engineering, University of Connecticut, Farmington, Connecticut, 06030, USA
| | | | | | - Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut, Farmington, Connecticut, 06030, USA
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, Connecticut, 06030, USA
| |
Collapse
|
16
|
Andrade KL, Ramlow H, Floriano JF, Acosta ED, Faita FL, Machado RAF. Latex and natural rubber: recent advances for biomedical applications. POLIMEROS 2022. [DOI: 10.1590/0104-1428.20210114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Co-loading of doxorubicin and iron oxide nanocubes in polycaprolactone fibers for combining Magneto-Thermal and chemotherapeutic effects on cancer cells. J Colloid Interface Sci 2021; 607:34-44. [PMID: 34492351 DOI: 10.1016/j.jcis.2021.08.153] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/20/2022]
Abstract
Among the strategies to fight cancer, multi-therapeutic approaches are considered as a wise choice to put in place multiple weapons to suppress tumors. In this work, to combine chemotherapeutic effects to magnetic hyperthermia when using biocompatible scaffolds, we have established an electrospinning method to produce nanofibers of polycaprolactone loaded with magnetic nanoparticles as heat mediators to be selectively activated under alternating magnetic field and doxorubicin as a chemotherapeutic drug. Production of the fibers was investigated with iron oxide nanoparticles of peculiar cubic shape (at 15 and 23 nm in cube edges) as they provide benchmark heat performance under clinical magnetic hyperthermia conditions. With 23 nm nanocubes when included into the fibers, an arrangement in chains was obtained. This linear configuration of magnetic nanoparticles resemble that of the magnetosomes, produced by magnetotactic bacteria, and our magnetic fibers exhibited remarkable heating effects as the magnetosomes. Magnetic fiber scaffolds showed excellent biocompatibility on fibroblast cells when missing the chemotherapeutic agent and when not exposed to magnetic hyperthermia as shown by viability assays. On the contrary, the fibers containing both magnetic nanocubes and doxorubicin showed significant cytotoxic effects on cervical cancer cells following the exposure to magnetic hyperthermia. Notably, these tests were conducted at magnetic hyperthermia field conditions of clinical use. As here shown, on the doxorubicin sensitive cervical cancer cells, the combination of heat damage by magnetic hyperthermia with enhanced diffusion of doxorubicin at therapeutic temperature are responsible for a more effective oncotherapy.
Collapse
|
18
|
Liu W, Walker G, Price S, Yang X, Li J, Bunt C. Electrospun Membranes as a Porous Barrier for Molecular Transport: Membrane Characterization and Release Assessment. Pharmaceutics 2021; 13:916. [PMID: 34205650 PMCID: PMC8235673 DOI: 10.3390/pharmaceutics13060916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
Electrospun nanofibers have been extensively studied for encapsulated drugs releasing from the inside of the fiber matrix, but have been barely looked at for their potential to control release as a semi-permeable membrane. This study investigated molecular transport behaviors across nanofiber membranes with different micro-structure sizes and compositions. Four types of membranes were made by 5% and 10% poly (ε-caprolactone) (PCL) solutions electro-spun with or without 50 nm calcium carbonate (CaCO3) nanoparticles. The membranes were tested for thickness, fiber diameter, pore size, porosity, tensile strength and elongation, contact angle of water and their impacts on molecular transport behaviors. The presence of the CaCO3 nanoparticles made the 5% membranes stronger and stiffer but the 10% membranes weaker and less stiff due to the different (covering or embedded) locations of the nanoparticles with the corresponding fibers. Solute transport studies using caffeine as the model drug found the 5% membranes further retarded release from the 10% membranes, regardless of only half the amount of material being used for synthesis. The addition of CaCO3 nanoparticles aided the water permeation process and accelerated initial transports. The difference in release profiles between 5% and 10% membranes suggests different release mechanisms, with membrane-permeability dominated release for 5% PCL membranes and solute-concentration-gradient dominated release for 10% PCL membranes.
Collapse
Affiliation(s)
- Weiyi Liu
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7608, New Zealand; (W.L.); (S.P.)
| | - Greg Walker
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand;
| | - Sally Price
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7608, New Zealand; (W.L.); (S.P.)
| | - Xiangdong Yang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertiliser, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (X.Y.); (J.L.)
| | - Juan Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertiliser, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (X.Y.); (J.L.)
| | - Craig Bunt
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7608, New Zealand; (W.L.); (S.P.)
| |
Collapse
|
19
|
Dejob L, Toury B, Tadier S, Grémillard L, Gaillard C, Salles V. Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review. Acta Biomater 2021; 123:123-153. [PMID: 33359868 DOI: 10.1016/j.actbio.2020.12.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
The field of bone tissue engineering (BTE) focuses on the repair of bone defects that are too large to be restored by the natural healing process. To that purpose, synthetic materials mimicking the natural bone extracellular matrix (ECM) are widely studied and many combinations of compositions and architectures are possible. In particular, the electrospinning process can reproduce the fibrillar structure of bone ECM by stretching a viscoelastic solution under an electrical field. With this method, nano/micrometer-sized fibres can be produced, with an adjustable chemical composition. Therefore, by shaping bioactive ceramics such as silica, bioactive glasses and calcium phosphates through electrospinning, promising properties for their use in BTE can be obtained. This review focuses on the in situ synthesis and simultaneous electrospinning of bioceramic-based fibres while the reasons for using each material are correlated with its bioactivity. Theoretical and practical considerations for the synthesis and electrospinning of these materials are developed. Finally, investigations into the in vitro and in vivo bioactivity of different systems using such inorganic fibres are exposed.
Collapse
Affiliation(s)
- Léa Dejob
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne F-69622, France; Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France
| | - Bérangère Toury
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne F-69622, France
| | - Solène Tadier
- Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France
| | - Laurent Grémillard
- Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France
| | - Claire Gaillard
- Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France
| | - Vincent Salles
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne F-69622, France.
| |
Collapse
|
20
|
Seddighian A, Ganji F, Baghaban-Eslaminejad M, Bagheri F. Electrospun PCL scaffold modified with chitosan nanoparticles for enhanced bone regeneration. Prog Biomater 2021; 10:65-76. [PMID: 33713313 DOI: 10.1007/s40204-021-00153-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/06/2021] [Indexed: 02/06/2023] Open
Abstract
The encapsulation of ascorbic acid within chitosan nanoparticles (CHNs), embedded in a fibrous structure of a dexamethasone (Dex)-loaded PCL scaffold, provides a new plan for osteogenic differentiation of mesenchymal stem cells. This electrospun PCL fibrous scaffold can release Dex, as bone differentiation initiator, and ascorbic acid, as bone differentiation enhancer, in an approximately sustained release pattern for about 2 weeks. Ascorbic acid-loaded CHNs were prepared by electrospraying a mixture of chitosan and ascorbic acid, and Dex-containing PCL fibers were prepared by electrospinning a mixture of PCL and Dex. The final PCL/chitosan bilayer scaffolds were obtained by the sequential employment of electrospinning and electrospraying methods. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) confirmed that the CHNs were successfully incorporated into the fibrous PCL matrix. The improved proliferation of hMSCs cultured on the PCL/chitosan scaffolds was also verified. Osteogenic assays showed an increase in alkaline phosphatase activity and mineral deposits. The expression of bone-specific genes also confirmed the osteogenic differentiation of cells cultured on these PCL/chitosan bilayer scaffolds. Dual-drug-loaded PCL/chitosan scaffold enhanced the osteoblast differentiation of hMSC cells and can be served as a potential scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Ameneh Seddighian
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Fariba Ganji
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Mohamadreza Baghaban-Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Fatemeh Bagheri
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
21
|
Hong JK, Cooke SL, Whittington AR, Roman M. Bioactive Cellulose Nanocrystal-Poly(ε-Caprolactone) Nanocomposites for Bone Tissue Engineering Applications. Front Bioeng Biotechnol 2021; 9:605924. [PMID: 33718336 PMCID: PMC7947866 DOI: 10.3389/fbioe.2021.605924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/04/2021] [Indexed: 01/20/2023] Open
Abstract
3D-printed bone scaffolds hold great promise for the individualized treatment of critical-size bone defects. Among the resorbable polymers available for use as 3D-printable scaffold materials, poly(ε-caprolactone) (PCL) has many benefits. However, its relatively low stiffness and lack of bioactivity limit its use in load-bearing bone scaffolds. This study tests the hypothesis that surface-oxidized cellulose nanocrystals (SO-CNCs), decorated with carboxyl groups, can act as multi-functional scaffold additives that (1) improve the mechanical properties of PCL and (2) induce biomineral formation upon PCL resorption. To this end, an in vitro biomineralization study was performed to assess the ability of SO-CNCs to induce the formation of calcium phosphate minerals. In addition, PCL nanocomposites containing different amounts of SO-CNCs (1, 2, 3, 5, and 10 wt%) were prepared using melt compounding extrusion and characterized in terms of Young's modulus, ultimate tensile strength, crystallinity, thermal transitions, and water contact angle. Neither sulfuric acid-hydrolyzed CNCs (SH-CNCs) nor SO-CNCs were toxic to MC3T3 preosteoblasts during a 24 h exposure at concentrations ranging from 0.25 to 3.0 mg/mL. SO-CNCs were more effective at inducing mineral formation than SH-CNCs in simulated body fluid (1x). An SO-CNC content of 10 wt% in the PCL matrix caused a more than 2-fold increase in Young's modulus (stiffness) and a more than 60% increase in ultimate tensile strength. The matrix glass transition and melting temperatures were not affected by the SO-CNCs but the crystallization temperature increased by about 5.5°C upon addition of 10 wt% SO-CNCs, the matrix crystallinity decreased from about 43 to about 40%, and the water contact angle decreased from 87 to 82.6°. The abilities of SO-CNCs to induce calcium phosphate mineral formation and increase the Young's modulus of PCL render them attractive for applications as multi-functional nanoscale additives in PCL-based bone scaffolds.
Collapse
Affiliation(s)
- Jung Ki Hong
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, United States
| | - Shelley L Cooke
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Abby R Whittington
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, United States.,Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, United States.,Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Maren Roman
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, United States.,Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
22
|
Taskin MB, Ahmad T, Wistlich L, Meinel L, Schmitz M, Rossi A, Groll J. Bioactive Electrospun Fibers: Fabrication Strategies and a Critical Review of Surface-Sensitive Characterization and Quantification. Chem Rev 2021; 121:11194-11237. [DOI: 10.1021/acs.chemrev.0c00816] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mehmet Berat Taskin
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Taufiq Ahmad
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Laura Wistlich
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry and Helmholtz Institute for RNA Based Infection Research, 97074 Würzburg, Germany
| | - Michael Schmitz
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Angela Rossi
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
23
|
An investigation into influence of acetylated cellulose nanofibers on properties of PCL/Gelatin electrospun nanofibrous scaffold for soft tissue engineering. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123313] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Leonés A, Mujica-Garcia A, Arrieta MP, Salaris V, Lopez D, Kenny JM, Peponi L. Organic and Inorganic PCL-Based Electrospun Fibers. Polymers (Basel) 2020; 12:polym12061325. [PMID: 32532052 PMCID: PMC7361952 DOI: 10.3390/polym12061325] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 11/16/2022] Open
Abstract
In this work, different nanocomposite electrospun fiber mats were obtained based on poly(e-caprolactone) (PCL) and reinforced with both organic and inorganic nanoparticles. In particular, on one side, cellulose nanocrystals (CNC) were synthesized and functionalized by "grafting from" reaction, using their superficial OH- group to graft PCL chains. On the other side, commercial chitosan, graphene as organic, while silver, hydroxyapatite, and fumed silica nanoparticles were used as inorganic reinforcements. All the nanoparticles were added at 1 wt% with respect to the PCL polymeric matrix in order to compare the different behavior of the woven no-woven nanocomposite electrospun fibers with a fixed amount of both organic and inorganic nanoparticles. From the thermal point of view, no difference was found between the effect of the addition of organic or inorganic nanoparticles, with no significant variation in the Tg (glass transition temperature), Tm (melting temperature), and the degree of crystallinity, leading in all cases to high crystallinity electrospun mats. From the mechanical point of view, the highest values of Young modulus were obtained when graphene, CNC, and silver nanoparticles were added to the PCL electrospun fibers. Moreover, all the nanoparticles used, both organic and inorganic, increased the flexibility of the electrospun mats, increasing their elongation at break.
Collapse
Affiliation(s)
- Adrián Leonés
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (A.M.-G.); (M.P.A.); (V.S.); (D.L.); (J.M.K.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy—The Spanish National Research Council (SusPlast-CSIC), 28006 Madrid, Spain
| | - Alicia Mujica-Garcia
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (A.M.-G.); (M.P.A.); (V.S.); (D.L.); (J.M.K.)
- Facultad de Óptica y Optometría, Universidad Complutense de Madrid (UCM), Arcos de Jalón 118, 28037 Madrid, Spain
| | - Marina Patricia Arrieta
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (A.M.-G.); (M.P.A.); (V.S.); (D.L.); (J.M.K.)
- Civil and Environmental Engineering Department, University of Perugia, Via G, Duranti 93, 06125 Perugia, Italy
| | - Valentina Salaris
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (A.M.-G.); (M.P.A.); (V.S.); (D.L.); (J.M.K.)
| | - Daniel Lopez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (A.M.-G.); (M.P.A.); (V.S.); (D.L.); (J.M.K.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy—The Spanish National Research Council (SusPlast-CSIC), 28006 Madrid, Spain
| | - José Maria Kenny
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (A.M.-G.); (M.P.A.); (V.S.); (D.L.); (J.M.K.)
- Civil and Environmental Engineering Department, University of Perugia, Via G, Duranti 93, 06125 Perugia, Italy
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (A.M.-G.); (M.P.A.); (V.S.); (D.L.); (J.M.K.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy—The Spanish National Research Council (SusPlast-CSIC), 28006 Madrid, Spain
- Correspondence:
| |
Collapse
|
25
|
Rostami F, Tamjid E, Behmanesh M. Drug-eluting PCL/graphene oxide nanocomposite scaffolds for enhanced osteogenic differentiation of mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111102. [PMID: 32600706 DOI: 10.1016/j.msec.2020.111102] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
Recently, drug-eluting nanofibrous scaffolds have attracted a great attention to enhance the cell differentiation through biomimicking the extracellular matrix (ECM) in regenerative medicine. In this study, electrospun nanocomposite polycaprolactone (PCL)-based scaffolds containing synthesized graphene oxide (GO) nanosheets and osteogenic drugs, i.e. dexamethasone and simvastatin were fabricated. The physicochemical and surface properties of the scaffolds were investigated through FTIR, wettability, pH, and drug release studies. The cell viability, differentiation, and biomineralization were studied on mesenchymal stem cells (MSCs) by Alamar Blue, alkaline phosphatase (ALP) activity, and Alizarin Red-S staining, respectively. Uniformly distributed GO (thickness < 1 nm) in PCL nanofibers was observed by electron microscopy. It was revealed that the addition of GO and the drugs improved the hydrophilicity, cell viability, and osteogenic differentiation, in addition to pH changes, in comparison with PCL scaffolds. Despite the notable reduction in the cell viability, significant differentiation was revealed by ALP assay on PCL/GO-Dex scaffolds. Noteworthy, a twofold increase in the osteogenic differentiation was observed in comparison with the cells cultured in osteogenic differentiation medium, while a significant biomineralization was observed. The results of this study indicate the synergistic effect of GO and dexamethasone on improving osteogenic differentiation of drug-eluting nanocomposite scaffolds in bone tissue engineering applications.
Collapse
Affiliation(s)
- Fatemeh Rostami
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mehrdad Behmanesh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
26
|
Karagoz S, Kiremitler NB, Sakir M, Salem S, Onses MS, Sahmetlioglu E, Ceylan A, Yilmaz E. Synthesis of Ag and TiO 2 modified polycaprolactone electrospun nanofibers (PCL/TiO 2-Ag NFs) as a multifunctional material for SERS, photocatalysis and antibacterial applications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109856. [PMID: 31722800 DOI: 10.1016/j.ecoenv.2019.109856] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
In this study, we reported the design and the fabrication of Ag and TiO2 modified polycaprolactone (PCL) electrospun nanofiber (NF) mats. The as-prepared NF mats were fabricated by one-step electrospinning and it was exploited for three different purposes (i) reusable SERS substrate for quantitative analysis to trace organic pollutants, (ii) photocatalyst for degradation of organic pollutants and (iii) antibacterial agent for killing of bacteria. Three different nanofiber mats, PCL, PCL-TiO2, PCL/TiO2-Ag NFs. were fabricated and further investigated. The morphologies and structures of the as-prepared nanofiber mats were carried out using X-ray diffraction spectroscopy (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX) and fourier transform infrared spectroscopy (FT-IR) techniques. PCL/TiO2-Ag NFs served as a highly effective SERS platform with a detection limit of 10 nM for the detection of methylene blue dye (MB). A remarkable feature of the presented platform is the ability to reuse the PCL/TiO2-Ag NFs for SERS analysis of MB; availing from its capability for self-cleaning under UV light. By employing PCL/TiO2-Ag NFs nanocatalyst, complete photocatalytic degradation of the probe analytes MB and ibuprofen (Ibu) under UV irradiation was accomplished not more than 180 min. Moreover, PCL/TiO2-Ag NF mats showed a highly promising bactericidal feature against gram-negative Escherichia coli and gram-positive Staphylococcus aureus bacteria, which immensely emerged due to the presence of Ag NPs. This new trending nanofiber is assumed to lead a bunch of changes in the field of photocatalytic, SERS and antibacterial studies.
Collapse
Affiliation(s)
- Sultan Karagoz
- ERNAM - Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey
| | - N Burak Kiremitler
- ERNAM - Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey; Department of Materials Science and Engineering, Faculty of Engineering, Erciyes University, Kayseri, 38039, Turkey
| | - Menekse Sakir
- ERNAM - Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey
| | - Samaa Salem
- ERNAM - Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey; Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey
| | - M Serdar Onses
- ERNAM - Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey; Department of Materials Science and Engineering, Faculty of Engineering, Erciyes University, Kayseri, 38039, Turkey
| | - Ertugrul Sahmetlioglu
- ERNAM - Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey; Safiye Cikrikcioglu Vocational School, Kayseri University, Kayseri, 38039, Turkey
| | - Ahmet Ceylan
- Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey
| | - Erkan Yilmaz
- ERNAM - Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey; Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey; Technology Research & Application Center (TAUM), Erciyes University, Kayseri, 38039, Turkey.
| |
Collapse
|
27
|
Islam MR, Picu RC. Random fiber networks with inclusions: The mechanism of reinforcement. Phys Rev E 2019; 99:063001. [PMID: 31330690 DOI: 10.1103/physreve.99.063001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Indexed: 12/16/2022]
Abstract
The mechanical behavior of athermal random fiber networks embedding particulate inclusions is studied in this work. Composites in which the filler size is comparable with the mean segment length of the network are considered. Inclusions are randomly distributed in the network at various volume fractions, and cases in which fibers are rigidly bonded to fillers and in which no such bonding is imposed are studied separately. In the presence of inclusions, the small strain modulus increases, while the ability of the network to strain stiffen decreases relative to the unfilled network case. The reinforcement induced by fillers is most pronounced in sparse networks of floppier filaments that deform in the bending-dominated mode in the unfilled state. As the unfilled network density or the bending stiffness of fibers increases, the effect of filling diminishes rapidly. Fillers lead to a transition from the soft, bending-dominated, to the stiffer, stretching-dominated, deformation mode of the network, a transition which is primarily responsible for the observed overall reinforcement. The confinement, i.e., the restriction on network kinematics imposed by fillers, causes this transition. These results provide a justification for the observed difference in reinforcement obtained in sparsely versus densely cross-linked networks at a given filling fraction and provide guidance for the further development of network-based materials.
Collapse
Affiliation(s)
- M R Islam
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - R C Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| |
Collapse
|
28
|
Niobium pentoxide and hydroxyapatite particle loaded electrospun polycaprolactone/gelatin membranes for bone tissue engineering. Colloids Surf B Biointerfaces 2019; 182:110386. [PMID: 31369954 DOI: 10.1016/j.colsurfb.2019.110386] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022]
Abstract
Effective methods of accelerating the bone regeneration healing process are in demand for a number of bone-related diseases and trauma. This work developed scaffolds with improved properties for bone tissue engineering by electrospinning composite polycaprolactone-gelatin-hydroxyapatite-niobium pentoxide (PGHANb) membranes. Composite membranes, with average fiber diameters ranging from 123 to 156 nm, were produced by adding hydroxyapatite (HA) and varying concentrations of niobium pentoxide (Nb2O5) particles (0, 3, 7, and 10 wt%) to a polycaprolactone (PCL) and gelatin (GL) matrix prior to electrospinning. The morphology, mechanical, chemical and biological properties of resultant membranes were evaluated. Bioactivity was assessed using simulated body fluid (SBF) and it confirmed that the presence of particles induced the formation of hydroxyapatite crystals on the surface of the membranes. Samples were hydrophilic and cell metabolism results showed that the niobium-containing membranes were non-toxic while improving cell proliferation and differentiation compared to controls. This study demonstrated that electrospun membranes containing HA and Nb2O5 particles have potential to promote cell adhesion and proliferation while exhibiting bioactive properties. PGHANb membranes are promising candidates for bone tissue engineering applications.
Collapse
|
29
|
Toloue EB, Karbasi S, Salehi H, Rafienia M. Potential of an electrospun composite scaffold of poly (3-hydroxybutyrate)-chitosan/alumina nanowires in bone tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1075-1091. [DOI: 10.1016/j.msec.2019.02.062] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/08/2018] [Accepted: 02/15/2019] [Indexed: 01/18/2023]
|
30
|
Jaganathan SK, Mani MP, Prabhakaran P, Supriyanto E, Ismail AF. Production, blood compatibility and cytotoxicity evaluation of a single stage non-woven multicomponent electrospun scaffold mixed with sesame oil, honey and propolis for skin tissue engineering. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2019. [DOI: 10.1080/1023666x.2019.1602919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Saravana Kumar Jaganathan
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- IJN-UTM Cardiovascular Engineering Centre, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Malaysia
| | - Mohan Prasath Mani
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia
| | - Praseetha Prabhakaran
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia
| | - Eko Supriyanto
- IJN-UTM Cardiovascular Engineering Centre, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia
| |
Collapse
|
31
|
Promoting effect of nano hydroxyapatite and vitamin D3 on the osteogenic differentiation of human adipose-derived stem cells in polycaprolactone/gelatin scaffold for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:141-155. [DOI: 10.1016/j.msec.2018.12.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/18/2018] [Accepted: 12/10/2018] [Indexed: 01/15/2023]
|
32
|
Xue W, Hu Y, Wang F, Yang X, Wang L. Fe3O4/ poly(caprolactone) (PCL) electrospun membranes as methylene blue catalyst with high recyclability. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.12.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
33
|
Electrospun Polycaprolactone Fibrous Membranes Containing Ag, TiO₂ and Na₂Ti₆O 13 Particles for Potential Use in Bone Regeneration. MEMBRANES 2019; 9:membranes9010012. [PMID: 30634630 PMCID: PMC6359384 DOI: 10.3390/membranes9010012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/19/2018] [Accepted: 01/03/2019] [Indexed: 11/17/2022]
Abstract
Biocompatible and biodegradable membrane treatments for regeneration of bone are nowadays a promising solution in the medical field. Bioresorbable polymers are extensively used in membrane elaboration, where polycaprolactone (PCL) is used as base polymer. The goal of this work was to improve electrospun membranes’ biocompatibility and antibacterial properties by adding micro- and nanoparticles such as Ag, TiO2 and Na2Ti6O13. Micro/nanofiber morphologies of the obtained membranes were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, energy-dispersive X-ray spectroscopy and a tensile test. Also, for this study optical microscopy was used to observe DAPI-stained cells. Membranes of the different systems were electrospun to an average diameter of 1.02–1.76 μm. To evaluate the biological properties, cell viability was studied by growing NIH/3T3 cells on the microfibers. PCL/TiO2 strength was enhanced from 0.6 MPa to 6.3 MPa in comparison with PCL without particles. Antibacterial activity was observed in PCL/TiO2 and PCL/Na2Ti6O13 electrospun membranes using Staphylococcus aureus bacteria. Bioactivity of the membranes was confirmed with simulated body fluid (SBF) treatment. From this study, the ceramic particles TiO2 and Na2Ti6O13, combined with a PCL matrix with micro/nanoparticles, enhanced cell proliferation, adhesion and antibacterial properties. The electrospun composite with Na2Ti6O13 can be considered viable for tissue regenerative processes.
Collapse
|
34
|
Sadeghi A, Moztarzadeh F, Aghazadeh Mohandesi J. Investigating the effect of chitosan on hydrophilicity and bioactivity of conductive electrospun composite scaffold for neural tissue engineering. Int J Biol Macromol 2019; 121:625-632. [DOI: 10.1016/j.ijbiomac.2018.10.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/21/2018] [Accepted: 10/05/2018] [Indexed: 12/23/2022]
|
35
|
Biomimetic fabrication of new bioceramics-introduced fibrous scaffolds: From physicochemical characteristics to in vitro biological properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:547-557. [DOI: 10.1016/j.msec.2018.09.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 08/08/2018] [Accepted: 09/27/2018] [Indexed: 01/05/2023]
|
36
|
Tsao CJ, Pandolfi L, Wang X, Minardi S, Lupo C, Evangelopoulos M, Hendrickson T, Shi A, Storci G, Taraballi F, Tasciotti E. Electrospun Patch Functionalized with Nanoparticles Allows for Spatiotemporal Release of VEGF and PDGF-BB Promoting In Vivo Neovascularization. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44344-44353. [PMID: 30511828 DOI: 10.1021/acsami.8b19975] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The use of nanomaterials as carriers for the delivery of growth factors has been applied to a multitude of applications in tissue engineering. However, issues of toxicity, stability, and systemic effects of these platforms have yet to be fully understood, especially for cardiovascular applications. Here, we proposed a delivery system composed of poly(dl-lactide- co-glycolide) acid (PLGA) and porous silica nanoparticles (pSi) to deliver vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF). The tight spatiotemporal release of these two proteins has been proven to promote neovascularization. In order to minimize tissue toxicity, localize the release, and maintain a stable platform, we conjugated two formulations of PLGA-pSi to electrospun (ES) gelatin to create a combined ES patch releasing both PDGF and VEGF. When compared to freely dispersed particles, the ES patch cultured in vitro with neonatal cardiac cells had significantly less particle internalization (2.0 ± 1.3%) compared to free PLGA-pSi (21.5 ± 6.1) or pSi (28.7 ± 2.5) groups. Internalization was positively correlated to late-stage apoptosis with PLGA-pSi and pSi groups having increased apoptosis compared to the untreated group. When implanted subcutaneously, the ES patch was shown to have greater neovascularization than controls evidenced by increased expression of α-SMA and CD31 after 21 days. Quantitative reverse transcription-polymerase chain reaction results support increased angiogenesis by the upregulation of VEGFA, VEGFR2, vWF, and COL3A1, exhibiting a synergistic effect with the release of VEGF-A164 and PDGF-BB after 21 days in vivo. The results of this study proved that the ES patch reduced cellular toxicity and may be tailored to have a dual release of growth factors promoting localized neovascularization.
Collapse
Affiliation(s)
- Christopher J Tsao
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Laura Pandolfi
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Xin Wang
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Silvia Minardi
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Cristina Lupo
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Michael Evangelopoulos
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Troy Hendrickson
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
- MD/PhD Program , Texas A&M College of Medicine , 8441 Riverside Parkway , Bryan , Texas 77807 , United States
| | - Aaron Shi
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Gianluca Storci
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Francesca Taraballi
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
- Houston Methodist Orthopedics & Sports Medicine , Houston Methodist Hospital , 6550 Fannin Street , Houston , Texas 77030 , United States
| | - Ennio Tasciotti
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
- Houston Methodist Orthopedics & Sports Medicine , Houston Methodist Hospital , 6550 Fannin Street , Houston , Texas 77030 , United States
| |
Collapse
|
37
|
Rasouli R, Barhoum A, Bechelany M, Dufresne A. Nanofibers for Biomedical and Healthcare Applications. Macromol Biosci 2018; 19:e1800256. [DOI: 10.1002/mabi.201800256] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Rahimeh Rasouli
- Department of Medical NanotechnologyTehran University of Medical Sciences—International Campus 14177‐43373 Tehran Iran
| | - Ahmed Barhoum
- Faculty of ScienceChemistry DepartmentHelwan University 11795 Helwan Cairo Egypt
- Institut Européen des Membranes (IEM UMR 5635)ENSCMCNRSUniversity of Montpellier 34090 Montpellier France
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM UMR 5635)ENSCMCNRSUniversity of Montpellier 34090 Montpellier France
| | - Alain Dufresne
- LGP2, Grenoble INP, CNRSUniversité Grenoble Alpes F‐38000 Grenoble France
| |
Collapse
|
38
|
Chao CY, Mani MP, Jaganathan SK. Engineering electrospun multicomponent polyurethane scaffolding platform comprising grapeseed oil and honey/propolis for bone tissue regeneration. PLoS One 2018; 13:e0205699. [PMID: 30372449 PMCID: PMC6205588 DOI: 10.1371/journal.pone.0205699] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/28/2018] [Indexed: 12/28/2022] Open
Abstract
Essential oils play an important role in reducing the pain and inflammation caused by bone fracture.In this study, a scaffold was electrospun based on polyurethane (PU), grape seed oil, honey and propolis for bone tissue-engineering applications. The fiber diameter of the electrospun PU/grape seed oil scaffold and PU/grape seed oil/honey/propolis scaffold were observed to be reduced compared to the pristine PU control. FTIR analysis revealed the existence of grape seed oil, honey and propolis in PU identified by CH band peak shift and also hydrogen bond formation. The contact angle of PU/grape seed oil scaffold was found to increase owing to hydrophobic nature and the contact angle for the PU/grape seed/honey oil/propolis scaffold were decreased because of hydrophilic nature. Further, the prepared PU/grape seed oil and PU/grape seed oil/honey/propolis scaffold showed enhanced thermal stability and reduction in surface roughness than the control as revealed in thermogravimetric analysis (TGA) and atomic force microscopy (AFM) analysis. Further, the developed nanocomposite scaffold displayed delayed blood clotting time than the pristine PU in the activated prothrombin time (APTT) and partial thromboplastin time (PT) assay. The hemolytic assay and cytocompatibility studies revealed that the electrospun PU/grape seed oil and PU/grape seed oil/honey/propolis scaffold possess non-toxic behaviour to red blood cells (RBC) and human fibroblast cells (HDF) cells indicating better blood compatibility and cell viability rates. Hence, the newly developed electrospun nanofibrous composite scaffold with desirable characteristics might be used as an alternative candidate for bone tissue engineering applications.
Collapse
Affiliation(s)
- Cui Yan Chao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, Shaanxi, PRC China
| | - Mohan Prasath Mani
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Saravana Kumar Jaganathan
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- IJNUTM Cardiovascular Engineering center, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| |
Collapse
|
39
|
Antibacterial and Bioactive Surface Modifications of Titanium Implants by PCL/TiO₂ Nanocomposite Coatings. NANOMATERIALS 2018; 8:nano8100860. [PMID: 30347811 PMCID: PMC6215281 DOI: 10.3390/nano8100860] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 02/01/2023]
Abstract
Surface modification of biomedical implants is an established strategy to improve tissue regeneration, osseointegration and also to minimize the bacterial accumulation. In the present study, electrospun poly(ε-caprolactone)/titania (PCL/TiO2) nanocomposite coatings were developed on commercially pure titanium (cpTi) substrates for an improved biological and antibacterial properties for bone tissue engineering. TiO2 nanoparticles in various amounts (2, 5, and 7 wt %) were incorporated into a biodegradable PCL matrix to form a homogeneous solution. Further, PCL/TiO2 coatings on cpTi were obtained by electrospinning of PCL/TiO2 solution onto the substrate. The resulted coatings were structurally characterized and inspected by employing scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Given the potential biological applications of PCL/TiO2 coated cpTi substrates, the apatite-forming capacity was examined by immersing in simulated body fluid (SBF) for upto 21 days. Biocompatibility has been evaluated through adhesion/proliferation of hFOB osteoblast cell lines and cytotoxicity by MTT assay. Antimicrobial activity of PCL/TiO2 nanocomposites has been tested using UV light against gram-positive Staphylococcus aureus (S.aureus). The resulting surface displays good bioactive properties against osteoblast cell lines with increased viability of 40% at day 3 and superior antibacterial property against S.aureus with a significant reduction of bacteria to almost 76%. Surface modification by PCL/TiO2 nanocomposites makes a viable approach for improving dual properties, i.e., biological and antibacterial properties on titanium implants which might be used to prevent implant-associated infections and promoting cell attachment of orthopedic devices at the same time.
Collapse
|
40
|
Sattary M, Rafienia M, Khorasani MT, Salehi H. The effect of collector type on the physical, chemical, and biological properties of polycaprolactone/gelatin/nano-hydroxyapatite electrospun scaffold. J Biomed Mater Res B Appl Biomater 2018; 107:933-950. [PMID: 30199600 DOI: 10.1002/jbm.b.34188] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/22/2018] [Accepted: 06/12/2018] [Indexed: 11/09/2022]
Abstract
Electrospinning is considered a powerful method for the production of fibers in the nanoscale size. Small pore size results in poor cell infiltration, cell migration inhibition into scaffold pores and low oxygen diffusion. Electrospun polycaprolactone/gelatin/nano-hydroxyapatite (PCL/Gel/nHA) scaffolds were deposited into two types of fiber collectors (novel rotating disc and plate) to study fiber morphology, chemical, mechanical, hydrophilic, and biodegradation properties between each other. The proliferation and differentiation of MG-63 cells into the bone phenotype were determined using MTT method, alizarin red staining and alkaline phosphatase (ALP) activity. The rates for disc rotation were 50 and 100 rpm. The pore size measurement results indicated that the fibers produced by the disc rotation collector with speed rate 50 rpm have larger pores as compared to fibers produced by disc rotation at 100 rpm and flat plate collectors. A randomly structure with controlled pore size (38.65 ±0.33 μm) and lower fiber density, as compared to fibers collected by disc rotation with speed rate 100 rpm and flat plate collectors, was obtained. Fibers collected on the rotating disc with speed rate 50 rpm, were more hydrophilic due to larger pore size and therefore, faster infiltration of water into the scaffold and the rate of degradation was higher. These results demonstrate that PCL/Gel/nHA scaffolds made through a rotating disc collector at 50 rpm are more feasible to be used in bone tissue engineering applications due to appropriate pore size and increased adhesion and proliferation of cells, ALP activity and mineral deposits. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 933-950, 2019.
Collapse
Affiliation(s)
- Mansoureh Sattary
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Rafienia
- Biosensor Research Center, Isfahan University of Medical Sciences, 81744*176, Isfahan, Iran
| | - Mohammad Taghi Khorasani
- Department of Biomaterial, Iran Polymer and Petrochemical Institute, PO Box 14965, 159, Tehran, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, 81744*176, Isfahan, Iran
| |
Collapse
|
41
|
|
42
|
Nano-Graphene Oxide Functionalized Bioactive Poly(lactic acid) and Poly(ε-caprolactone) Nanofibrous Scaffolds. MATERIALS 2018; 11:ma11040566. [PMID: 29642421 PMCID: PMC5951450 DOI: 10.3390/ma11040566] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/22/2018] [Accepted: 04/05/2018] [Indexed: 12/26/2022]
Abstract
A versatile and convenient way to produce bioactive poly(lactic acid) (PLA) and poly(ε-caprolactone) (PCL) electrospun nanofibrous scaffolds is described. PLA and PCL are extensively used as biocompatible scaffold materials for tissue engineering. Here, biobased nano graphene oxide dots (nGO) are incorporated in PLA or PCL electrospun scaffolds during the electrospinning process aiming to enhance the mechanical properties and endorse osteo-bioactivity. nGO was found to tightly attach to the fibers through secondary interactions. It also improved the electrospinnability and fiber quality. The prepared nanofibrous scaffolds exhibited enhanced mechanical properties, increased hydrophilicity, good cytocompatibility and osteo-bioactivity. Therefore, immense potential for bone tissue engineering applications is anticipated.
Collapse
|
43
|
Mohammadi Y, Soleimani M, Fallahi-Sichani M, Gazme A, Haddadi-Asl V, Arefian E, Kiani J, Moradi R, Atashi A, Ahmadbeigi N. Nanofibrous Poly(ε-Caprolactone)/Poly(Vinyl Alcohol)/Chitosan Hybrid Scaffolds for Bone Tissue Engineering using Mesenchymal Stem Cells. Int J Artif Organs 2018; 30:204-11. [PMID: 17417759 DOI: 10.1177/039139880703000305] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present study, based on a biomimetic approach, novel 3D nanofibrous hybrid scaffolds consisting of poly(ε-caprolactone), polyvinyl alcohol), and chitosan were developed via a multi-jet electrospinning method. The influence of chemical, physical, and structural properties of the scaffolds on the differentiation of mesenchymal stem cells into osteoblasts, and the proliferation of the differentiated cells were investigated. Osteogenically induced cultures revealed that cells were well-attached, penetrated into the construct and were uniformly distributed. The expression of early and late phenotypic markers of osteoblastic differentiation was upregulated in the constructs cultured in osteogenic medium.
Collapse
|
44
|
Alehosseini M, Golafshan N, Kharaziha M. Design and characterization of poly-ε-caprolactone electrospun fibers incorporated with α-TCP nanopowder as a potential guided bone regeneration membrane. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.matpr.2018.04.192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
45
|
Türkkan S, Pazarçeviren AE, Keskin D, Machin NE, Duygulu Ö, Tezcaner A. Nanosized CaP-silk fibroin-PCL-PEG-PCL/PCL based bilayer membranes for guided bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:484-493. [DOI: 10.1016/j.msec.2017.06.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/26/2017] [Accepted: 06/16/2017] [Indexed: 11/30/2022]
|
46
|
Evaluation of electrospun biomimetic substrate surface-decorated with nanohydroxyapatite precipitation for osteoblasts behavior. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
47
|
Groppo MF, Caria PH, Freire AR, Figueroba SR, Ribeiro-Neto WA, Bretas RES, Prado FB, Haiter-Neto F, Aguiar FH, Rossi AC. The effect of a hydroxyapatite impregnated PCL membrane in rat subcritical calvarial bone defects. Arch Oral Biol 2017. [DOI: 10.1016/j.archoralbio.2017.06.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Hassan MI, Sultana N. Characterization, drug loading and antibacterial activity of nanohydroxyapatite/polycaprolactone (nHA/PCL) electrospun membrane. 3 Biotech 2017; 7:249. [PMID: 28714045 DOI: 10.1007/s13205-017-0889-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 07/11/2017] [Indexed: 11/28/2022] Open
Abstract
Considering the important factor of bioactive nanohydoxyapatite (nHA) to enhance osteoconductivity or bone-bonding capacity, nHA was incorporated into an electrospun polycaprolactone (PCL) membrane using electrospinning techniques. The viscosity of the PCL and nHA/PCL with different concentrations of nHA was measured and the morphology of the electrospun membranes was compared using a field emission scanning electron microscopy. The water contact angle of the nanofiber determined the wettability of the membranes of different concentrations. The surface roughness of the electrospun nanofibers fabricated from pure PCL and nHA/PCL was determined and compared using atomic force microscopy. Attenuated total reflectance Fourier transform infrared spectroscopy was used to study the chemical bonding of the composite electrospun nanofibers. Beadless nanofibers were achieved after the incorporation of nHA with a diameter of 200-700 nm. Results showed that the fiber diameter and the surface roughness of electrospun nanofibers were significantly increased after the incorporation of nHA. In contrast, the water contact angle (132° ± 3.5°) was reduced for PCL membrane after addition of 10% (w/w) nHA (112° ± 3.0°). Ultimate tensile strengths of PCL membrane and 10% (w/w) nHA/PCL membrane were 25.02 ± 2.3 and 18.5 ± 4.4 MPa. A model drug tetracycline hydrochloride was successfully loaded in the membrane and the membrane demonstrated good antibacterial effects against the growth of bacteria by showing inhibition zone for E. coli (2.53 ± 0.06 cm) and B. cereus (2.87 ± 0.06 cm).
Collapse
Affiliation(s)
- Mohd Izzat Hassan
- Faculty of Biosciences and Medical Engineering, Universiti Tek nologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia
| | - Naznin Sultana
- Faculty of Biosciences and Medical Engineering, Universiti Tek nologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia.
- Advanced Membrane Technology Research Center, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia.
| |
Collapse
|
49
|
Moura D, Souza M, Liverani L, Rella G, Luz G, Mano J, Boccaccini A. Development of a bioactive glass-polymer composite for wound healing applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:224-232. [DOI: 10.1016/j.msec.2017.03.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/05/2017] [Accepted: 03/04/2017] [Indexed: 12/21/2022]
|
50
|
Hajiali F, Tajbakhsh S, Shojaei A. Fabrication and Properties of Polycaprolactone Composites Containing Calcium Phosphate-Based Ceramics and Bioactive Glasses in Bone Tissue Engineering: A Review. POLYM REV 2017. [DOI: 10.1080/15583724.2017.1332640] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Faezeh Hajiali
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Saeid Tajbakhsh
- College of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Akbar Shojaei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|