1
|
Chang R, Gruebele M, Leckband DE. Protein Folding Stability and Kinetics in Alginate Hydrogels. Biomacromolecules 2023; 24:5245-5254. [PMID: 37906737 DOI: 10.1021/acs.biomac.3c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Proteins are commonly encapsulated in alginate gels for drug delivery and tissue-engineering applications. However, there is limited knowledge of how encapsulation impacts intrinsic protein properties such as folding stability or unfolding kinetics. Here, we use fast relaxation imaging (FReI) to image protein unfolding in situ in alginate hydrogels after applying a temperature jump. Based on changes in the Förster resonance energy transfer (FRET) response of FRET-labeled phosphoglycerate kinase (PGK), we report the quantitative impact of multiple alginate hydrogel concentrations on protein stability and folding dynamics. The gels stabilize PGK by increasing its melting temperature up to 18.4 °C, and the stabilization follows a nonmonotonic dependence on the alginate density. In situ kinetic measurements also reveal that PGK deviates more from two-state folding behavior in denser gels and that the gel decreases the unfolding rate and accelerates the folding rate of PGK, compared to buffer. Phi-value analysis suggests that the folding transition state of an encapsulated protein is structurally similar to that of folded protein. This work reveals both beneficial and negative impacts of gel encapsulation on protein folding, as well as potential mechanisms contributing to altered stability.
Collapse
|
2
|
Holyavka MG, Goncharova SS, Redko YA, Lavlinskaya MS, Sorokin AV, Artyukhov VG. Novel biocatalysts based on enzymes in complexes with nano- and micromaterials. Biophys Rev 2023; 15:1127-1158. [PMID: 37975005 PMCID: PMC10643816 DOI: 10.1007/s12551-023-01146-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023] Open
Abstract
In today's world, there is a wide array of materials engineered at the nano- and microscale, with numerous applications attributed to these innovations. This review aims to provide a concise overview of how nano- and micromaterials are utilized for enzyme immobilization. Enzymes act as eco-friendly biocatalysts extensively used in various industries and medicine. However, their widespread adoption faces challenges due to factors such as enzyme instability under different conditions, resulting in reduced effectiveness, high costs, and limited reusability. To address these issues, researchers have explored immobilization techniques using nano- and microscale materials as a potential solution. Such techniques offer the promise of enhancing enzyme stability against varying temperatures, solvents, pH levels, pollutants, and impurities. Consequently, enzyme immobilization remains a subject of great interest within both the scientific community and the industrial sector. As of now, the primary goal of enzyme immobilization is not solely limited to enabling reusability and stability. It has been demonstrated as a powerful tool to enhance various enzyme properties and improve biocatalyst performance and characteristics. The integration of nano- and microscale materials into biomedical devices is seamless, given the similarity in size to most biological systems. Common materials employed in developing these nanotechnology products include synthetic polymers, carbon-based nanomaterials, magnetic micro- and nanoparticles, metal and metal oxide nanoparticles, metal-organic frameworks, nano-sized mesoporous hydrogen-bonded organic frameworks, protein-based nano-delivery systems, lipid-based nano- and micromaterials, and polysaccharide-based nanoparticles.
Collapse
Affiliation(s)
- M. G. Holyavka
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | | - Y. A. Redko
- Voronezh State University, Voronezh, 394018 Russia
| | - M. S. Lavlinskaya
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | - A. V. Sorokin
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | |
Collapse
|
3
|
Chang R, Gruebele M, Leckband DE. Protein Stabilization by Alginate Binding and Suppression of Thermal Aggregation. Biomacromolecules 2022; 23:4063-4073. [PMID: 36054903 DOI: 10.1021/acs.biomac.2c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polymers designed to stabilize proteins exploit direct interactions or crowding, but mechanisms underlying increased stability or reduced aggregation are rarely established. Alginate is widely used to encapsulate proteins for drug delivery and tissue regeneration despite limited knowledge of its impact on protein stability. Here, we present evidence that alginate can both increase protein folding stability and suppress the aggregation of unfolded protein through direct interactions without crowding. We used a fluorescence-based conformational reporter of two proteins, the metabolic protein phosphoglycerate kinase (PGK) and the hPin1 WW domain to monitor protein stability and aggregation as a function of temperature and the weight percent of alginate in solution. Alginate stabilizes PGK by up to 14.5 °C, but stabilization is highly protein-dependent, and the much smaller WW domain is stabilized by only 3.5 °C against thermal denaturation. Stabilization is greatest at low alginate weight percent and decreases at higher alginate concentrations. This trend cannot be explained by crowding, and ionic screening suggests that alginate stabilizes proteins through direct interactions with a significant electrostatic component. Alginate also strongly suppresses aggregation at high temperature by irreversibly associating with unfolded proteins and preventing refolding. Both the beneficial and negative impacts of alginate on protein stability and aggregation have important implications for practical applications.
Collapse
|
4
|
Muronetz VI, Pozdyshev DV, Semenyuk PI. Polyelectrolytes for Enzyme Immobilization and the Regulation of Their Properties. Polymers (Basel) 2022; 14:polym14194204. [PMID: 36236151 PMCID: PMC9571273 DOI: 10.3390/polym14194204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
In this review, we considered aspects related to the application of polyelectrolytes, primarily synthetic polyanions and polycations, to immobilize enzymes and regulate their properties. We mainly focused on the description of works in which polyelectrolytes were used to create complex and unusual systems (self-regulated enzyme-polyelectrolyte complexes, artificial chaperones, polyelectrolyte brushes, layer-by-layer immobilization and others). These works represent the field of "smart polymers", whilst the trivial use of charged polymers as carriers for adsorption or covalent immobilization of proteins is beyond the scope of this short review. In addition, we have included a section on the molecular modeling of interactions between proteins and polyelectrolytes, as modeling the binding of proteins with a strictly defined, and already known, spatial structure, to disordered polymeric molecules has its own unique characteristics.
Collapse
Affiliation(s)
- Vladimir I. Muronetz
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119992 Moscow, Russia
- Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
- Correspondence: ; Tel.: +7-(495)939-14-56
| | - Denis V. Pozdyshev
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119992 Moscow, Russia
| | - Pavel I. Semenyuk
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119992 Moscow, Russia
| |
Collapse
|
5
|
Omidvar M, Zdarta J, Sigurdardóttir SB, Pinelo M. Mimicking natural strategies to create multi-environment enzymatic reactors: From natural cell compartments to artificial polyelectrolyte reactors. Biotechnol Adv 2021; 54:107798. [PMID: 34265377 DOI: 10.1016/j.biotechadv.2021.107798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/09/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022]
Abstract
Engineering microenvironments for sequential enzymatic reactions has attracted specific interest within different fields of research as an effective strategy to improve the catalytic performance of enzymes. While in industry most enzymatic reactions occur in a single compartment carrier, living cells are however able to conduct multiple reactions simultaneously within confined sub-compartments, or organelles. Engineering multi-compartments with regulated environments and transformation properties enhances enzyme activity and stability and thus increases the overall yield of final products. In this review, we discuss current and potential methods to fabricate artificial cells for sequential enzymatic reactions, which are inspired by mechanisms and metabolic pathways developed by living cells. We aim to advance the understanding of living cell complexity and its compartmentalization and present solutions to mimic these processes in vitro. Particular attention has been given to layer-by-layer assembly of polyelectrolytes for developing multi-compartments. We hope this review paves the way for the next steps toward engineering of smart artificial multi-compartments with adoptive stimuli-responsive properties, mimicking living cells to improve catalytic properties and efficiency of the enzymes and enhance their stability.
Collapse
Affiliation(s)
- Maryam Omidvar
- Process and Systems Engineering Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark
| | - Jakub Zdarta
- Process and Systems Engineering Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark; Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, 60965 Poznan, Poland
| | - Sigyn Björk Sigurdardóttir
- Process and Systems Engineering Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark
| | - Manuel Pinelo
- Process and Systems Engineering Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
6
|
Alpha-Synuclein Amyloid Aggregation Is Inhibited by Sulfated Aromatic Polymers and Pyridinium Polycation. Polymers (Basel) 2020; 12:polym12030517. [PMID: 32121059 PMCID: PMC7182936 DOI: 10.3390/polym12030517] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 12/16/2022] Open
Abstract
The effect of a range of synthetic charged polymers on alpha-synuclein aggregation and amyloid formation was tested. Sulfated aromatic polymers, poly(styrene sulfonate) and poly(anethole sulfonate), have been found to suppress the fibril formation. In this case, small soluble complexes, which do not bind with thioflavin T, have been formed in contrast to the large stick-type fibrils of free alpha-synuclein. Sulfated polysaccharide (dextran sulfate), as well as sulfated vinylic polymer (poly(vinyl sulfate)) and polycarboxylate (poly(methacrylic acid)), enhanced amyloid aggregation. Conversely, pyridinium polycation, poly(N-ethylvinylpyridinium), switched the mechanism of alpha-synuclein aggregation from amyloidogenic to amorphous, which resulted in the formation of large amorphous aggregates that do not bind with thioflavin T. The obtained results are relevant as a model of charged macromolecules influence on amyloidosis development in humans. In addition, these results may be helpful in searching for new approaches for synucleinopathies treatment with the use of natural polymers.
Collapse
|
7
|
Semenyuk P, Muronetz V. Protein Interaction with Charged Macromolecules: From Model Polymers to Unfolded Proteins and Post-Translational Modifications. Int J Mol Sci 2019; 20:E1252. [PMID: 30871103 PMCID: PMC6429204 DOI: 10.3390/ijms20051252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/18/2022] Open
Abstract
Interaction of proteins with charged macromolecules is involved in many processes in cells. Firstly, there are many naturally occurred charged polymers such as DNA and RNA, polyphosphates, sulfated glycosaminoglycans, etc., as well as pronouncedly charged proteins such as histones or actin. Electrostatic interactions are also important for "generic" proteins, which are not generally considered as polyanions or polycations. Finally, protein behavior can be altered due to post-translational modifications such as phosphorylation, sulfation, and glycation, which change a local charge of the protein region. Herein we review molecular modeling for the investigation of such interactions, from model polyanions and polycations to unfolded proteins. We will show that electrostatic interactions are ubiquitous, and molecular dynamics simulations provide an outstanding opportunity to look inside binding and reveal the contribution of electrostatic interactions. Since a molecular dynamics simulation is only a model, we will comprehensively consider its relationship with the experimental data.
Collapse
Affiliation(s)
- Pavel Semenyuk
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia.
| | - Vladimir Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia.
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia.
| |
Collapse
|
8
|
Artificial chaperones based on thermoresponsive polymers recognize the unfolded state of the protein. Int J Biol Macromol 2018; 121:536-545. [PMID: 30312700 DOI: 10.1016/j.ijbiomac.2018.10.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/08/2018] [Indexed: 11/23/2022]
Abstract
Stabilization of the enzymes under stress conditions is of special interest for modern biochemistry, bioengineering, as well as for formulation and target delivery of protein-based drugs. Aiming to achieve an efficient stabilization at elevated temperature with no influence on the enzyme under normal conditions, we studied chaperone-like activity of thermoresponsive polymers based on poly(dimethylaminoethyl methacrylate) (PDMAEMA) toward two different proteins, glyceraldehyde-3-phosphate dehydrogenase and chicken egg lysozyme. The polymers has been shown to do not interact with the folded protein at room temperature but form a complex upon heating to either protein unfolding or polymer phase transition temperature. A PDMAEMA-PEO block copolymer with a dodecyl end-group (d-PDMAEMA-PEO) as well as PDMAEMA-PEO without the dodecyl groups protected the denatured protein against aggregation in contrast to PDMAEMA homopolymer. No effect of the polymers on the enzymatic activity of the client protein was observed at room temperature. The polymers also partially protected the enzyme against inactivation at high temperature. The results provide a platform for creation of artificial chaperones with unfolded protein recognition which is a major feature of natural chaperones.
Collapse
|
9
|
Chaperone-like activity of synthetic polyanions can be higher than the activity of natural chaperones at elevated temperature. Biochem Biophys Res Commun 2017; 489:200-205. [DOI: 10.1016/j.bbrc.2017.05.128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/23/2017] [Indexed: 11/21/2022]
|
10
|
Muronetz VI, Barinova KV, Stroylova YY, Semenyuk PI, Schmalhausen EV. Glyceraldehyde-3-phosphate dehydrogenase: Aggregation mechanisms and impact on amyloid neurodegenerative diseases. Int J Biol Macromol 2017; 100:55-66. [DOI: 10.1016/j.ijbiomac.2016.05.066] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 12/14/2022]
|
11
|
|
12
|
Sofronova AA, Izumrudov VA, Muronetz VI, Semenyuk PI. Similarly charged polyelectrolyte can be the most efficient suppressor of the protein aggregation. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.11.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Sorokina S, Semenyuk P, Stroylova Y, Muronetz V, Shifrina Z. Complexes between cationic pyridylphenylene dendrimers and ovine prion protein: do hydrophobic interactions matter? RSC Adv 2017. [DOI: 10.1039/c6ra26563d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
MD simulation predicted the possible binding sites for the dendrimer interactions with protein while ITC data revealed both electrostatic and hydrophobic driving forces for the complexation.
Collapse
Affiliation(s)
- S. Sorokina
- A. N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russian Federation
| | - P. Semenyuk
- Belozersky Institute of Physico-Chemical Biology
- Lomonosov Moscow State University
- Moscow
- Russian Federation
| | - Yu. Stroylova
- Belozersky Institute of Physico-Chemical Biology
- Lomonosov Moscow State University
- Moscow
- Russian Federation
| | - V. Muronetz
- Belozersky Institute of Physico-Chemical Biology
- Lomonosov Moscow State University
- Moscow
- Russian Federation
| | - Z. Shifrina
- A. N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russian Federation
| |
Collapse
|
14
|
Maximova ED, Zhiryakova MV, Faizuloev EB, Nikonova AA, Ezhov AA, Izumrudov VA, Orlov VN, Grozdova ID, Melik-Nubarov NS. Cationic nanogels as Trojan carriers for disruption of endosomes. Colloids Surf B Biointerfaces 2015; 136:981-8. [PMID: 26562190 DOI: 10.1016/j.colsurfb.2015.10.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/10/2015] [Accepted: 10/30/2015] [Indexed: 12/20/2022]
Abstract
The comparison study of interaction of linear poly(2-dimethyl amino)ethyl methacrylate and its cationic nanogels of various cross-linking with both DNA and sodium poly(styrene sulfonate) has been performed. Although all amino groups of the nanogels proved to be susceptible for protonation, their accessibility for ion pairing with the polyanions was controlled and impaired with the cross-linking. The investigation of nanogels complexes with cells in culture that was accomplished by using of calcein pH-sensitive probe revealed a successive increase in the cytoplasmic fluorescence upon the growth in the cross-linking due to calceine leakage from acidic compartments to cytosol. This regularity implies that amino groups which are buried presumably inside the nanogel are protected against the ion-pairing with polyanions of plasma membrane and hence are able to manifest buffer properties while captured into acidic endosomes, i.e. possess lyso/endosomolytic capacity. These findings suggest that network architecture makes an important contribution to proton sponge properties of weak polycations.
Collapse
Affiliation(s)
- Ekaterina D Maximova
- M.V Lomonosov Moscow State University, School of Chemistry, GSP-1, Leninskie gory 1, build. 3, Moscow 119991,Russia; I. Mechnikov Research Institute for Vaccines and Sera, Malyi Kazennyi pereulok 5a, Moscow 105064, Russia
| | - Marina V Zhiryakova
- M.V Lomonosov Moscow State University, School of Chemistry, GSP-1, Leninskie gory 1, build. 3, Moscow 119991,Russia
| | - Evgenyi B Faizuloev
- I. Mechnikov Research Institute for Vaccines and Sera, Malyi Kazennyi pereulok 5a, Moscow 105064, Russia
| | - Alexandra A Nikonova
- I. Mechnikov Research Institute for Vaccines and Sera, Malyi Kazennyi pereulok 5a, Moscow 105064, Russia
| | - Alexander A Ezhov
- M.V Lomonosov Moscow State University, School of Physics, GSP-1, Leninskie gory 1, build. 2, Moscow 119991, Russia
| | - Vladimir A Izumrudov
- M.V Lomonosov Moscow State University, School of Chemistry, GSP-1, Leninskie gory 1, build. 3, Moscow 119991,Russia; A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russia
| | - Victor N Orlov
- M.V Lomonosov Moscow State University, A.N. Belozersky Institute of Physico-Chermical Biology, GSP-1, Leninskie gory 1, build. 40, Moscow 119991, Russia
| | - Irina D Grozdova
- M.V Lomonosov Moscow State University, School of Chemistry, GSP-1, Leninskie gory 1, build. 3, Moscow 119991,Russia
| | - Nickolay S Melik-Nubarov
- M.V Lomonosov Moscow State University, School of Chemistry, GSP-1, Leninskie gory 1, build. 3, Moscow 119991,Russia.
| |
Collapse
|
15
|
Semenyuk P, Orlov V, Muronetz V, Izumrudov V. Two-stage binding of a protein to the polyanion: Non-denaturing interaction followed by denaturation. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.03.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Semenyuk PI, Moiseeva EV, Stroylova YY, Lotti M, Izumrudov VA, Muronetz VI. Sulfated and sulfonated polymers are able to solubilize efficiently the protein aggregates of different nature. Arch Biochem Biophys 2015; 567:22-9. [DOI: 10.1016/j.abb.2014.12.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/17/2014] [Accepted: 12/22/2014] [Indexed: 01/10/2023]
|
17
|
Rodrigues RC, Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Fernandez-Lafuente R. Amination of enzymes to improve biocatalyst performance: coupling genetic modification and physicochemical tools. RSC Adv 2014. [DOI: 10.1039/c4ra04625k] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Improvement of the features of an enzyme is in many instances a pre-requisite for the industrial implementation of these exceedingly interesting biocatalysts.
Collapse
Affiliation(s)
- Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology Lab
- Institute of Food Science and Technology
- Federal University of Rio Grande do Sul
- Porto Alegre, Brazil
| | - Oveimar Barbosa
- Escuela de Química
- Grupo de investigación en Bioquímica y Microbiología (GIBIM)
- Edificio Camilo Torres 210
- Universidad Industrial de Santander
- Bucaramanga, Colombia
| | - Claudia Ortiz
- Escuela de Bacteriología y Laboratorio Clínico
- Universidad Industrial de Santander
- Bucaramanga, Colombia
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Ap. 99-03080 Alicante, Spain
| | - Rodrigo Torres
- Escuela de Química
- Grupo de investigación en Bioquímica y Microbiología (GIBIM)
- Edificio Camilo Torres 210
- Universidad Industrial de Santander
- Bucaramanga, Colombia
| | | |
Collapse
|
18
|
Semenyuk PI, Muronetz VI, Haertlé T, Izumrudov VA. Effect of poly(phosphate) anions on glyceraldehyde-3-phosphate dehydrogenase structure and thermal aggregation: comparison with influence of poly(sulfoanions). Biochim Biophys Acta Gen Subj 2013; 1830:4800-5. [PMID: 23811344 DOI: 10.1016/j.bbagen.2013.06.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 06/09/2013] [Accepted: 06/17/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND It is well documented that poly(sulfate) and poly(sulfonate) anions suppress protein thermal aggregation much more efficiently than poly(carboxylic) anions, but as a rule, they denature protein molecules. In this work, a polymer of different nature, i.e. poly(phosphate) anion (PP) was used to elucidate the influence of phosphate groups on stability and thermal aggregation of the model enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). METHODS Isothermal titration calorimetry and differential scanning calorimetry were used for studying the protein-polyanion interactions and the influence of bound polyanions on the protein structure. The enzymatic activity of GAPDH and size of the complexes were measured. The aggregation level was determined from the turbidity. RESULTS Highly polymerized PP chains were able to suppress the aggregation completely, but at significantly higher concentrations as compared with poly(styrenesulfonate) (PSS) or dextran sulfate chains of the same degree of polymerization. The effect of PP on the enzyme structure and activity was much gentler as opposed to the binding of dextran sulfate or, especially, PSS that denatured GAPDH molecules with the highest efficacy caused by short PSS chains. These findings agreed well with the enhanced affinity of polysulfoanions to GAPDH. CONCLUSIONS The revealed trends might help to illuminate the mechanism of control of proteins functionalities by insertion of charged groups of different nature through posttranslational modifications. GENERAL SIGNIFICANCE Practical implementation of the results could be the use of PP chains as promising tools to suppress the proteins aggregation without noticeable loss in the enzymatic activity.
Collapse
Affiliation(s)
- Pavel I Semenyuk
- Belozersky Institute of Physico-Chemical Biology, Moscow, Russia.
| | | | | | | |
Collapse
|
19
|
|
20
|
Xu Y, Seeman D, Yan Y, Sun L, Post J, Dubin PL. Effect of Heparin on Protein Aggregation: Inhibition versus Promotion. Biomacromolecules 2012; 13:1642-51. [DOI: 10.1021/bm3003539] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yisheng Xu
- Department of Chemistry, University of Massachusetts, 710 North
Pleasant Street, Amherst, Massachusetts 01003
| | - Daniel Seeman
- Department of Chemistry, University of Massachusetts, 710 North
Pleasant Street, Amherst, Massachusetts 01003
| | - Yunfeng Yan
- Department of Chemistry, University of Massachusetts, 710 North
Pleasant Street, Amherst, Massachusetts 01003
| | - Lianhong Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Jared Post
- Department of Chemistry, University of Massachusetts, 710 North
Pleasant Street, Amherst, Massachusetts 01003
| | - Paul L. Dubin
- Department of Chemistry, University of Massachusetts, 710 North
Pleasant Street, Amherst, Massachusetts 01003
| |
Collapse
|
21
|
Stogov SV, Muronets VI, Izumrudov VA. Basic guidelines for the selection of polyelectrolytes that can effectively prevent thermal aggregation of enzymes without any substantial loss in their catalytic activity1. POLYMER SCIENCE SERIES C 2011. [DOI: 10.1134/s1811238211030027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Mazzaferro L, Breccia JD, Andersson MM, Hitzmann B, Hatti-Kaul R. Polyethyleneimine–protein interactions and implications on protein stability. Int J Biol Macromol 2010; 47:15-20. [DOI: 10.1016/j.ijbiomac.2010.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/13/2010] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
|
23
|
Stogov SV, Izumrudov VA, Muronetz VI. Structural changes of a protein bound to a polyelectrolyte depend on the hydrophobicity and polymerization degree of the polyelectrolyte. BIOCHEMISTRY (MOSCOW) 2010; 75:437-42. [DOI: 10.1134/s0006297910040061] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Stogov SV, Muronetz VI, Izumrudov VA. Short synthetic polyelectrolytes destabilize proteins most efficiently. DOKL BIOCHEM BIOPHYS 2009; 427:187-90. [PMID: 19817133 DOI: 10.1134/s160767290904005x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- S V Stogov
- Belozerskii Institute of Physicochemical Biology, Moscow State University, Moscow 119991, Russia
| | | | | |
Collapse
|
25
|
|