1
|
Patel A, Punnoose L, Chandrasekaran AR. Differential electrophoretic mobility of synthetic DNA motifs and duplex DNA in various counter ions. Chem Commun (Camb) 2024; 60:12706-12709. [PMID: 39397518 DOI: 10.1039/d4cc04935g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
In this work, we analyzed the electrophoretic behavior of a double crossover (DX) DNA motif in various counter ions. The influence of the type and concentration of counter ions on electrophoretic behavior is different for the DX motif compared to a duplex of the same molecular weight. Higher concentrations of divalent ions Mg2+ and Ca2+ in the gel and running buffer reduce the electrophoretic migration of the DX motif. This effect is less pronounced in the monovalent ion Na+ while K+ ion did not have any significant effect on the electrophoretic behavior.
Collapse
Affiliation(s)
- Akul Patel
- The RNA Institute, University at Albany, State University of New York, New York, NY, USA.
| | - Leah Punnoose
- The RNA Institute, University at Albany, State University of New York, New York, NY, USA.
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, New York, NY, USA.
- Department of Nanoscale Science and Engineering, University at Albany, State University of New York, New York, NY, USA
| |
Collapse
|
2
|
Danesi AL, Athanasiadou D, Aderinto AO, Rasie P, Chou LYT, Carneiro KMM. Peptide-Decorated DNA Nanostructures Promote Site-Specific Hydroxyapatite Growth. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1692-1698. [PMID: 34957820 DOI: 10.1021/acsami.1c19271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The guiding principle for mineralized tissue formation is that mineral growth occurs through the interaction of Ca2+ and phosphate ions with extracellular matrix (ECM) proteins. Recently, nanoengineered DNA structures have been proposed as mimics to ECM scaffolds. However, these principles have not been applied to mineralized tissues. Here, we describe DNA nanostructures, namely, a DNA nanotube and a DNA origami rectangle that are site specifically functionalized with a mineral-promoting "SSEE" peptide derived from ECM proteins present in mineralized tissues. In the presence of Ca2+ and phosphate ions (mineralizing conditions), site-specific calcium phosphate formation occurred on the DNA nanostructures. Amorphous calcium phosphate or hydroxyapatite was formed depending on the incubation time, shape of the DNA nanostructure, and amount of Ca2+ and phosphate ions present. The ability to design and control the growth of hydroxyapatite through nanoengineered scaffolds provides insights into the mechanisms that may occur during crystal nucleation and growth of mineralized tissues and can inspire mineralized tissue regeneration strategies.
Collapse
Affiliation(s)
- Alexander L Danesi
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | | | - Abdulmateen O Aderinto
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Prakash Rasie
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Leo Y T Chou
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Karina M M Carneiro
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
3
|
Heuer-Jungemann A, Linko V. Engineering Inorganic Materials with DNA Nanostructures. ACS CENTRAL SCIENCE 2021; 7:1969-1979. [PMID: 34963890 PMCID: PMC8704036 DOI: 10.1021/acscentsci.1c01272] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 05/25/2023]
Abstract
Nucleic acid nanotechnology lays a foundation for the user-friendly design and synthesis of DNA frameworks of any desirable shape with extreme accuracy and addressability. Undoubtedly, such features make these structures ideal modules for positioning and organizing molecules and molecular components into complex assemblies. One of the emerging concepts in the field is to create inorganic and hybrid materials through programmable DNA templates. Here, we discuss the challenges and perspectives of such DNA nanostructure-driven materials science engineering and provide insights into the subject by introducing various DNA-based fabrication techniques including metallization, mineralization, lithography, casting, and hierarchical self-assembly of metal nanoparticles.
Collapse
Affiliation(s)
- Amelie Heuer-Jungemann
- Max
Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
- Center
for Nanoscience, Ludwig-Maximilians University, 80539 Munich, Germany
| | - Veikko Linko
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| |
Collapse
|
4
|
Ahn SY, Liu J, Vellampatti S, Wu Y, Um SH. DNA Transformations for Diagnosis and Therapy. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2008279. [PMID: 33613148 PMCID: PMC7883235 DOI: 10.1002/adfm.202008279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/22/2020] [Indexed: 05/03/2023]
Abstract
Due to its unique physical and chemical characteristics, DNA, which is known only as genetic information, has been identified and utilized as a new material at an astonishing rate. The role of DNA has increased dramatically with the advent of various DNA derivatives such as DNA-RNA, DNA-metal hybrids, and PNA, which can be organized into 2D or 3D structures by exploiting their complementary recognition. Due to its intrinsic biocompatibility, self-assembly, tunable immunogenicity, structural programmability, long stability, and electron-rich nature, DNA has generated major interest in electronic and catalytic applications. Based on its advantages, DNA and its derivatives are utilized in several fields where the traditional methodologies are ineffective. Here, the present challenges and opportunities of DNA transformations are demonstrated, especially in biomedical applications that include diagnosis and therapy. Natural DNAs previously utilized and transformed into patterns are not found in nature due to lack of multiplexing, resulting in low sensitivity and high error frequency in multi-targeted therapeutics. More recently, new platforms have advanced the diagnostic ability and therapeutic efficacy of DNA in biomedicine. There is confidence that DNA will play a strong role in next-generation clinical technology and can be used in multifaceted applications.
Collapse
Affiliation(s)
- So Yeon Ahn
- School of Chemical EngineeringSungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Korea
| | - Jin Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaSchool of Chemistry and Chemical Engineering Huazhong University of Science and Technology1037 Luoyu LoadWuhan430074China
| | - Srivithya Vellampatti
- Institute of Convergent Chemical Engineering and TechnologySungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Korea
- Present address:
Progeneer, Inc.#1002, 12, Digital‐ro 31‐gil, Guro‐guSeoul08380Korea
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaSchool of Chemistry and Chemical Engineering Huazhong University of Science and Technology1037 Luoyu LoadWuhan430074China
| | - Soong Ho Um
- School of Chemical EngineeringSKKU Advanced Institute of Nanotechnology (SAINT)Biomedical Institute for Convergence at SKKU (BICS) and Institute of Quantum Biophysics (IQB)Sungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Korea
- Progeneer Inc.#1002, 12, Digital‐ro 31‐gil, Guro‐guSeoul08380Korea
| |
Collapse
|
5
|
Athanasiadou D, Carneiro KMM. DNA nanostructures as templates for biomineralization. Nat Rev Chem 2021; 5:93-108. [PMID: 37117611 DOI: 10.1038/s41570-020-00242-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2020] [Indexed: 12/22/2022]
Abstract
Nature uses extracellular matrix scaffolds to organize biominerals into hierarchical structures over various length scales. This has inspired the design of biomimetic mineralization scaffolds, with DNA nanostructures being among the most promising. DNA nanotechnology makes use of molecular recognition to controllably give 1D, 2D and 3D nanostructures. The control we have over these structures makes them attractive templates for the synthesis of mineralized tissues, such as bones and teeth. In this Review, we first summarize recent work on the crystallization processes and structural features of biominerals on the nanoscale. We then describe self-assembled DNA nanostructures and come to the intersection of these two themes: recent applications of DNA templates in nanoscale biomineralization, a crucial process to regenerate mineralized tissues.
Collapse
|
6
|
Wu D, Li BL, Zhao Q, Liu Q, Wang D, He B, Wei Z, Leong DT, Wang G, Qian H. Assembling Defined DNA Nanostructure with Nitrogen-Enriched Carbon Dots for Theranostic Cancer Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906975. [PMID: 32301572 DOI: 10.1002/smll.201906975] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/27/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
DNA nanostructures as scaffolds for drug delivery, biosensing, and bioimaging are hindered by its vulnerability in physiological settings, less favorable of incorporating arbitrary guest molecules and other desirable functionalities. Noncanonical self-assembly of DNA nanostructures with small molecules in an alternative system is an attractive strategy to expand their applications in multidisciplinary fields and is rarely explored. This work reports a nitrogen-enriched carbon dots (NCDs)-mediated DNA nanostructure self-assembly strategy. Given the excellent photoluminescence and photodynamic properties of NCDs, the obtained DNA/NCDs nanocomplex holds great potential for bioimaging and anticancer therapy. NCDs can mediate DNA nanoprism (NPNCD ) self-assembly isothermally at a large temperature and pH range in a magnesium-free manner. To explore the suitability of NPNCD in potential biomedical applications, the cytotoxicity and cellular uptake efficiency of NPNCD are evaluated. NPNCD with KRAS siRNA (NPNCD K) is further conjugated for KRAS-mutated nonsmall cell lung cancer therapy. The NPNCD K shows excellent gene knockdown efficiency and anticancer effect in vitro. The current study suggests that conjugating NCDs with programmable DNA nanostructures is a powerful strategy to endow DNA nanostructures with new functionalities, and NPNCD may be a potential theranostic platform with further fine-tuned properties of CDs such as near-red fluorescence or photothermal activities.
Collapse
Affiliation(s)
- Di Wu
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing, 400037, China
| | - Bang Lin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Qianwen Zhao
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing, 400037, China
| | - Qian Liu
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing, 400037, China
- Laboratory of Pharmacy and Chemistry and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Dong Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing, 400037, China
| | - Binfeng He
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing, 400037, China
| | - Zhenghua Wei
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing, 400037, China
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Guansong Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing, 400037, China
| | - Hang Qian
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing, 400037, China
| |
Collapse
|
7
|
Kim F, Chen T, Burgess T, Rasie P, Selinger TL, Greschner A, Rizis G, Carneiro K. Functionalized DNA nanostructures as scaffolds for guided mineralization. Chem Sci 2019; 10:10537-10542. [PMID: 32055376 PMCID: PMC6988742 DOI: 10.1039/c9sc02811k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/26/2019] [Indexed: 11/21/2022] Open
Abstract
The field of DNA nanotechnology uses synthetic DNA strands as building blocks for designing complex shapes in one-, two- and three-dimensions. Here, we investigate whether DNA nanostructures are feasible platforms for the precise organization of polyaspartic acid (pAsp), a known mineral carrier, with a goal towards biomimetic mineralization for enamel regeneration. We describe the preparation of DNA-pAsp conjugates and their subsequent assembly into ordered nanostructures. Covalent attachment of pAsp to DNA was noted to hinder DNA nanostructure formation past a certain threshold (50% pAsp) when tested on a previously published DNA system. However, a simplified double stranded DNA system (3sDH system) was more robust and efficient in its pAsp incorporation. In addition, the 3sDH system was successful in organizing mineral inducing groups in one dimension at repeating intervals of 28.7 ± 4.0 nm, as determined by atomic force microscopy. Our results demonstrate that DNA nanostructures can be functionalized with pAsp and act as a platform to investigate guided mineralization.
Collapse
Affiliation(s)
- Francesca Kim
- Faculty of Dentistry , University of Toronto , Toronto , ON M5G 1G6 , Canada .
| | - Tong Chen
- Faculty of Dentistry , University of Toronto , Toronto , ON M5G 1G6 , Canada .
| | - Trevor Burgess
- Faculty of Dentistry , University of Toronto , Toronto , ON M5G 1G6 , Canada .
| | - Prakash Rasie
- Faculty of Dentistry , University of Toronto , Toronto , ON M5G 1G6 , Canada .
| | - Tim Luca Selinger
- Faculty of Dentistry , University of Toronto , Toronto , ON M5G 1G6 , Canada .
| | - Andrea Greschner
- Institut National de la Recherche Scientifique (INRS) , EMT Research Center , Varennes , QC J3X 1S2 , Canada
| | - Georgios Rizis
- Faculty of Dentistry , University of Toronto , Toronto , ON M5G 1G6 , Canada .
| | - Karina Carneiro
- Faculty of Dentistry , University of Toronto , Toronto , ON M5G 1G6 , Canada .
| |
Collapse
|
8
|
Qu J, Liu L, Chen H, Ogata N, Masuda T. Synthesis and Electro-Optical Properties of a Novel DNA-Lipid Complex Carrying Carbazole Moieties. MACROMOL CHEM PHYS 2010. [DOI: 10.1002/macp.200900397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Affiliation(s)
- Jens Müller
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstr. 28/30, 48149 Münster, Germany.
| |
Collapse
|
10
|
Chan G, Mooney DJ. New materials for tissue engineering: towards greater control over the biological response. Trends Biotechnol 2008; 26:382-92. [PMID: 18501452 DOI: 10.1016/j.tibtech.2008.03.011] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/26/2008] [Accepted: 03/27/2008] [Indexed: 12/31/2022]
Abstract
One goal of tissue engineering is to replace lost or compromised tissue function, and an approach to this is to control the interplay between materials (scaffolds), cells and growth factors to create environments that promote the regeneration of functional tissues and organs. An increased understanding of the chemical signals that direct cell differentiation, migration and proliferation, advances in scaffold design and peptide engineering that allow this signaling to be recapitulated and the development of new materials, such as DNA-based and stimuli-sensitive polymers, have recently given engineers enhanced control over the chemical properties of a material and cell fate. Additionally, the immune system, which is often overlooked, has been shown to play a beneficial role in tissue repair, and future endeavors in material design will potentially expand to include immunomodulation.
Collapse
Affiliation(s)
- Gail Chan
- Harvard University, School of Engineering and Applied Sciences, 29 Oxford St., Cambridge, MA 02138, USA
| | | |
Collapse
|