1
|
Wang S, Jiao C, Gerlach G, Körner J. Porosity Engineering of Dried Smart Poly( N-isopropylacrylamide) Hydrogels for Gas Sensing. Biomacromolecules 2024; 25:2715-2727. [PMID: 38047737 PMCID: PMC11094736 DOI: 10.1021/acs.biomac.3c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
A recent study unveiled the potential of acrylamide-based stimulus-responsive hydrogels for volatile organic compound detection in gaseous environments. However, for gas sensing, a large surface area, that is, a highly porous material, offering many adsorption sites is crucial. The large humidity variation in the gaseous environment constitutes a significant challenge for preserving an initially porous structure, as the pores tend to be unstable and irreversibly collapse. Therefore, the present investigation focuses on enhancing the porosity of smart PNiPAAm hydrogels under the conditions of a gaseous environment and the preservation of the structural integrity for long-term use. We have studied the influence of polyethylene glycol (PEG) as a porogen and the application of different drying methods and posttreatment. The investigations lead to the conclusion that only the combination of PEG addition, freeze-drying, and subsequent conditioning in high relative humidity enables a long-term stable formation of a porous surface and inner structure of the material. The significantly enhanced swelling response in a gaseous environment and in the test gas acetone is confirmed by gravimetric experiments of bulk samples and continuous measurements of thin films on piezoresistive pressure sensor chips. These measurements are furthermore complemented by an in-depth analysis of the morphology and microstructure. While the study was conducted for PNiPAAm, the insights and developed processes are general in nature and can be applied for porosity engineering of other smart hydrogel materials for VOC detection in gaseous environments.
Collapse
Affiliation(s)
- Sitao Wang
- Institute
of Solid-State Electronics, Dresden University
of Technology, 01062 Dresden, Germany
| | - Chen Jiao
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Gerald Gerlach
- Institute
of Solid-State Electronics, Dresden University
of Technology, 01062 Dresden, Germany
| | - Julia Körner
- Institute
of Electrical Engineering and Measurement Technology, Leibniz Universität Hannover, 30167 Hannover, Germany
| |
Collapse
|
2
|
Bercea M, Lupu A. Recent Insights into Glucose-Responsive Concanavalin A-Based Smart Hydrogels for Controlled Insulin Delivery. Gels 2024; 10:260. [PMID: 38667679 PMCID: PMC11048858 DOI: 10.3390/gels10040260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Many efforts are continuously undertaken to develop glucose-sensitive biomaterials able of controlling glucose levels in the body and self-regulating insulin delivery. Hydrogels that swell or shrink as a function of the environmental free glucose content are suitable systems for monitoring blood glucose, delivering insulin doses adapted to the glucose concentration. In this context, the development of sensors based on reversible binding to glucose molecules represents a continuous challenge. Concanavalin A (Con A) is a bioactive protein isolated from sword bean plants (Canavalia ensiformis) and contains four sugar-binding sites. The high affinity for reversibly and specifically binding glucose and mannose makes Con A as a suitable natural receptor for the development of smart glucose-responsive materials. During the last few years, Con A was used to develop smart materials, such as hydrogels, microgels, nanoparticles and films, for producing glucose biosensors or drug delivery devices. This review is focused on Con A-based materials suitable in the diagnosis and therapeutics of diabetes. A brief outlook on glucose-derived theranostics of cancer is also presented.
Collapse
Affiliation(s)
- Maria Bercea
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Alexandra Lupu
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
3
|
Wang Y, Li H, Rasool A, Wang H, Manzoor R, Zhang G. Polymeric nanoparticles (PNPs) for oral delivery of insulin. J Nanobiotechnology 2024; 22:1. [PMID: 38167129 PMCID: PMC10763344 DOI: 10.1186/s12951-023-02253-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Successful oral insulin administration can considerably enhance the quality of life (QOL) of diabetes patients who must frequently take insulin injections. Oral insulin administration, on the other hand, is seriously hampered by gastrointestinal enzymes, wide pH range, mucus and mucosal layers, which limit insulin oral bioavailability to ≤ 2%. Therefore, a large number of technological solutions have been proposed to increase the oral bioavailability of insulin, in which polymeric nanoparticles (PNPs) are highly promising for oral insulin delivery. The recently published research articles chosen for this review are based on applications of PNPs with strong future potential in oral insulin delivery, and do not cover all related work. In this review, we will summarize the controlled release mechanisms of oral insulin delivery, latest oral insulin delivery applications of PNPs nanocarrier, challenges and prospect. This review will serve as a guide to the future investigators who wish to engineer and study PNPs as oral insulin delivery systems.
Collapse
Affiliation(s)
- Yunyun Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green, Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Hao Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green, Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Aamir Rasool
- Institute of Biochemistry, University of Balochistan, Quetta, 78300, Pakistan.
| | - Hebin Wang
- College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, 741000, China.
| | - Robina Manzoor
- Department of Biotechnology and Bioinformatics, Water and Marine Sciences, Lasbella University of Agriculture, Uthal, 90150, Pakistan
| | - Genlin Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green, Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
4
|
Zhang Y, Wu BM. Current Advances in Stimuli-Responsive Hydrogels as Smart Drug Delivery Carriers. Gels 2023; 9:838. [PMID: 37888411 PMCID: PMC10606589 DOI: 10.3390/gels9100838] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
In recent years, significant advancements in the field of advanced materials and hydrogel engineering have enabled the design and fabrication of smart hydrogels and nanogels that exhibit sensitivity to specific signals or pathological conditions, leading to a wide range of applications in drug delivery and disease treatment. This comprehensive review aims to provide an in-depth analysis of the stimuli-responsive principles exhibited by smart hydrogels in response to various triggers, such as pH levels, temperature fluctuations, light exposure, redox conditions, or the presence of specific biomolecules. The functionality and performance characteristics of these hydrogels are highly influenced by both their constituent components and fabrication processes. Key design principles, their applications in disease treatments, challenges, and future prospects were also discussed. Overall, this review aims to contribute to the current understanding of gel-based drug delivery systems and stimulate further research in this rapidly evolving field.
Collapse
Affiliation(s)
- Yulong Zhang
- Department of Mineralized Tissue Biology, The Forsyth Institute, Cambridge, MA 02140, USA;
| | - Benjamin M. Wu
- Department of Mineralized Tissue Biology, The Forsyth Institute, Cambridge, MA 02140, USA;
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, School of Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Tang Y, Wang H, Liu S, Pu L, Hu X, Ding J, Xu G, Xu W, Xiang S, Yuan Z. A review of protein hydrogels: Protein assembly mechanisms, properties, and biological applications. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Salehipour M, Rezaei S, Yazdani M, Mogharabi-Manzari M. Recent advances in preparation of polymer hydrogel composites and their applications in enzyme immobilization. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Zeynaloo E, Zahran EM, Yang YP, Dikici E, Head T, Bachas LG, Daunert S. Reagentless electrochemical biosensors through incorporation of unnatural amino acids on the protein structure. Biosens Bioelectron 2022; 200:113861. [PMID: 34986438 PMCID: PMC9404255 DOI: 10.1016/j.bios.2021.113861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 11/19/2022]
Abstract
Typical protein biosensors employ chemical or genetic labeling of the protein, thus introducing an extraneous molecule to the wild-type parent protein, often changing the overall structure and properties of the protein. While these labeling methods have proven successful in many cases, they also have a series of disadvantages associated with their preparation and function. An alternative route for labeling proteins is the incorporation of unnatural amino acid (UAA) analogues, capable of acting as a label, into the structure of a protein. Such an approach, while changing the local microenvironment, poses less of a burden on the overall structure of the protein. L-DOPA is an analog of phenylalanine and contains a catechol moiety that participates in a quasi-reversible, two-electron redox process, thus making it suitable as an electrochemical label/reporter. The periplasmic glucose/galactose binding protein (GBP) was chosen to demonstrate this detection principle. Upon glucose binding, GBP undergoes a significant conformational change that is manifested as a change in the electrochemistry of L-DOPA. The electroactive GBP was immobilized onto gold nanoparticle-modified, polymerized caffeic acid, screen-printed carbon electrodes (GBP-LDOPA/AuNP/PCA/SPCE) for the purpose of direct measurement of glucose levels and serves as a proof-of-concept of the use of electrochemically-active unnatural amino acids as the label. The resulting reagentless GBP biosensors exhibited a highly selective and sensitive binding affinity for glucose in the micromolar range, laying the foundation for a new biosensing methodology based on global incorporation of an electroactive amino acid into the protein's primary sequence for highly selective electrochemical detection of compounds of interest.
Collapse
Affiliation(s)
- Elnaz Zeynaloo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, United States; Department of Chemistry, University of Miami, Miami, FL, 33134, United States
| | - Elsayed M Zahran
- Department of Chemistry, Ball State University, Muncie, IN, 47306, United States
| | - Yu-Ping Yang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136, United States
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136, United States; Clinical and Translational Science Institute, University of Miami, Miami, FL, 33136, United States
| | - Trajen Head
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136, United States
| | - Leonidas G Bachas
- Department of Chemistry, University of Miami, Miami, FL, 33134, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136, United States
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136, United States; Clinical and Translational Science Institute, University of Miami, Miami, FL, 33136, United States.
| |
Collapse
|
8
|
Duan T, Bian Q, Li H. Light-Responsive Dynamic Protein Hydrogels Based on LOVTRAP. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10214-10222. [PMID: 34396769 DOI: 10.1021/acs.langmuir.1c01699] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein-based hydrogels can mimic many aspects of native extracellular matrices (ECMs) and are promising biomedical materials that find various applications in cell proliferation, drug/cell delivery, and tissue engineering. To be adapted for different tasks, it is important that the mechanical and/or biochemical properties of protein-based hydrogels can be regulated by external stimuli. Light as a regulation stimulus is of advantage because it can be easily applied in demanded spatiotemporal manners. The noncovalent binding between the light-oxygen-voltage-sensing domain 2 (LOV2) and its binding partner ZDark1 (zdk1), named as LOVTRAP, is a light-responsive interaction. The binding affinity of LOVTRAP is much higher in dark than that under blue light irradiation. Taking advantage of these light-responsive interactions, herein we endeavored to use LOVTRAP as a crosslinking mechanism to engineer light-responsive protein hydrogels. Using LOV2-containing and zdk1-containing multifunctional protein building blocks, we successfully engineered a light-responsive protein hydrogel whose viscoelastic properties can change in response to light: in the dark, the hydrogel showed higher storage modulus; under blue light irradiation, the storage modulus decreased. Due to the noncovalent nature of the LOVTRAP, the engineered LOVTRAP protein hydrogels displayed shear-thinning and self-healing properties and served as an excellent injectable protein hydrogel. We anticipated that this new class of light-responsive protein hydrogels will broaden the scope of dynamic protein hydrogels and help develop other light-responsive protein hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Tianyu Duan
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Qingyuan Bian
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
9
|
Recent Applications of Point-of-Care Devices for Glucose Detection on the Basis of Stimuli-Responsive Volume Phase Transition of Hydrogel. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00001-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Duan T, Li H. In Situ Phase Transition of Elastin-Like Polypeptide Chains Regulates Thermoresponsive Properties of Elastomeric Protein-Based Hydrogels. Biomacromolecules 2020; 21:2258-2267. [DOI: 10.1021/acs.biomac.0c00206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Tianyu Duan
- Department of Chemistry University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Hongbin Li
- Department of Chemistry University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
11
|
VandenBerg MA, Webber MJ. Biologically Inspired and Chemically Derived Methods for Glucose-Responsive Insulin Therapy. Adv Healthc Mater 2019; 8:e1801466. [PMID: 30605265 DOI: 10.1002/adhm.201801466] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/11/2018] [Indexed: 12/13/2022]
Abstract
The controlled delivery of therapeutics in a manner responsive to physiological indicators has promise in realizing new therapeutic approaches to combat disease. This approach is especially relevant in the context of diabetes. Natural fluctuations in blood glucose seen in the healthy state, complete with peaks and troughs, are poorly regulated as a result of detrimental production or ineffective signaling of the insulin hormone. While several manifestations of diabetes are treated with regularly administered exogenous insulin, the present standard of care results in suboptimal glycemic management that poorly recreates natural hormone control, leading to long-term instability and a significantly increased risk for secondary health complications. New synthetic technologies that make insulin available only when needed, and at the exact dose required, have been explored under the broad vision of realizing a "fully synthetic pancreas." Yet, many challenges remain to realizing a technology that is appropriately responsive, safe, and well integrated into a manageable routine. Herein, many of the approaches explored thus far to sense physiological blood glucose and elicit response through the release of therapeutic insulin are summarized. The approaches point to a new, autonomous approach to managing diabetes with biomimetic therapy.
Collapse
Affiliation(s)
- Michael A. VandenBerg
- Department of Chemical & Biomolecular EngineeringUniversity of Notre Dame 205 McCourtney Hall Notre Dame IN 46556 USA
| | - Matthew J. Webber
- Department of Chemical & Biomolecular EngineeringUniversity of Notre Dame 205 McCourtney Hall Notre Dame IN 46556 USA
| |
Collapse
|
12
|
Lin K, Yi J, Mao X, Wu H, Zhang LM, Yang L. Glucose-sensitive hydrogels from covalently modified carboxylated pullulan and concanavalin A for smart controlled release of insulin. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Jamwal S, Ram B, Ranote S, Dharela R, Chauhan GS. New glucose oxidase-immobilized stimuli-responsive dextran nanoparticles for insulin delivery. Int J Biol Macromol 2019; 123:968-978. [DOI: 10.1016/j.ijbiomac.2018.11.147] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/02/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022]
|
14
|
Gu S, Yang L, Li S, Yang J, Zhang B, Yang J. Thermo- and glucose-sensitive microgels with improved salt tolerance for controlled insulin release in a physiological environment. POLYM INT 2018. [DOI: 10.1002/pi.5634] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shiling Gu
- State Key Laboratory of Chemical Resource, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology; Beijing University of Chemical Technology; Beijing China
| | - Liu Yang
- State Key Laboratory of Chemical Resource, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology; Beijing University of Chemical Technology; Beijing China
| | - Shirui Li
- Department of Endocrinology; China-Japan Friendship Hospital; Beijing China
| | - Junjiao Yang
- College of Science; Beijing University of Chemical Technology; Beijing China
| | - Bo Zhang
- Department of Endocrinology; China-Japan Friendship Hospital; Beijing China
| | - Jing Yang
- State Key Laboratory of Chemical Resource, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology; Beijing University of Chemical Technology; Beijing China
| |
Collapse
|
15
|
Cohen N, Saleh OA, McMeeking RM. Engineering the Mechanical Behavior of Polymer Networks with Flexible Self-Assembled V-Shaped Monomers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Robert M. McMeeking
- School of Engineering, University of Aberdeen, King’s College, Aberdeen AB24 3UE, Scotland
| |
Collapse
|
16
|
Bai M, He J, Kang L, Nie J, Yin R. Regulated basal and bolus insulin release from glucose-responsive core-shell microspheres based on concanavalin A-sugar affinity. Int J Biol Macromol 2018. [PMID: 29524488 DOI: 10.1016/j.ijbiomac.2018.03.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Individual insulin therapy considering the heterogeneity of insulin resistance between patients may bring more benefits than conventional therapy. Therefore, in glucose-responsive insulin delivery systems, more attention should be paid on further regulation of insulin release to meet individual requirements. Our study shows the feasibility of using a photo-crosslinkable shell layer to regulate basal and bolus insulin release from glucose-responsive Con A-polysaccharides network. Core-shell microspheres were fabricated through a two-step high-speed shear-emulsification method. The morphology was observed by SEM and TEM, and the core-shell structure was confirmed by the differences in chemical composition between core-shell and single-layer microspheres obtained from XPS and IR analysis. In vitro insulin release test revealed that the core-shell microspheres with or without light-irradiation could maintain corresponding bolus and basal insulin release in response to different glucose concentration but enable much lower burst release compared with single-layer microspheres without shell. Meanwhile, insulin release rate and amount could be further decreased upon light-irradiation owing to the photo-induced cycloaddition of cinnamate pendant groups of the shell material. The released insulin was proved to remain active according to fluorescence and circular dichroism analysis. The HDF cell viability assessment suggested that the core-shell microspheres possessed no in vitro cytotoxicity.
Collapse
Affiliation(s)
- Meirong Bai
- State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, PR China
| | - Jing He
- Complex and Intelligent Systems Research Center, East China University of Science and Technology, Shanghai, PR China
| | - Liangfa Kang
- Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou, Jiangsu, PR China
| | - Jun Nie
- State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, PR China; Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou, Jiangsu, PR China
| | - Ruixue Yin
- Complex and Intelligent Systems Research Center, East China University of Science and Technology, Shanghai, PR China; Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
17
|
Shan M, Gong C, Li B, Wu G. A pH, glucose, and dopamine triple-responsive, self-healable adhesive hydrogel formed by phenylborate–catechol complexation. Polym Chem 2017. [DOI: 10.1039/c7py00519a] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A pH, glucose, and dopamine triple-responsive, self-healable and adhesive polyethylene glycol hydrogel was developed via the formation of phenylborate–catechol complexation.
Collapse
Affiliation(s)
- Meng Shan
- Key Laboratory of Functional Polymer Materials
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Chu Gong
- Key Laboratory of Functional Polymer Materials
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Bingqiang Li
- Key Laboratory of Functional Polymer Materials
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Guolin Wu
- Key Laboratory of Functional Polymer Materials
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
18
|
Wagner HJ, Sprenger A, Rebmann B, Weber W. Upgrading biomaterials with synthetic biological modules for advanced medical applications. Adv Drug Deliv Rev 2016; 105:77-95. [PMID: 27179764 DOI: 10.1016/j.addr.2016.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/02/2016] [Accepted: 05/04/2016] [Indexed: 02/04/2023]
Abstract
One key aspect of synthetic biology is the development and characterization of modular biological building blocks that can be assembled to construct integrated cell-based circuits performing computational functions. Likewise, the idea of extracting biological modules from the cellular context has led to the development of in vitro operating systems. This principle has attracted substantial interest to extend the repertoire of functional materials by connecting them with modules derived from synthetic biology. In this respect, synthetic biological switches and sensors, as well as biological targeting or structure modules, have been employed to upgrade functions of polymers and solid inorganic material. The resulting systems hold great promise for a variety of applications in diagnosis, tissue engineering, and drug delivery. This review reflects on the most recent developments and critically discusses challenges concerning in vivo functionality and tolerance that must be addressed to allow the future translation of such synthetic biology-upgraded materials from the bench to the bedside.
Collapse
|
19
|
Cai Z, Luck LA, Punihaole D, Madura JD, Asher SA. Photonic crystal protein hydrogel sensor materials enabled by conformationally induced volume phase transition. Chem Sci 2016; 7:4557-4562. [PMID: 30155102 PMCID: PMC6016329 DOI: 10.1039/c6sc00682e] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 03/23/2016] [Indexed: 01/09/2023] Open
Abstract
Hydrogels that change volume in response to specific molecular stimuli can serve as platforms for sensors, actuators and drug delivery devices. There is great interest in designing intelligent hydrogels for tissue engineering, drug delivery, and microfluidics that utilize protein binding specificities and conformational changes. Protein conformational change induced by ligand binding can cause volume phase transitions (VPTs). Here, we develop a highly selective glucose sensing protein photonic crystal (PC) hydrogel that is fabricated from genetically engineered E. coli glucose/galactose binding protein (GGBP). The resulting 2-D PC-GGBP hydrogel undergoes a VPT in response to glucose. The volume change causes the 2-D PC array particle spacing to decrease, leading to a blue-shifted diffraction which enables our sensors to report on glucose concentrations. This 2-D PC-GGBP responsive hydrogel functions as a selective and sensitive sensor that easily monitors glucose concentrations from ∼0.2 μM to ∼10 mM. This work demonstrates a proof-of-concept for developing responsive, "smart" protein hydrogel materials with VPTs that utilize ligand binding induced protein conformational changes. This innovation may enable the development of other novel chemical sensors and high-throughput screening devices that can monitor protein-drug binding interactions.
Collapse
Affiliation(s)
- Zhongyu Cai
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , USA .
| | - Linda A Luck
- Department of Chemistry , State University of New York at Plattsburgh , Plattsburgh , NY 12901 , USA
| | - David Punihaole
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , USA .
| | - Jeffry D Madura
- Department of Chemistry and Biochemistry , Duquesne University , Pittsburgh , Pennsylvania 15282 , USA
| | - Sanford A Asher
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , USA .
| |
Collapse
|
20
|
Design of Self-Assembling Protein-Polymer Conjugates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 940:179-214. [PMID: 27677514 DOI: 10.1007/978-3-319-39196-0_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein-polymer conjugates are of particular interest for nanobiotechnology applications because of the various and complementary roles that each component may play in composite hybrid-materials. This chapter focuses on the design principles and applications of self-assembling protein-polymer conjugate materials. We address the general design methodology, from both synthetic and genetic perspective, conjugation strategies, protein vs. polymer driven self-assembly and finally, emerging applications for conjugate materials. By marrying proteins and polymers into conjugated bio-hybrid materials, materials scientists, chemists, and biologists alike, have at their fingertips a vast toolkit for material design. These inherently hierarchical structures give rise to useful patterning, mechanical and transport properties that may help realize new, more efficient materials for energy generation, catalysis, nanorobots, etc.
Collapse
|
21
|
Ye T, Bai X, Jiang X, Wu Q, Chen S, Qu A, Huang J, Shen J, Wu W. Glucose-responsive microgels based on apo-enzyme recognition. Polym Chem 2016. [DOI: 10.1039/c6py00179c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucose-responsive microgels that can undergo reversible and rapid volume phase transitions were made of apo-glucose oxidase interpenetrated in a poly(N-isopropylacrylamide) network.
Collapse
Affiliation(s)
- Ting Ye
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Xue Bai
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Xiaomei Jiang
- Clinical Laboratory
- Huli Center for Maternal and Child Health
- Xiamen
- China
| | - Qingshi Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Shoumin Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Anqi Qu
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Junwei Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Jing Shen
- Department of Applied Chemistry
- College of Vocational Education
- Yunnan Normal University
- Kunming
- China
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| |
Collapse
|
22
|
Longo GS, de la Cruz MO, Szleifer I. Equilibrium adsorption of hexahistidine on pH-responsive hydrogel nanofilms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:15335-15344. [PMID: 25434993 DOI: 10.1021/la5040382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a molecular theory to study the adsorption of different species within pH-sensitive hydrogel nanofilms. The theoretical framework allows for a molecular-level description of all the components of the system, and it explicitly accounts for the acid-base equilibrium. We concentrate on the adsorption of hexahistidine, one of the most widely used tags in bio-related systems, particularly in chromatography of proteins. The adsorption of hexahistidine within a grafted polyacid hydrogel film shows a nonmonotonic dependence on the solution pH. Depending on the salt concentration, the density of the polymer network, and the bulk concentration of peptide, substantial adsorption is predicted in the intermediate pH range where both the network and the amino acids are charged. To enhance the electrostatic attractions, the acid-base equilibrium of adsorbed hexahistidine is shifted significantly, increasing the degree of charge of the residues as compared to the bulk solution. Such a shift depends critically on the conditions of the environment at the nanoscale. At the same time, the degree of dissociation of the network becomes that of the isolated acid group in a dilute solution, which means that the network is considerably more charged than when there is no adsorbate molecules. This work provides fundamental information on the physical chemistry behind the adsorption behavior and the response of the hydrogel film. This information can be useful in designing new materials for the purification or separation/immobilization of histidine-tagged proteins.
Collapse
Affiliation(s)
- Gabriel S Longo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET , La Plata, Argentina
| | | | | |
Collapse
|
23
|
Siegel RA. Stimuli sensitive polymers and self regulated drug delivery systems: a very partial review. J Control Release 2014; 190:337-51. [PMID: 24984012 PMCID: PMC4142101 DOI: 10.1016/j.jconrel.2014.06.035] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 06/18/2014] [Accepted: 06/21/2014] [Indexed: 10/25/2022]
Abstract
Since the early days of the Journal of Controlled Release, there has been considerable interest in materials that can release drug on an "on-demand" basis. So called "stimuli-responsive" and "intelligent" systems have been designed to deliver drug at various times or at various sites in the body, according to a stimulus that is either endogenous or externally applied. In the past three decades, research along these lines has taken numerous directions, and each new generation of investigators has discovered new physicochemical principles and chemical schemes by which the release properties of materials can be altered. No single review could possibly do justice to all of these approaches. In this article, some general observations are made, and a partial history of the field is presented. Both open loop and closed loop systems are discussed. Special emphasis is placed on stimuli-responsive hydrogels, and on systems that can respond repeatedly. It is argued that the most success at present and in the foreseeable future is with systems in which biosensing and actuation (i.e. drug delivery) are separated, with a human and/or cybernetic operator linking the two.
Collapse
Affiliation(s)
- Ronald A Siegel
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455 USA; Department Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455 USA.
| |
Collapse
|
24
|
Cai Z, Zhang JT, Xue F, Hong Z, Punihaole D, Asher SA. 2D Photonic Crystal Protein Hydrogel Coulometer for Sensing Serum Albumin Ligand Binding. Anal Chem 2014; 86:4840-7. [DOI: 10.1021/ac404134t] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Zhongyu Cai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jian-Tao Zhang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Fei Xue
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zhenmin Hong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - David Punihaole
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sanford A. Asher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
25
|
Cai L, Heilshorn SC. Designing ECM-mimetic materials using protein engineering. Acta Biomater 2014; 10:1751-60. [PMID: 24365704 DOI: 10.1016/j.actbio.2013.12.028] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/13/2013] [Accepted: 12/16/2013] [Indexed: 11/26/2022]
Abstract
The natural extracellular matrix (ECM), with its multitude of evolved cell-instructive and cell-responsive properties, provides inspiration and guidelines for the design of engineered biomaterials. One strategy to create ECM-mimetic materials is the modular design of protein-based engineered ECM (eECM) scaffolds. This modular design strategy involves combining multiple protein domains with different functionalities into a single, modular polymer sequence, resulting in a multifunctional matrix with independent tunability of the individual domain functions. These eECMs often enable decoupled control over multiple material properties for fundamental studies of cell-matrix interactions. In addition, since the eECMs are frequently composed entirely of bioresorbable amino acids, these matrices have immense clinical potential for a variety of regenerative medicine applications. This brief review demonstrates how fundamental knowledge gained from structure-function studies of native proteins can be exploited in the design of novel protein-engineered biomaterials. While the field of protein-engineered biomaterials has existed for over 20years, the community is only now beginning to fully explore the diversity of functional peptide modules that can be incorporated into these materials. We have chosen to highlight recent examples that either (i) demonstrate exemplary use as matrices with cell-instructive and cell-responsive properties or (ii) demonstrate outstanding creativity in terms of novel molecular-level design and macro-level functionality.
Collapse
|
26
|
Terefe NS, Glagovskaia O, De Silva K, Stockmann R. Application of stimuli responsive polymers for sustainable ion exchange chromatography. FOOD AND BIOPRODUCTS PROCESSING 2014. [DOI: 10.1016/j.fbp.2014.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Kostov Y, Ge X, Rao G, Tolosa L. Portable system for the detection of micromolar concentrations of glucose. MEASUREMENT SCIENCE & TECHNOLOGY 2014; 25:025701. [PMID: 24587594 PMCID: PMC3934490 DOI: 10.1088/0957-0233/25/2/025701] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Glucose in non-invasively collected biofluids is generally in the micromolar range and thus, requires sensing methodologies capable of measuring glucose at these levels. Here, we present a small fluorometer system that can quantify glucose in the range of 0-5 μM with resolution of ~0.07 μM. It relies on the glucose binding protein (GBP) fluorescently labeled with two fluorophores. Fluorescence signals from the dual-labeled GBP are utilized in a ratiometric mode, making the measurements insensitive to variations in protein concentration and other systematic errors. Fluorescence is quantified by a miniature, dedicated ratiometric fluorometer that is powered via USB. Concentration is calculated using an ultra-mobile personal computer (UMPC). The whole system is designed to be pocket sized suitable for point-of-care or bedside applications. Test results suggest that the system is a promising tool for accurate measurements of low glucose concentrations (0.1-10 μM) in biological samples.
Collapse
Affiliation(s)
- Yordan Kostov
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore MD, 21250
| | - Xudong Ge
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore MD, 21250
| | - Govind Rao
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore MD, 21250
| | - Leah Tolosa
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore MD, 21250
| |
Collapse
|
28
|
Wang J, Zhang J, Zhang X, Zhou H. A protein-based hydrogel for in vitro expansion of mesenchymal stem cells. PLoS One 2013; 8:e75727. [PMID: 24069442 PMCID: PMC3777955 DOI: 10.1371/journal.pone.0075727] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 08/20/2013] [Indexed: 11/19/2022] Open
Abstract
Hydrogels are widely used as scaffolds in tissue engineering because they can provide excellent environments for bioactive components including growth factors and cells. We reported in this study on a physical hydrogel formed by a specific protein-peptide interaction, which could be used for the three dimensional (3D) cell culture of murine mesenchymal stem cells (mMSC). The mMSC kept dividing during the 7-day culture period and the metabolic-active cell number at day 7 was 359% more than that at day 1. This kind of physical hydrogel could be converted to a homogeneous solution by firstly adding an equal volume of culture medium and then pipeting for several times. Therefore, mMSC post culture could be easily separated from cell-gel constructs. We believed that the protein-based hydrogel system in this study could be developed into a promising scaffold for in vitro expansion of stem cells and cell therapy. This work would be in the general interests of researchers in the fields of biomaterials and supramolecular chemistry.
Collapse
Affiliation(s)
- Jingyu Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jinxiu Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Xiaoli Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
29
|
Hotz N, Wilcke L, Weber W. Design, synthesis, and application of stimulus-sensing biohybrid hydrogels. Macromol Rapid Commun 2013; 34:1594-610. [PMID: 23982955 DOI: 10.1002/marc.201300468] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/22/2013] [Indexed: 12/18/2022]
Abstract
A key feature of any living system is the ability to sense and react to the environmental stimuli. The biochemical characterization of the underlying biological sensors combined with advances in polymer chemistry has enabled the development of stimulus-sensitive biohybrid materials that translate most diverse chemical and biological input into a precise change in material properties. In this review article, we first describe synthesis strategies of how biological and chemical polymers can functionally be interconnected. We then provide a comprehensive overview of how the different properties of biological sensor molecules such as competitive target binding and allosteric modulation can be harnessed to develop responsive materials with applications in tissue engineering and drug delivery.
Collapse
Affiliation(s)
- Natascha Hotz
- Faculty of Biology, BIOSS - Centre for Biological Signalling Studies, SGBM - Spemann Graduate School of Biology and Medicine, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | | | | |
Collapse
|
30
|
Rodrigues FHA, Spagnol C, Pereira AGB, Martins AF, Fajardo AR, Rubira AF, Muniz EC. Superabsorbent hydrogel composites with a focus on hydrogels containing nanofibers or nanowhiskers of cellulose and chitin. J Appl Polym Sci 2013. [DOI: 10.1002/app.39725] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Francisco H. A. Rodrigues
- Coordenação de Química; Universidade Estadual Vale do Acaraú; Avenida da Universidade 850; Campus da Betânia 62040-370 Sobral Ceará Brazil
- Departamento de Química; Universidade Estadual de Maringá; Avenida Colombo 5790 87020-900 Maringá Paraná Brazil
| | - Cristiane Spagnol
- Departamento de Química; Universidade Estadual de Maringá; Avenida Colombo 5790 87020-900 Maringá Paraná Brazil
| | - Antonio G. B. Pereira
- Departamento de Química; Universidade Estadual de Maringá; Avenida Colombo 5790 87020-900 Maringá Paraná Brazil
| | - Alessandro F. Martins
- Departamento de Química; Universidade Estadual de Maringá; Avenida Colombo 5790 87020-900 Maringá Paraná Brazil
| | - André R. Fajardo
- Departamento de Química; Universidade Estadual de Maringá; Avenida Colombo 5790 87020-900 Maringá Paraná Brazil
| | - Adley F. Rubira
- Departamento de Química; Universidade Estadual de Maringá; Avenida Colombo 5790 87020-900 Maringá Paraná Brazil
| | - Edvani C. Muniz
- Departamento de Química; Universidade Estadual de Maringá; Avenida Colombo 5790 87020-900 Maringá Paraná Brazil
| |
Collapse
|
31
|
A biohybrid hydrogel for the urate-responsive release of urate oxidase. J Control Release 2013; 171:57-62. [PMID: 23838153 DOI: 10.1016/j.jconrel.2013.06.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/27/2013] [Accepted: 06/29/2013] [Indexed: 01/12/2023]
Abstract
Functional biomaterials that detect and correct pathological parameters hold high promises for biomedical application. In this study we describe a biohybrid hydrogel that detects elevated concentrations of uric acid and responds by dissolution and the release of uric acid-degrading urate oxidase. This material was synthesized by incorporating PEG-stabilized urate oxidase into a polyacrylamide hydrogel that was crosslinked by the uric acid-sensitive interaction between the uric acid transcription factor HucR and its operator hucO. We characterize the uric acid responsiveness of the material and demonstrate that it can effectively be applied to counteract flares of uric acid in a mouse model. This approach might be a first step towards a biomedical device autonomously managing uric acid burst associated to gouty arthritis and the tumor lysis syndrome.
Collapse
|
32
|
Döring A, Birnbaum W, Kuckling D. Responsive hydrogels--structurally and dimensionally optimized smart frameworks for applications in catalysis, micro-system technology and material science. Chem Soc Rev 2013; 42:7391-420. [PMID: 23677178 DOI: 10.1039/c3cs60031a] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although the technological and scientific importance of functional polymers has been well established over the last few decades, the most recent focus that has attracted much attention has been on stimuli-responsive polymers. This group of materials is of particular interest due to its ability to respond to internal and/or external chemico-physical stimuli, which is often manifested as large macroscopic responses. Aside from scientific challenges of designing stimuli-responsive polymers, the main technological interest lies in their numerous applications ranging from catalysis through microsystem technology and chemomechanical actuators to sensors that have been extensively explored. Since the phase transition phenomenon of hydrogels is theoretically well understood advanced materials based on the predictions can be prepared. Since the volume phase transition of hydrogels is a diffusion-limited process the size of the synthesized hydrogels is an important factor. Consistent downscaling of the gel size will result in fast smart gels with sufficient response times. In order to apply smart gels in microsystems and sensors, new preparation techniques for hydrogels have to be developed. For the up-coming nanotechnology, nano-sized gels as actuating materials would be of great interest.
Collapse
Affiliation(s)
- Artjom Döring
- Chemistry Department, University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
| | | | | |
Collapse
|
33
|
Peng L, Wu C, You M, Han D, Chen Y, Fu T, Ye M, Tan W. Engineering and Applications of DNA-Grafting Polymer Materials. Chem Sci 2013; 4:1928-1938. [PMID: 23682309 PMCID: PMC3652475 DOI: 10.1039/c2sc21198j] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The emergence of hybrid materials combining biomacromolecules and organic polymers has received broad attention based on their potential applications in chemical, biological and materials sciences. Among different coupling strategies, the grafting of oligonucleotides to organic polymers as side chains by covalent bonds provides a novel platform whereby the properties of both oligonucleotides and polymer backbone are integrated, manipulated and optimized for various applications. In this review, we give the perspective on this specific type of DNA polymer hybrid materials , using selected examples with emphasis on bioanalysis, biomedicine and stimuli-responsive materials. It is expected the success of DNA-grafting polymers will not only impact the frabication of novel bimolecule incorporated materials, but also will influence how the properties of synthetic materials are tailored using different functional groups.
Collapse
Affiliation(s)
- Lu Peng
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute University of Florida, Gainesville, Florida 32611-7200, United States
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Longo GS, Olvera de la Cruz M, Szleifer I. pH-controlled nanoaggregation in amphiphilic polymer co-networks. ACS NANO 2013; 7:2693-2704. [PMID: 23438375 DOI: 10.1021/nn400130c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Domain formation and control in pH-responsive amphiphilic polymer co-networks are studied theoretically. Two different molecular architectures of the polymer network are considered, depending on whether the pH-sensitive motif is borne by the hydrophobic or the hydrophilic monomer. When the hydrophobic polymer contains acidic groups, such chains form nanometric aggregates at acidic conditions, but they are found in a swollen state at alkaline pH. At intermediate pH, the nanoaggregation behavior of the hydrophobic polymer depends critically on the environment salt concentration. Moreover, our results indicate the presence of microphase separation into domains of swollen and aggregated hydrophobic chains. If the hydrophilic polymer is the ionizable component of the network, the nanoaggregation of hydrophobic monomers is weakly dependent on the pH and salt concentration, and except at very low volume fraction, the aggregate is the most probable conformation of the network in the entire range of pH and salt concentration studied. The two different hydrogels display quantitatively similar swelling transition and apparent pKa, but at the nanoscale, their behavior is qualitatively different. The spatial distribution of electric charge on the network as well as the local density of the different chemical species within the hydrogel can be controlled, as a function of pH and salt concentration, by the molecular architecture of the polymer network. These findings have relevance for applications in biomaterials and nanotechnology, in particular, in the design of oral delivery devices for the administration of hydrophobic drugs.
Collapse
Affiliation(s)
- Gabriel S Longo
- Department of Materials Science and Engineering, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | | | | |
Collapse
|
35
|
|
36
|
Liao X, Chen G, Jiang M. Hydrogels locked by molecular recognition aiming at responsiveness and functionality. Polym Chem 2013. [DOI: 10.1039/c2py20693e] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Chapter II.5.16 — Drug Delivery Systems: I, Smart Hydrogels as In Vivo Drug Delivery Systems. Biomater Sci 2013. [DOI: 10.1016/b978-0-08-087780-8.00157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Abstract
Hybrid biomaterials are systems created from components of at least two distinct classes of molecules, for example, synthetic macromolecules and proteins or peptide domains. The synergistic combination of two types of structures may produce new materials that possess unprecedented levels of structural organization and novel properties. This Review focuses on biorecognition-driven self-assembly of hybrid macromolecules into functional hydrogel biomaterials. First, basic rules that govern the secondary structure of peptides are discussed, and then approaches to the specific design of hybrid systems with tailor-made properties are evaluated, followed by a discussion on the similarity of design principles of biomaterials and macromolecular therapeutics. Finally, the future of the field is briefly outlined.
Collapse
Affiliation(s)
- Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA.
| | | |
Collapse
|
39
|
Kopeček J, Yang J. “Intelligente” Biomaterialien durch Selbstorganisation von Hybridhydrogelen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
40
|
Deng W, Chen J, Kulkarni A, Thompson DH. Poly(ethylene glycol)-poly(vinyl alcohol)-adamantanate: synthesis and stimuli-responsive micelle properties. SOFT MATTER 2012; 8:5843-5846. [PMID: 31832074 PMCID: PMC6906925 DOI: 10.1039/c2sm06394h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A pH-sensitive amphiphilic polymer based on poly(vinyl alcohol) (PVA), modified with poly(ethylene glycol) (PEG) and adamantane (Ad) pendant groups, has been synthesized and the self-assembly properties of this PEG-PVA-Ad construct investigated. PEG-PVA-Ad polymer forms micelles via self-assembly at concentrations as low as 26 mg L-1. These polymer micelles can be destroyed by low pH or the addition of β-CD.
Collapse
Affiliation(s)
- Wei Deng
- Purdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, IN, USA 47907
- Nano-Science & Technology Research Center, Shanghai University, 99 Shangda Road, Shanghai 200444
| | - Jing Chen
- Department of Chemistry and Biotechnology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan 153-8904
| | - Aditya Kulkarni
- Purdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, IN, USA 47907
| | - David H Thompson
- Purdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, IN, USA 47907
| |
Collapse
|
41
|
Yin R, Tong Z, Yang D, Nie J. Glucose-responsive insulin delivery microhydrogels from methacrylated dextran/concanavalin A: Preparation and in vitro release study. Carbohydr Polym 2012; 89:117-23. [DOI: 10.1016/j.carbpol.2012.02.059] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 12/07/2011] [Accepted: 02/21/2012] [Indexed: 02/09/2023]
|
42
|
Glucose-responsive microhydrogels based on methacrylate modified dextran/concanavalin A for insulin delivery. J Control Release 2012; 152 Suppl 1:e163-5. [PMID: 22195824 DOI: 10.1016/j.jconrel.2011.08.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Abstract
The concept of mucoadhesion and the molecular design requirements for the synthesis of mucoadhesive agents are both well understood and, as a result, hydrogel formulations that may be applied to mucosal surfaces are readily accessible. Nanosized hydrogel systems that make use of biological recognition or targeting motifs, by reacting to disease-specific environmental triggers and/or chemical signals to affect drug release, are now emerging as components of a new generation of therapeutics that promise improved residence time, faster response to stimuli and triggered release.
Collapse
|
44
|
Glucose and pH dual-responsive concanavalin A based microhydrogels for insulin delivery. Int J Biol Macromol 2011; 49:1137-42. [DOI: 10.1016/j.ijbiomac.2011.09.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 09/12/2011] [Indexed: 11/23/2022]
|
45
|
Jakobus K, Wend S, Weber W. Synthetic mammalian gene networks as a blueprint for the design of interactive biohybrid materials. Chem Soc Rev 2011; 41:1000-18. [PMID: 21894343 DOI: 10.1039/c1cs15176b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic biology aims at the rational design and construction of devices, systems and organisms with desired functionality based on modular well-characterized biological building blocks. Based on first proof-of-concept studies in bacteria a decade ago, synthetic biology strategies have rapidly entered mammalian cell technology providing novel therapeutic solutions. Here we review how biological building blocks can be rewired to interactive regulatory genetic networks in mammalian cells and how these networks can be transformed into open- and closed-loop control configurations for autonomously managing disease phenotypes. In the second part of this tutorial review we describe how the regulatory biological sensors and switches can be transferred from mammalian cell synthetic biology to materials sciences in order to develop interactive biohybrid materials with similar (therapeutic) functionality as their synthetic biological archetypes. We develop a perspective of how the convergence of synthetic biology with materials sciences might contribute to the development of truly interactive and adaptive materials for autonomous operation in a complex environment.
Collapse
Affiliation(s)
- Kathrin Jakobus
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | | | | |
Collapse
|
46
|
Ninawe PR, Parulekar SJ. Drug Delivery Using Stimuli-Responsive Polymer Gel Spheres. Ind Eng Chem Res 2011. [DOI: 10.1021/ie200118y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pravin R. Ninawe
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Satish J. Parulekar
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| |
Collapse
|
47
|
Ninawe PR, Parulekar SJ. Drug loading into and drug release from pH- and temperature-responsive cylindrical hydrogels. Biotechnol Prog 2011; 27:1442-54. [PMID: 21626721 DOI: 10.1002/btpr.632] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 04/09/2011] [Indexed: 11/09/2022]
Abstract
Hydrogels that undergo deformation upon appropriate changes in pH or temperature have considerable promise as drug delivery vehicles. Drug uptake in swelling and nonswelling cylindrical hydrogels and drug release from these into a target fluid are investigated here. A mathematical model for hydrogel-solution composite, a composite of a distributed parameter system (cylindrical hydrogel) and a lumped parameter system (surrounding solution), is developed. The polymer network displacement in a swelling/deswelling hydrogel is described by a stress diffusion coupling model. The analytical solution for network displacement is used to predict solvent intake by swelling hydrogels, solvent efflux from deswelling hydrogels, and changes in pressure, porosity, and effective drug diffusivity. These in turn influence drug uptake during and after hydrogel swelling and drug release from hydrogel during and after deswelling. Numerical results illustrate benefits of hydrogel swelling for drug loading and merits of different modes of drug release. Drug uptake and drug release by temperature-responsive hydrogels are compared with those by hydrogels not subject to deformation.
Collapse
Affiliation(s)
- Pravin R Ninawe
- Dept. of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | | |
Collapse
|
48
|
Murphy WL. Emerging area: biomaterials that mimic and exploit protein motion. SOFT MATTER 2011; 7:3679-3688. [PMID: 25214879 PMCID: PMC4159092 DOI: 10.1039/c0sm01351j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Traditional dynamic hydrogels have been designed to respond to changes in physicochemical inputs, such as pH and temperature, for a wide range of biomedical applications. An emerging strategy that may allow for more specific "bio-responsiveness" in synthetic hydrogels involves mimicking or exploiting nature's dynamic proteins. Hundreds of proteins are known to undergo pronounced conformational changes in response to specific biochemical triggers, and these responses represent a potentially attractive toolkit for design of dynamic materials. This "emerging area" review focuses on the use of protein motions as a new paradigm for design of dynamic hydrogels. In particular, the review emphasizes early examples of dynamic hydrogels that harness well-known protein motions. These examples then serve as templates to discuss challenges and suggest emerging directions in the field. Successful early examples of this approach, coupled with the fundamental properties of nature's protein motions, suggest that protein-based materials may ultimately achieve specific, multiplexed responses to a range of biochemical triggers. Applications of this new class of materials include drug delivery, biosensing, bioactuation, and tissue engineering.
Collapse
Affiliation(s)
- William L. Murphy
- Departments of Biomedical Engineering, Pharmacology, Orthopedics and Rehabilitation, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
49
|
King WJ, Toepke MW, Murphy WL. Facile formation of dynamic hydrogel microspheres for triggered growth factor delivery. Acta Biomater 2011; 7:975-85. [PMID: 21029793 DOI: 10.1016/j.actbio.2010.10.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/11/2010] [Accepted: 10/22/2010] [Indexed: 11/25/2022]
Abstract
Dynamic hydrogels have emerged as an important class of biomaterials for temporal control over growth factor delivery. In this study we formed dynamic hydrogel microspheres from protein-polymer conjugates using an aqueous two-phase suspension polymerization process. This polymerization process enabled rapid microsphere formation without the use of an organic phase, surfactants, mechanical strain or toxic radical initiators. The microspheres' size distribution was modulated by varying the protein-polymer conformation in the pre-polymer solution. Notably, the protein's ligand-induced, nanometer-scale conformational change translated to maximum hydrogel volume changes of 76±10%. The magnitude of the microspheres' volume change was tuned by varying the crosslinking time and ligand identity. After characterizing the microspheres' dynamic properties, we encapsulated two important therapeutic proteins, vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2 (BMP-2), in the hydrogel microspheres and characterized how the microspheres' dynamic properties controlled their release. Significantly, the aqueous two-phase suspension polymerization process enabled high encapsulation efficiencies (65.8±4.8% and 79.5±3.0% for VEGF and BMP-2, respectively). Also, the microspheres' ligand-induced volume change triggered VEGF and BMP-2 release at specific, predetermined times. There are hundreds of proteins that undergo well-characterized conformational changes that could be processed into hydrogel microspheres via aqueous two-phase suspension polymerizations. Therefore, this approach could be used to form dynamic, growth-factor-releasing hydrogel microspheres that respond to a broad range of specific biochemical ligands.
Collapse
|
50
|
King WJ, Murphy WL. Bioinspired conformational changes: an adaptable mechanism for bio-responsive protein delivery. Polym Chem 2011. [DOI: 10.1039/c0py00244e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|