1
|
Sato T, Huang Y, Masuda T, Li J, Takai M. Design of enzyme immobilized zwitterionic copolymer nanogels and its size effect on electrochemical reaction. Colloids Surf B Biointerfaces 2025; 246:114370. [PMID: 39551033 DOI: 10.1016/j.colsurfb.2024.114370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
For enzyme-based electrochemical devices, an improvement in electron transfer between the enzyme and electrode is important. Thus, we developed a nano-scaled hydrogel that includes an electron mediator and enzyme to realize nano-sized effects that enhance the functions. Three different chain lengths (short, medium, and long) of copolymers composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) and methacrylic acid N-hydroxysuccinimide ester (MNHS; poly(MPC-co-MNHS), PMS) were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The PMS nanogels can bind to the amino ferrocene (AFc) of the electron mediator and glucose oxidase (GOD) as a catalyst. The mono-dispersive PMS nanogels approximately 200-250 nm in size bound with AFc were prepared with different polymer chain lengths and amounts of AFc (PMMFcX_Y%, X= 'degree of polymerization, 50, 75, 100' and Y= 'AFc feeding ratio against the amount of NHS group in the polymer chain, 50 %, 100 %'). The size of PMMFcX_Y% could be controlled by changing degree of polymerization or AFc feeding ratio. After the modification of GOD to PMMFcX_Y%, their size increased slightly from the original size (ca. 200-250 nm) to approximately 250-300 nm. The catalytic activity of nanogel in dispersed system was higher than that of microgel, indicating that nanogels could improve glucose transport in hydrogel layer. Compared to the catalytic reaction of the PMMFc 75_50 %-GOD nanogel-modified electrodes with that of microgel modified electrode, the current response was improved by decreasing the nanogel size, as evaluated by electrochemical measurements. These results revealed that the smaller nanogels could improve both glucose transport and electron transfer via mediator by smaller size, resulting higher efficiency of enzyme immobilized electrode.
Collapse
Affiliation(s)
- Takehiro Sato
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yixuan Huang
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsukuru Masuda
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jincai Li
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Madoka Takai
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
2
|
Garg A, Shah K, Chauhan CS, Agrawal R. Ingenious nanoscale medication delivery system: Nanogel. J Drug Deliv Sci Technol 2024; 92:105289. [DOI: 10.1016/j.jddst.2023.105289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Pal S, Khan AH, Chowdhury M, Das PK. Peptide Amphiphilic Supramolecular Nanogels: Competent Host for Notably Efficient Lipase-Catalyzed Hydrolysis of Water-Insoluble Substrates. Chembiochem 2023; 24:e202300253. [PMID: 37232377 DOI: 10.1002/cbic.202300253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/06/2023] [Accepted: 05/26/2023] [Indexed: 05/27/2023]
Abstract
The present work depicts the development of stable nanogels in an aqueous medium that were exploited for efficient surface-active lipase-catalyzed hydrolysis of water-insoluble substrates. Surfactant-coated gel nanoparticles (neutral NG1, anionic NG2, and cationic NG3) were prepared from peptide amphiphilic hydrogelator (G1, G2, and G3, respectively) at different hydrophilic and lipophilic balance (HLB). Chromobacterium viscosum (CV) lipase activity towards hydrolysis of water-insoluble substrates (p-nitrophyenyl-n-alkanoates (C4-C10)) in the presence of nanogels got remarkably improved by ~1.7-8.0 fold in comparison to that in aqueous buffer and other self-aggregates. An increase in hydrophobicity of the substrate led to a notable improvement in lipase activity in the hydrophilic domain (HLB>8.0) of nanogels. The micro-heterogeneous interface of small-sized (10-65 nm) nanogel was found to be an appropriate scaffold for immobilizing surface-active lipase to exhibit superior catalytic efficiency. Concurrently, the flexible conformation of lipase immobilized in nanogels was reflected in its secondary structure having the highest α-helix content from the circular dichroism spectra.
Collapse
Affiliation(s)
- Sudeshna Pal
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| | - Aftab Hossain Khan
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| | - Monalisa Chowdhury
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| |
Collapse
|
4
|
Yang X, Lin M, Wei J, Sun J. A self-crosslinking nanogel scaffold for enhanced catalytic efficiency and stability. Polym Chem 2023. [DOI: 10.1039/d2py01272c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report a facile and efficient approach to prepare multifunctional bioinspired platforms under mild conditions that offer increased catalytic efficiency and stability.
Collapse
Affiliation(s)
- Xu Yang
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Maosheng Lin
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jirui Wei
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
5
|
Nanogels: Update on the methods of synthesis and applications for cardiovascular and neurological complications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Masson P, Lushchekina S. Conformational Stability and Denaturation Processes of Proteins Investigated by Electrophoresis under Extreme Conditions. Molecules 2022; 27:6861. [PMID: 36296453 PMCID: PMC9610776 DOI: 10.3390/molecules27206861] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
The functional structure of proteins results from marginally stable folded conformations. Reversible unfolding, irreversible denaturation, and deterioration can be caused by chemical and physical agents due to changes in the physicochemical conditions of pH, ionic strength, temperature, pressure, and electric field or due to the presence of a cosolvent that perturbs the delicate balance between stabilizing and destabilizing interactions and eventually induces chemical modifications. For most proteins, denaturation is a complex process involving transient intermediates in several reversible and eventually irreversible steps. Knowledge of protein stability and denaturation processes is mandatory for the development of enzymes as industrial catalysts, biopharmaceuticals, analytical and medical bioreagents, and safe industrial food. Electrophoresis techniques operating under extreme conditions are convenient tools for analyzing unfolding transitions, trapping transient intermediates, and gaining insight into the mechanisms of denaturation processes. Moreover, quantitative analysis of electrophoretic mobility transition curves allows the estimation of the conformational stability of proteins. These approaches include polyacrylamide gel electrophoresis and capillary zone electrophoresis under cold, heat, and hydrostatic pressure and in the presence of non-ionic denaturing agents or stabilizers such as polyols and heavy water. Lastly, after exposure to extremes of physical conditions, electrophoresis under standard conditions provides information on irreversible processes, slow conformational drifts, and slow renaturation processes. The impressive developments of enzyme technology with multiple applications in fine chemistry, biopharmaceutics, and nanomedicine prompted us to revisit the potentialities of these electrophoretic approaches. This feature review is illustrated with published and unpublished results obtained by the authors on cholinesterases and paraoxonase, two physiologically and toxicologically important enzymes.
Collapse
Affiliation(s)
- Patrick Masson
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, Kremlievskaya Str. 18, 420111 Kazan, Russia
| | - Sofya Lushchekina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin Str. 4, 119334 Moscow, Russia
| |
Collapse
|
7
|
Tamasi MJ, Patel RA, Borca CH, Kosuri S, Mugnier H, Upadhya R, Murthy NS, Webb MA, Gormley AJ. Machine Learning on a Robotic Platform for the Design of Polymer-Protein Hybrids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201809. [PMID: 35593444 PMCID: PMC9339531 DOI: 10.1002/adma.202201809] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/26/2022] [Indexed: 06/04/2023]
Abstract
Polymer-protein hybrids are intriguing materials that can bolster protein stability in non-native environments, thereby enhancing their utility in diverse medicinal, commercial, and industrial applications. One stabilization strategy involves designing synthetic random copolymers with compositions attuned to the protein surface, but rational design is complicated by the vast chemical and composition space. Here, a strategy is reported to design protein-stabilizing copolymers based on active machine learning, facilitated by automated material synthesis and characterization platforms. The versatility and robustness of the approach is demonstrated by the successful identification of copolymers that preserve, or even enhance, the activity of three chemically distinct enzymes following exposure to thermal denaturing conditions. Although systematic screening results in mixed success, active learning appropriately identifies unique and effective copolymer chemistries for the stabilization of each enzyme. Overall, this work broadens the capabilities to design fit-for-purpose synthetic copolymers that promote or otherwise manipulate protein activity, with extensions toward the design of robust polymer-protein hybrid materials.
Collapse
Affiliation(s)
- Matthew J Tamasi
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Roshan A Patel
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Carlos H Borca
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Shashank Kosuri
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Heloise Mugnier
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Rahul Upadhya
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - N Sanjeeva Murthy
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Michael A Webb
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Adam J Gormley
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| |
Collapse
|
8
|
Cai Y, Ding P, Ni J, Zhou L, Ahmad A, Guo X, Cohen Stuart MA, Wang J. Regulated Polyelectrolyte Nanogels for Enzyme Encapsulation and Activation. Biomacromolecules 2021; 22:4748-4757. [PMID: 34628859 DOI: 10.1021/acs.biomac.1c01030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyelectrolyte (PE) nanogels consisting of cross-linked PE networks integrate the advanced features of both nanogels and PEs. The soft environment and abundant intrinsic charges are of special interest for enzyme immobilization. However, the crucial factors that regulate enzyme encapsulation and activation remain obscure to date. Herein, we synthesized cationic poly (dimethyl aminoethyl methacrylate), PDMAEMA, nanogels with well-defined size and cross-link degrees and fully investigated the effects of different control factors on lipase immobilization. We demonstrate that the cationic PDMAEMA nanogels indeed enable efficient and safe loading of anionic lipase without disturbing their structures. Strong charge interaction achieved by tuning pH and larger particle size are favorable for lipase loading, while the enhanced enzymatic activity demands nanogels with smaller size and a moderate cross-link degree. As such, PDMAEMA nanogels with a hydrodynamic radius of 35 nm and 30% cross-linker fraction display the optimal catalytic efficiency, which is fourfold of that of free lipase. Moreover, the immobilization endows enhanced enzymatic activity in a broad scope of pH, ionic strength, and temperature, demonstrating effective protection and activation of lipase by the designed nanogels. Our study validates the crucial controls of the size and structure of PE nanogels on enzyme encapsulation and activation, and the revealed findings shall be helpful for designing functional PE nanogels and boosting their applications for enzyme immobilization.
Collapse
Affiliation(s)
- Ying Cai
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Peng Ding
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Jiaying Ni
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Lu Zhou
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Ayyaz Ahmad
- Department of Chemical Engineering, MNS University of Engineering and Technology, Multan 60000, Pakistan
| | - Xuhong Guo
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Martien A Cohen Stuart
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Junyou Wang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
9
|
Abstract
Nanogels have high tunability and stability while being able to sense and respond to external stimuli by showing changes in the gel volume, water content, colloidal stability, mechanical strength, and other physical/chemical properties. In this article, advances in the preparation of nanogels will be reviewed. The application potential of nanogels in drug delivery will also be highlighted. It is the objective of this article to present a snapshot of the recent knowledge of nanogel preparation and application for future research in drug delivery.
Collapse
Affiliation(s)
- Cuixia Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding, China
| | | | - Wing-Fu Lai
- School of Education, University of Bristol, Bristol, UK.,Ciechanover Institute of Precision and Regenerative Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| |
Collapse
|
10
|
Meis CM, Salzman EE, Maikawa CL, Smith AAA, Mann JL, Grosskopf AK, Appel EA. Self-Assembled, Dilution-Responsive Hydrogels for Enhanced Thermal Stability of Insulin Biopharmaceuticals. ACS Biomater Sci Eng 2020; 7:4221-4229. [PMID: 34510910 PMCID: PMC8441967 DOI: 10.1021/acsbiomaterials.0c01306] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Biotherapeutics currently dominate
the landscape of new drugs because
of their exceptional potency and selectivity. Yet, the intricate molecular
structures that give rise to these beneficial qualities also render
them unstable in formulation. Hydrogels have shown potential as stabilizing
excipients for biotherapeutic drugs, providing protection against
harsh thermal conditions experienced during distribution and storage.
In this work, we report the utilization of a cellulose-based supramolecular
hydrogel formed from polymer–nanoparticle (PNP) interactions
to encapsulate and stabilize insulin, an important biotherapeutic
used widely to treat diabetes. Encapsulation of insulin in these hydrogels
prevents insulin aggregation and maintains insulin bioactivity through
stressed aging conditions of elevated temperature and continuous agitation
for over 28 days. Further, insulin can be easily recovered by dilution
of these hydrogels for administration at the point of care. This supramolecular
hydrogel system shows promise as a stabilizing excipient to reduce
the cold chain dependence of insulin and other biotherapeutics.
Collapse
Affiliation(s)
- Catherine M Meis
- Department of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Erika E Salzman
- Department of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Caitlin L Maikawa
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
| | - Anton A A Smith
- Department of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States.,Department of Science and Technology, Aarhus University, 8000 Aarhus, Denmark
| | - Joseph L Mann
- Department of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Abigail K Grosskopf
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
| | - Eric A Appel
- Department of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States.,Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States.,Department of Pediatrics-Endocrinology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States.,ChEM-H Institute, Stanford University, 290 Jane Stanford Way, Stanford, California 94305, United States
| |
Collapse
|
11
|
Singh RS, Kaur N, Hassan M, Kennedy JF. Pullulan in biomedical research and development - A review. Int J Biol Macromol 2020; 166:694-706. [PMID: 33137388 DOI: 10.1016/j.ijbiomac.2020.10.227] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
Pullulan is an imperative microbial exo-polymer commercially produced by yeast like fungus Aureobasidium pullulans. Its structure contains maltosyl repeating units which comprises two α-(1 → 4) linked glucopyranose rings attached to one glucopyranose ring through α-(1 → 6) glycosidic bond. The co-existence of α-(1 → 6) and α-(1 → 4) glycosidic linkages endows distinctive physico-chemical properties to pullulan. It is highly biocompatible, non-toxic and non-carcinogenic in nature. It is extremely resistant to any mutagenicity or immunogenicity. The unique properties of pullulan make it a potent candidate for biomedical applications viz. drug delivery, gene delivery, tissue engineering, molecular chaperon, plasma expander, vaccination, etc. This review highlights the potential of pullulan in biomedical research and development.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India.
| | - Navpreet Kaur
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India
| | - Muhammad Hassan
- US-Pakistan Center for Advanced Studies in Energy, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, 5 The Croft, Buntsford Drive, Stoke Heath, Bromsgrove, Worcs B60 4JE, UK
| |
Collapse
|
12
|
Guo Y, Zhang Y, Niu Z, Yang Y. Stimuli-responsive biohybrid nanogels with self-immolative linkers for protein protection and traceless release. Colloids Surf B Biointerfaces 2019; 184:110526. [PMID: 31590049 DOI: 10.1016/j.colsurfb.2019.110526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 01/05/2023]
Abstract
Nanogels have been applied in protein delivery due to the nanoscale sizes and the crosslinked structures. However, the release of protein molecules from the nanogels without damages to the structures and functionalities is quite a challenging research subject. In this research, responsive self-immolative linker dithioethyl carbamate bond is introduced to connect protein and polymer in the nanogel so that traceless release of protein occurs upon addition of glutathione (GSH) or dithiothreitol (DTT). Thermoresponsive polymer poly(di(ethylene glycol) methyl ether methacrylate-co-2-(2-(2-hydroxyethyl) disulfanyl) ethyl methacrylate) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization, and was modified with 4-nitrophenyl chloroformate yielding polymer chains with pendant dithioethyl carbonate groups. The dithioethyl carbonate groups were reacted with amine groups of lipases resulting in the formation of dithioethyl carbamate bonds. Meanwhile, biohybrid nanogels were prepared by crosslinking the polymer chains with lipases. The immobilized lipase in the nanogels exhibited enhanced heat and acid resistance. Once the nanogels were treated with GSH or DTT, lipase could be released with no residual groups and most of its bioactivity was recovered.
Collapse
Affiliation(s)
- Yahui Guo
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; Hebei Key laboratory of Functional Polymers, Tianjin 300130, China
| | - Yue Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; Hebei Key laboratory of Functional Polymers, Tianjin 300130, China.
| | - Zhanghao Niu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; Hebei Key laboratory of Functional Polymers, Tianjin 300130, China
| | - Yongfang Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; Hebei Key laboratory of Functional Polymers, Tianjin 300130, China.
| |
Collapse
|
13
|
Sasaki Y, Tsuchido Y, Yoshimura T, Akiyoshi K. Nanogelation and Thermal Stabilization of Enzyme by Vitamin B 6-Bearing Polysaccharide as Biocrosslinker. ACS Biomater Sci Eng 2019; 5:5752-5758. [PMID: 33405708 DOI: 10.1021/acsbiomaterials.9b00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanogels containing a protein (carbonic anhydrase, CA) were prepared by cross-linking CA and pyridoxal (vitamin B6)-bearing pullulan (PLPP) as a biocrosslinker via Schiff base formation. UV titration and high-performance liquid chromatography confirmed that CA was quantitatively complexed with PLPP in the presence of zinc ions. Dynamic light scattering and transmission electron microscopy showed that the nanogel diameter was about 20 nm. CA retained 90% of its native activity after complexation with PLPP. Moreover, the residual enzymatic activity of CA after heating and its long-term storage stability at room temperature were improved by complexation with PLPP. Enzyme nanogelation with PLPP is an efficient method for enzyme stabilization.
Collapse
Affiliation(s)
- Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 606-8501, Japan
| | - Yuji Tsuchido
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554, Japan
| | - Takahiro Yoshimura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 606-8501, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 606-8501, Japan.,The Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), K's Goban-cho bldg., 7 Goban-cho, chiyoda-ku, Tokyo 102-0076, Japan
| |
Collapse
|
14
|
Taheri A, Jafari SM. Gum-based nanocarriers for the protection and delivery of food bioactive compounds. Adv Colloid Interface Sci 2019; 269:277-295. [PMID: 31132673 DOI: 10.1016/j.cis.2019.04.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/09/2019] [Accepted: 04/24/2019] [Indexed: 11/28/2022]
Abstract
Gums, which for the most part are water-soluble polysaccharides, can interact with water to form viscous solutions, emulsions or gels. Their desirable properties, such as flexibility, biocompatibility, biodegradability, availability of reactive sites for molecular interactions and ease of use have led to their extremely large and broad applications in formation of nanostructures (nanoemulsions, nanoparticles, nanocomplexes, and nanofibers) and have already served as important wall materials for a variety of nano encapsulated food ingredients including flavoring agents, vitamins, minerals and essential fatty acids. The most common gums used in nano encapsulation systems include Arabic gum, carrageenan, xanthan, tragacanth plus some new sources of non-traditional gums, such as cress seed gum and Persian/or Angum gum identified as potential building blocks for nanostructured systems. New preparation techniques and sources of non-traditional gums are still being examined for commercialization in the food nanotechnology area as low-cost and reproducible sources. In this study, different nanostructures of gums and their preparation methods have been discussed along with a review of gum nanostructure applications for various food bioactive ingredients.
Collapse
Affiliation(s)
- Afsaneh Taheri
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
15
|
Longo GS, Pérez-Chávez NA, Szleifer I. How protonation modulates the interaction between proteins and pH-responsive hydrogel films. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2018.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Shi H, Liu Y, Qu R, Li Y, Ma R, An Y, Shi L. A facile one-pot method to prepare peroxidase-like nanogel artificial enzymes for highly efficient and controllable catalysis. Colloids Surf B Biointerfaces 2019; 174:352-359. [DOI: 10.1016/j.colsurfb.2018.11.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 11/24/2022]
|
17
|
Zhang T, Yang R, Yang S, Guan J, Zhang D, Ma Y, Liu H. Research progress of self-assembled nanogel and hybrid hydrogel systems based on pullulan derivatives. Drug Deliv 2018; 25:278-292. [PMID: 29334800 PMCID: PMC6058595 DOI: 10.1080/10717544.2018.1425776] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 01/29/2023] Open
Abstract
Polymer nano-sized hydrogels (nanogels) as drug delivery carriers have been investigated over the last few decades. Pullulan, a nontoxic and nonimmunogenic hydrophilic polysaccharide derived from fermentation of black yeast like Aureobasidium pullulans with great biocompatibility and biodegradability, is one of the most attractive carriers for drug delivery systems. In this review, we describe the preparation, characterization, and 'switch-on/off' mechanism of typical pullulan self-assembled nanogels (self-nanogels), and then introduce the development of hybrid hydrogels that are numerous resources applied for regenerative medicine. A major section is used for biomedical applications of different nanogel systems based on modified pullulan, which exert smart stimuli-responses at ambient conditions such as charge, pH, temperature, light, and redox. Pullulan self-nanogels have found increasingly extensive application in protein delivery, tissue engineering, vaccine development, cancer therapy, and biological imaging. Functional groups are incorporated into self-nanogels and contribute to expressing desirable results such as targeting and modified release. Various molecules, especially insoluble or unstable drugs and encapsulated proteins, present improved solubility and bioavailability as well as reduced side effects when incorporated into self-nanogels. Finally, the advantages and disadvantages of pullulan self-nanogels will be analyzed accordingly, and the development of pullulan nanogel systems will be reviewed.
Collapse
Affiliation(s)
- Tao Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Ruyi Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Shengnan Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Jibin Guan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Dong Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yan Ma
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongzhuo Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
18
|
Hagemann A, Giussi JM, Longo GS. Use of pH Gradients in Responsive Polymer Hydrogels for the Separation and Localization of Proteins from Binary Mixtures. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01876] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Annika Hagemann
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina
| | - Juan M. Giussi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina
| | - Gabriel S. Longo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina
| |
Collapse
|
19
|
Study of the physicochemical interactions between Thermomyces lanuginosus lipase and silica-based supports and their correlation with the biochemical activity of the biocatalysts. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Yahyaei M, Mehrnejad F, Naderi-manesh H, Rezayan AH. Follicle-stimulating hormone encapsulation in the cholesterol-modified chitosan nanoparticles via molecular dynamics simulations and binding free energy calculations. Eur J Pharm Sci 2017; 107:126-137. [PMID: 28693957 DOI: 10.1016/j.ejps.2017.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/02/2017] [Accepted: 07/07/2017] [Indexed: 12/17/2022]
|
21
|
Singh RS, Kaur N, Rana V, Kennedy JF. Pullulan: A novel molecule for biomedical applications. Carbohydr Polym 2017; 171:102-121. [DOI: 10.1016/j.carbpol.2017.04.089] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 01/09/2023]
|
22
|
Tay T, Köse E, Keçili R, Say R. Design and Preparation of Nano-Lignin Peroxidase (NanoLiP) by Protein Block Copolymerization Approach. Polymers (Basel) 2016; 8:polym8060223. [PMID: 30979315 PMCID: PMC6432496 DOI: 10.3390/polym8060223] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/09/2016] [Accepted: 06/01/2016] [Indexed: 12/13/2022] Open
Abstract
This study describes the preparation of nanoprotein particles having lignin peroxidase (LiP) using a photosensitive microemulsion polymerization technique. The protein-based nano block polymer was synthesized by cross-linking of ligninase enzyme with ruthenium-based aminoacid monomers. This type polymerization process brought stability in different reaction conditions, reusability and functionality to the protein-based nano block polymer system when compared the traditional methods. After characterization of the prepared LiP copolymer nanoparticles, enzymatic activity studies of the nanoenzymes were carried out using tetramethylbenzidine (TMB) as the substrate. The parameters such as pH, temperature and initial enzyme concentration that affect the activity, were investigated by using prepared nanoLip particles and compared to free LiP. The reusability of the nano-LiP particles was also investigated and the obtained results showed that the nano-LiP particles exhibited admirable potential as a reusable catalyst.
Collapse
Affiliation(s)
- Turgay Tay
- Department of Chemistry, Anadolu University, 26470 Eskisehir, Turkey.
| | - Ender Köse
- Karen Biotechnol Ltd., Anadolu University, Technol Pk, 26470 Eskisehir, Turkey.
| | - Rüstem Keçili
- Yunus Emre Vocational School, Department of Medical Services and Techniques, Anadolu University, 26470 Eskisehir, Turkey.
| | - Rıdvan Say
- Department of Chemistry, Anadolu University, 26470 Eskisehir, Turkey.
| |
Collapse
|
23
|
Jia H, Gao Z, Ma Y, Zhong C, Wang C, Zhou H, Wei P. Preparation and characterization of a highly stable phenoxazinone synthase nanogel. Chem Cent J 2016; 10:34. [PMID: 27239225 PMCID: PMC4884384 DOI: 10.1186/s13065-016-0178-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 05/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phenoxazinone synthase (PHS) is a laccase-like multicopper oxidase originating from Streptomyces with great industrial application potential. In this paper, we prepared the PHS nanogel retaining 82 % of its initial activity by aqueous in situ polymerization at pH 9.3. RESULTS The average diameter of the PHS nanogel was 50.8 nm based on dynamic light scattering (DLS) analysis. Fluorescence analysis indicated the impressive preservation of the enzyme molecular structure upon modification. The PHS nanogel exhibited the most activity at pH 4.0-4.5 and 50 °C while the corresponding values were pH 4.5 and 40 °C for the native PHS. The K m and V max of the PHS nanogel were found to be 0.052 mM and 0.018 mM/min, whereas those of the native PHS were 0.077 mM and 0.021 mM/min, respectively. In addition, the PHS nanogel possessed higher thermal and storage stability and solvent tolerance compared with the native one. The half-life of the PHS nanogel was 1.71 h and multiplied around ninefold compared to 0.19 h for the native one. CONCLUSION In summary, the PHS nanogel could be a promising biocatalyst in industry.
Collapse
Affiliation(s)
- Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Zhen Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Yingying Ma
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Chao Zhong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Chunming Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Hua Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| |
Collapse
|
24
|
Beloqui A, Baur S, Trouillet V, Welle A, Madsen J, Bastmeyer M, Delaittre G. Single-Molecule Encapsulation: A Straightforward Route to Highly Stable and Printable Enzymes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1716-22. [PMID: 26849308 DOI: 10.1002/smll.201503405] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 01/05/2016] [Indexed: 05/11/2023]
Abstract
A mild, fast, and sequence-independent method for controlled enzyme immobilization is presented. This novel approach involves the encapsulation of single-enzyme molecules and the covalent attachment of these nanobiocatalysts onto surfaces. Fast and mild immobilization conditions, combined with low nonspecific adsorption on hydrophobic substrates, enables well-defined surface patterns via microcontact printing. The biohybrid materials show enhanced activity in organic solvents.
Collapse
Affiliation(s)
- Ana Beloqui
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Preparative Macromolecular Chemistry, Institute for Technical Chemistry and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131, Karlsruhe, Germany
| | - Sarah Baur
- Zoological Institute, Department of Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Haid-und-Neu-Strasse 9, 76131, Karlsruhe, Germany
| | - Vanessa Trouillet
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Alexander Welle
- Preparative Macromolecular Chemistry, Institute for Technical Chemistry and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131, Karlsruhe, Germany
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Biological Interfaces (IBG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Jeppe Madsen
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Martin Bastmeyer
- Zoological Institute, Department of Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Haid-und-Neu-Strasse 9, 76131, Karlsruhe, Germany
- Institute for Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Guillaume Delaittre
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Preparative Macromolecular Chemistry, Institute for Technical Chemistry and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131, Karlsruhe, Germany
| |
Collapse
|
25
|
Alhaique F, Matricardi P, Di Meo C, Coviello T, Montanari E. Polysaccharide-based self-assembling nanohydrogels: An overview on 25-years research on pullulan. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Li Y, Maciel D, Rodrigues J, Shi X, Tomás H. Biodegradable Polymer Nanogels for Drug/Nucleic Acid Delivery. Chem Rev 2015; 115:8564-608. [PMID: 26259712 DOI: 10.1021/cr500131f] [Citation(s) in RCA: 390] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yulin Li
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
- The State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Dina Maciel
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
| | - João Rodrigues
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
| | - Xiangyang Shi
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Helena Tomás
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
| |
Collapse
|
27
|
Lee SJ, Shim YH, Oh JS, Jeong YI, Park IK, Lee HC. Folic-acid-conjugated pullulan/poly(DL-lactide-co-glycolide) graft copolymer nanoparticles for folate-receptor-mediated drug delivery. NANOSCALE RESEARCH LETTERS 2015; 10:43. [PMID: 25852340 PMCID: PMC4384989 DOI: 10.1186/s11671-014-0706-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/23/2014] [Indexed: 05/25/2023]
Abstract
BACKGROUND Nanoparticles have been extensively investigated for targeted delivery of anticancer drugs. Since the folate receptor is universally over-expressed on the tumor cell membrane, folic acid is often used to modify the fate of nanoparticles in biologicals. METHODS To fabricate targetable nanoparticles, folic acid was conjugated to a pullulan backbone and poly(DL-lactide-co-glycolide) (PLGA) (abbreviated as FAPuLG) was conjugated. KB cells and NIH3T3-cell-bearing mice were prepared to prove folate receptor targeting of FAPuLG nanoparticles. RESULTS AND DISCUSSION Nanoparticles of FAPuLG copolymer that self-assembled in water were small with diameters <200 nm. Doxorubicin (DOX) as a model drug was incorporated into the FAPuLG nanoparticles that were used to treat folate receptor over-expressing KB human carcinoma cells. Fluorescence microscopy revealed that DOX-incorporated FAPuLG nanoparticles induced strong red fluorescence in the KB cells in the absence of folic acid. However, fluorescence intensity was decreased by blocking folate receptors. Antitumor activity of FAPuLG nanoparticles against KB cells in vitro was also decreased by blocking folate receptors. In animal study using near-infrared dye-conjugated FAPuLG nanoparticles, fluorescence intensity was significantly higher at KB solid tumor than that of NIH3T3. CONCLUSIONS The results indicate that FAPuLG nanoparticles can target the folate receptor of tumor cells. FAPuLG nanoparticles are a promising candidate for active targeting of anticancer agents.
Collapse
Affiliation(s)
- Sang Joon Lee
- />Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, 501-746 Korea
| | - Yong-Ho Shim
- />Biomedical Research Institute, Pusan National University Hospital, Pusan, 602-739 Republic of Korea
| | - Jong-Suk Oh
- />Department of Microbiology, Chonnam National University Medical School, Gwangju, 501-746 Korea
| | - Young-Il Jeong
- />Department of Microbiology, Chonnam National University Medical School, Gwangju, 501-746 Korea
| | - In-Kyu Park
- />Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, 501-746 Korea
| | - Hyun Chul Lee
- />Department of Microbiology, Chonnam National University Medical School, Gwangju, 501-746 Korea
| |
Collapse
|
28
|
Immobilization of Aspergillus niger F7-02 Lipase in Polysaccharide Hydrogel Beads of Irvingia gabonensis Matrix. Enzyme Res 2014; 2014:967056. [PMID: 25614829 PMCID: PMC4295590 DOI: 10.1155/2014/967056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/11/2014] [Accepted: 12/11/2014] [Indexed: 11/25/2022] Open
Abstract
The potential of polysaccharide Irvingia gabonensis matrix as enzyme immobilization support was investigated. Lipase of Aspergillus niger F7-02 was immobilized by entrapment using glutaraldehyde as the cross-linking agent and stabilized in ethanolic-formaldehyde solution. The pH and temperature stability and activity yield of the immobilized enzyme were determined. Such parameters as enzyme load, bead size, number of beads, and bead reusability were also optimized. Adequate gel strength to form stabilized beads was achieved at 15.52% (w/v) Irvingia gabonensis powder, 15% (v/v) partially purified lipase, 2.5% (v/v) glutaraldehyde, and 3 : 1 (v/v) ethanolic-formaldehyde solution. There was 3.93-fold purification when the crude enzyme was partially purified in two-step purification using Imarsil and activated charcoal. Optimum lipase activity 75.3 Ug−1 was achieved in 50 mL test solution containing 15 beads of 7 mm bead size. Relative activity 80% was retained at eight repeated cycles. The immobilization process gave activity yield of 59.1% with specific activity of 12.3 Umg−1 and stabilized at optimum pH 4.5 and temperature 55°C. Thus the effectiveness and cost-efficiency of I. gabonensis as a polymer matrix for lipase immobilization have been established.
Collapse
|
29
|
Longo GS, de la Cruz MO, Szleifer I. Equilibrium adsorption of hexahistidine on pH-responsive hydrogel nanofilms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:15335-15344. [PMID: 25434993 DOI: 10.1021/la5040382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a molecular theory to study the adsorption of different species within pH-sensitive hydrogel nanofilms. The theoretical framework allows for a molecular-level description of all the components of the system, and it explicitly accounts for the acid-base equilibrium. We concentrate on the adsorption of hexahistidine, one of the most widely used tags in bio-related systems, particularly in chromatography of proteins. The adsorption of hexahistidine within a grafted polyacid hydrogel film shows a nonmonotonic dependence on the solution pH. Depending on the salt concentration, the density of the polymer network, and the bulk concentration of peptide, substantial adsorption is predicted in the intermediate pH range where both the network and the amino acids are charged. To enhance the electrostatic attractions, the acid-base equilibrium of adsorbed hexahistidine is shifted significantly, increasing the degree of charge of the residues as compared to the bulk solution. Such a shift depends critically on the conditions of the environment at the nanoscale. At the same time, the degree of dissociation of the network becomes that of the isolated acid group in a dilute solution, which means that the network is considerably more charged than when there is no adsorbate molecules. This work provides fundamental information on the physical chemistry behind the adsorption behavior and the response of the hydrogel film. This information can be useful in designing new materials for the purification or separation/immobilization of histidine-tagged proteins.
Collapse
Affiliation(s)
- Gabriel S Longo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET , La Plata, Argentina
| | | | | |
Collapse
|
30
|
Lee E, Oh Y, Choi YK, Kim MJ. Aqueous-Level Turnover Frequency of Lipase in Organic Solvent. ACS Catal 2014. [DOI: 10.1021/cs500832e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Eungyeong Lee
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 790−784, Republic of Korea
| | - Yeonock Oh
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 790−784, Republic of Korea
| | - Yoon Kyung Choi
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 790−784, Republic of Korea
| | - Mahn-Joo Kim
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 790−784, Republic of Korea
| |
Collapse
|
31
|
|
32
|
Affiliation(s)
- Ghanshyam S Chauhan
- Department of Chemistry; Himachal Pradesh University; Summer Hill Shimla 171005 India
| |
Collapse
|
33
|
Li Z, Tan BH, Jin G, Li K, He C. Design of polyhedral oligomeric silsesquioxane (POSS) based thermo-responsive amphiphilic hybrid copolymers for thermally denatured protein protection applications. Polym Chem 2014. [DOI: 10.1039/c4py00936c] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybrid micelles for simple and spontaneous protein protection using easily controllable temperature as the sole trigger in an “on-demand” fashion.
Collapse
Affiliation(s)
- Zibiao Li
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science
- Technology and Research)
- Singapore 117602, Singapore
| | - Beng H. Tan
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science
- Technology and Research)
- Singapore 117602, Singapore
| | - Guorui Jin
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science
- Technology and Research)
- Singapore 117602, Singapore
| | - Kai Li
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science
- Technology and Research)
- Singapore 117602, Singapore
| | - Chaobin He
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science
- Technology and Research)
- Singapore 117602, Singapore
- Department of Materials Science and Engineering
| |
Collapse
|
34
|
Tao Q, Li A, Liu X, Gao H, Zhang Z, Ma R, An Y, Shi L. Improved thermal stability of lipase in W/O microemulsion by temperature-sensitive polymers. Colloids Surf B Biointerfaces 2013; 111:587-93. [PMID: 23907047 DOI: 10.1016/j.colsurfb.2013.06.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 06/26/2013] [Accepted: 06/30/2013] [Indexed: 11/16/2022]
Abstract
Lipase is active at the water-oil interface and thus very useful for many applications in non-aqueous media. However, the use of lipase is often limited due to the heat inactivation which is mainly caused by the irreversible aggregation among lipase molecules. The temperature-sensitive polymers can spontaneously form complexes with lipases at higher temperature in the confined spaces of the water in oil microemulsion. With cooling, lipases are released from the complexes and refold into the native state. In this way, the thermal stability of lipase in a microemulsion is effectively improved, and so is the stability of lipase at ambient temperature. Apart from proving the effectiveness and generality of this method, the temperature-sensitive polymers/lipase microemulsion represents a simple and efficient system which could be used in practical applications, since lipase retains the interfacial activity in this system. Moreover, the influences of some factors on the improvement are discussed and the mechanism of this method is suggested after exploring the process by dynamic light scattering and fluorescence measurements.
Collapse
Affiliation(s)
- Qian Tao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ang Li
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xue Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hongjun Gao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhenkun Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rujiang Ma
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yingli An
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
35
|
Design and synthesis of lipase nanogel with interpenetrating polymer networks for enhanced catalysis: Molecular simulation and experimental validation. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2012.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Wu Y, Ma Q, Song X, Zheng Y, Ren W, Zhang J, Ouyang L, Wu F, He G. Biocompatible poly(ethylene glycol)-poly(γ-cholesterol-L-glutamate) copolymers: Synthesis, characterization, andin vitrostudies. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26265] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Drug-loaded chondroitin sulfate-based nanogels: preparation and characterization. Colloids Surf B Biointerfaces 2012; 100:107-15. [PMID: 22771525 DOI: 10.1016/j.colsurfb.2012.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 02/09/2012] [Accepted: 05/03/2012] [Indexed: 11/21/2022]
Abstract
Chondroitin sulfate-based (NMChS) nanogels synthesized by inverse microemulsion polymerization method for drug delivery were reported. The properties of NMChS were investigated by light scattering, FTIR, (1)H NMR and transmission electron microscopy observations. The results showed that the size of NMChS nanogels could be controlled in the range of 145-340 nm by changing the degree of maleoyl substitution of chondroitin sulfate, and these nanogels were responsive to pH changes, which exhibited extended stability in aqueous media and low cytotoxicity in vitro by MTT assays. When these nanogels were loaded with doxorubicin hydrochloride (DOX·HCl), a cytotoxic drug for cancer treatment, the high loading ability and the pH triggered-release of drug were obtained due to the electrostatic interactions between drug and matrix, and the pore size of the polymer network. This study clearly showed that the chondroitin sulfate-based nanogels are biocompatible and biodegradable, rendering potential for drug delivery applications.
Collapse
|
38
|
Lee Y, Lee SH, Kim JS, Maruyama A, Chen X, Park TG. Controlled synthesis of PEI-coated gold nanoparticles using reductive catechol chemistry for siRNA delivery. J Control Release 2011; 155:3-10. [DOI: 10.1016/j.jconrel.2010.09.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/27/2010] [Accepted: 09/12/2010] [Indexed: 01/21/2023]
|
39
|
Say R, Keçili R, Biçen Ö, Şişman FY, Hür D, Denizli A, Ersöz A. A novel nanoprotein particle synthesis: Nanolipase. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
40
|
Ferreira SA, Coutinho PJG, Gama FM. Synthesis and Characterization of Self-Assembled Nanogels Made of Pullulan. MATERIALS 2011; 4:601-620. [PMID: 28879943 PMCID: PMC5448516 DOI: 10.3390/ma4040601] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 03/17/2011] [Indexed: 11/22/2022]
Abstract
Self-assembled nanogels made of hydrophobized pullulan were obtained using a versatile, simple, reproducible and low-cost method. In a first reaction pullulan was modified with hydroxyethyl methacrylate or vinyl methacrylate, further modified in the second step with hydrophobic 1-hexadecanethiol, resulting as an amphiphilic material, which self-assembles in water via the hydrophobic interaction among alkyl chains. Structural features, size, shape, surface charge and stability of the nanogels were studied using hydrogen nuclear magnetic resonance, fluorescence spectroscopy, cryo-field emission scanning electron microscopy and dynamic light scattering. Above the critical aggregation concentration spherical polydisperse macromolecular micelles revealed long-term colloidal stability in aqueous medium, with a nearly neutral negative surface charge and mean hydrodynamic diameter in the range 100–400 nm, depending on the polymer degree of substitution. Good size stability was observed when nanogels were exposed to potential destabilizing pH conditions. While the size stability of the nanogel made of pullulan with vinyl methacrylate and more hydrophobic chains grafted was affected by the ionic strength and urea, nanogel made of pullulan with hydroxyethyl methacrylate and fewer hydrophobic chains grafted remained stable.
Collapse
Affiliation(s)
- Sílvia A Ferreira
- IBB-Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Minho University, Campus Gualtar 4710-057, Braga, Portugal.
| | - Paulo J G Coutinho
- Centre of Physics, Minho University, Campus Gualtar 4710-057, Braga, Portugal.
| | - Francisco M Gama
- IBB-Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Minho University, Campus Gualtar 4710-057, Braga, Portugal.
| |
Collapse
|
41
|
Fang Y, Huang XJ, Chen PC, Xu ZK. Polymer materials for enzyme immobilization and their application in bioreactors. BMB Rep 2011; 44:87-95. [DOI: 10.5483/bmbrep.2011.44.2.87] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Biodegradable Polymeric Assemblies for Biomedical Materials. POLYMERS IN NANOMEDICINE 2011. [DOI: 10.1007/12_2011_160] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Tao Q, Li A, Liu X, Ma R, An Y, Shi L. Protecting enzymes against heat inactivation by temperature-sensitive polymer in confined space. Phys Chem Chem Phys 2011; 13:16265-71. [DOI: 10.1039/c1cp21438a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
44
|
Sasaki Y, Akiyoshi K. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. CHEM REC 2010; 10:366-76. [PMID: 20836092 DOI: 10.1002/tcr.201000008] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Indexed: 11/09/2022]
Abstract
Nanosize hydrogels (nanogels) are polymer nanoparticles with three-dimensional networks, formed by chemical and/or physical cross-linking of polymer chains. Recently, various nanogels have been designed, with a particular focus on biomedical applications. In this review, we describe recent progress in the synthesis of nanogels and nanogel-integrated hydrogels (nanogel cross-linked gels) for drug-delivery systems (DDS), regenerative medicine, and bioimaging. We also discuss chaperone-like functions of physical cross-linking nanogel (chaperoning engineering) and organic-inorganic hybrid nanogels.
Collapse
Affiliation(s)
- Yoshihiro Sasaki
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | | |
Collapse
|