1
|
Chen Y, Li Y, Zhu W, Liu Q. Biomimetic gradient scaffolds for the tissue engineering and regeneration of rotator cuff enthesis. Biofabrication 2024; 16:032005. [PMID: 38697099 DOI: 10.1088/1758-5090/ad467d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
Rotator cuff tear is one of the most common musculoskeletal disorders, which often results in recurrent shoulder pain and limited movement. Enthesis is a structurally complex and functionally critical interface connecting tendon and bone that plays an essential role in maintaining integrity of the shoulder joint. Despite the availability of advanced surgical procedures for rotator cuff repair, there is a high rate of failure following surgery due to suboptimal enthesis healing and regeneration. Novel strategies based on tissue engineering are gaining popularity in improving tendon-bone interface (TBI) regeneration. Through incorporating physical and biochemical cues into scaffold design which mimics the structure and composition of native enthesis is advantageous to guide specific differentiation of seeding cells and facilitate the formation of functional tissues. In this review, we summarize the current state of research in enthesis tissue engineering highlighting the development and application of biomimetic scaffolds that replicate the gradient TBI. We also discuss the latest techniques for fabricating potential translatable scaffolds such as 3D bioprinting and microfluidic device. While preclinical studies have demonstrated encouraging results of biomimetic gradient scaffolds, the translation of these findings into clinical applications necessitates a comprehensive understanding of their safety and long-term efficacy.
Collapse
Affiliation(s)
- Yang Chen
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yexin Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Weihong Zhu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Qian Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
2
|
Pourkhodadad S, Hosseinkazemi H, Bonakdar S, Nekounam H. Biomimetic engineered approaches for neural tissue engineering: Spinal cord injury. J Biomed Mater Res B Appl Biomater 2023; 111:701-716. [PMID: 36214332 DOI: 10.1002/jbm.b.35171] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/16/2022] [Accepted: 09/03/2022] [Indexed: 01/21/2023]
Abstract
The healing process for spinal cord injuries is complex and presents many challenges. Current advances in nerve regeneration are based on promising tissue engineering techniques, However, the chances of success depend on better mimicking the extracellular matrix (ECM) of neural tissue and better supporting neurons in a three-dimensional environment. The ECM provides excellent biological conditions, including desirable morphological features, electrical conductivity, and chemical compositions for neuron attachment, proliferation and function. This review outlines the rationale for developing a construct for neuron regrowth in spinal cord injury using appropriate biomaterials and scaffolding techniques.
Collapse
Affiliation(s)
| | - Hessam Hosseinkazemi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Zhu M, Wang Q, Gu T, Han Y, Zeng X, Li J, Dong J, Huang H, Qian P. Hydrogel-based microenvironment engineering of haematopoietic stem cells. Cell Mol Life Sci 2023; 80:49. [PMID: 36690903 PMCID: PMC11073069 DOI: 10.1007/s00018-023-04696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/06/2022] [Accepted: 01/08/2023] [Indexed: 01/25/2023]
Abstract
Haematopoietic Stem cells (HSCs) have the potential for self-renewal and multilineage differentiation, and their behaviours are finely tuned by the microenvironment. HSC transplantation (HSCT) is widely used in the treatment of haematologic malignancies while limited by the quantity of available HSCs. With the development of tissue engineering, hydrogels have been deployed to mimic the HSC microenvironment in vitro. Engineered hydrogels influence HSC behaviour by regulating mechanical strength, extracellular matrix microstructure, cellular ligands and cytokines, cell-cell interaction, and oxygen concentration, which ultimately facilitate the acquisition of sufficient HSCs. Here, we review recent advances in the application of hydrogel-based microenvironment engineering of HSCs, and provide future perspectives on challenges in basic research and clinical practice.
Collapse
Affiliation(s)
- Meng Zhu
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Qiwei Wang
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Tianning Gu
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yingli Han
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Xin Zeng
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Jinxin Li
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Jian Dong
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - He Huang
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Pengxu Qian
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Roth JG, Huang MS, Li TL, Feig VR, Jiang Y, Cui B, Greely HT, Bao Z, Paşca SP, Heilshorn SC. Advancing models of neural development with biomaterials. Nat Rev Neurosci 2021; 22:593-615. [PMID: 34376834 PMCID: PMC8612873 DOI: 10.1038/s41583-021-00496-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Human pluripotent stem cells have emerged as a promising in vitro model system for studying the brain. Two-dimensional and three-dimensional cell culture paradigms have provided valuable insights into the pathogenesis of neuropsychiatric disorders, but they remain limited in their capacity to model certain features of human neural development. Specifically, current models do not efficiently incorporate extracellular matrix-derived biochemical and biophysical cues, facilitate multicellular spatio-temporal patterning, or achieve advanced functional maturation. Engineered biomaterials have the capacity to create increasingly biomimetic neural microenvironments, yet further refinement is needed before these approaches are widely implemented. This Review therefore highlights how continued progression and increased integration of engineered biomaterials may be well poised to address intractable challenges in recapitulating human neural development.
Collapse
Affiliation(s)
- Julien G Roth
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle S Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Thomas L Li
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Vivian R Feig
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Yuanwen Jiang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Henry T Greely
- Stanford Law School, Stanford University, Stanford, CA, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Sergiu P Paşca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Cheng C, Harpster MH, Oakey J. Convection-driven microfabricated hydrogels for rapid biosensing. Analyst 2020; 145:5981-5988. [PMID: 32820752 PMCID: PMC7819640 DOI: 10.1039/d0an01069c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A microscale biosensing platform using rehydration-mediated swelling of bio-functionalized hydrogel structures and rapid target analyte capture is described. Induced convective flow mitigates diffusion limited incubation times, enabling model assays to be completed in under three minutes. Assay design parameters have been evaluated, revealing fabrication criteria required to tune detection sensitivity.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82070, USA.
| | | | | |
Collapse
|
6
|
Abu Awwad HADM, Thiagarajan L, Kanczler JM, Amer MH, Bruce G, Lanham S, Rumney RMH, Oreffo ROC, Dixon JE. Genetically-programmed, mesenchymal stromal cell-laden & mechanically strong 3D bioprinted scaffolds for bone repair. J Control Release 2020; 325:335-346. [PMID: 32629135 PMCID: PMC7445425 DOI: 10.1016/j.jconrel.2020.06.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 01/05/2023]
Abstract
Additive manufacturing processes used to create regenerative bone tissue engineered implants are not biocompatible, thereby restricting direct use with stem cells and usually require cell seeding post-fabrication. Combined delivery of stem cells with the controlled release of osteogenic factors, within a mechanically-strong biomaterial combined during manufacturing would replace injectable defect fillers (cements) and allow personalized implants to be rapidly prototyped by 3D bioprinting. Through the use of direct genetic programming via the sustained release of an exogenously delivered transcription factor RUNX2 (delivered as recombinant GET-RUNX2 protein) encapsulated in PLGA microparticles (MPs), we demonstrate that human mesenchymal stromal (stem) cells (hMSCs) can be directly fabricated into a thermo-sintered 3D bioprintable material and achieve effective osteogenic differentiation. Importantly we observed osteogenic programming of gene expression by released GET-RUNX2 (8.2-, 3.3- and 3.9-fold increases in OSX, RUNX2 and OPN expression, respectively) and calcification (von Kossa staining) in our scaffolds. The developed biodegradable PLGA/PEG paste formulation augments high-density bone development in a defect model (~2.4-fold increase in high density bone volume) and can be used to rapidly prototype clinically-sized hMSC-laden implants within minutes using mild, cytocompatible extrusion bioprinting. The ability to create mechanically strong 'cancellous bone-like' printable implants for tissue repair that contain stem cells and controlled-release of programming factors is innovative, and will facilitate the development of novel localized delivery approaches to direct cellular behaviour for many regenerative medicine applications including those for personalized bone repair.
Collapse
Affiliation(s)
- Hosam Al-Deen M Abu Awwad
- Regenerative Medicine & Cellular Therapies Division, The University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Lalitha Thiagarajan
- Regenerative Medicine & Cellular Therapies Division, The University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Janos M Kanczler
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Mahetab H Amer
- Regenerative Medicine & Cellular Therapies Division, The University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Gordon Bruce
- Regenerative Medicine & Cellular Therapies Division, The University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Stuart Lanham
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Robin M H Rumney
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - James E Dixon
- Regenerative Medicine & Cellular Therapies Division, The University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
7
|
Blatchley MR, Gerecht S. Reconstructing the Vascular Developmental Milieu In Vitro. Trends Cell Biol 2020; 30:15-31. [DOI: 10.1016/j.tcb.2019.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/25/2022]
|
8
|
Kratochvil MJ, Seymour AJ, Li TL, Paşca SP, Kuo CJ, Heilshorn SC. Engineered materials for organoid systems. NATURE REVIEWS. MATERIALS 2019; 4:606-622. [PMID: 33552558 PMCID: PMC7864216 DOI: 10.1038/s41578-019-0129-9] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 04/14/2023]
Abstract
Organoids are 3D cell culture systems that mimic some of the structural and functional characteristics of an organ. Organoid cultures provide the opportunity to study organ-level biology in models that mimic human physiology more closely than 2D cell culture systems or non-primate animal models. Many organoid cultures rely on decellularized extracellular matrices as scaffolds, which are often poorly chemically defined and allow only limited tunability and reproducibility. By contrast, the biochemical and biophysical properties of engineered matrices can be tuned and optimized to support the development and maturation of organoid cultures. In this Review, we highlight how key cell-matrix interactions guiding stem-cell decisions can inform the design of biomaterials for the reproducible generation and control of organoid cultures. We survey natural, synthetic and protein-engineered hydrogels for their applicability to different organoid systems and discuss biochemical and mechanical material properties relevant for organoid formation. Finally, dynamic and cell-responsive material systems are investigated for their future use in organoid research.
Collapse
Affiliation(s)
- Michael J. Kratochvil
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Alexis J. Seymour
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Thomas L. Li
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Sergiu P. Paşca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Calvin J. Kuo
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
9
|
Nguyen EH, Murphy WL. Customizable biomaterials as tools for advanced anti-angiogenic drug discovery. Biomaterials 2018; 181:53-66. [PMID: 30077137 DOI: 10.1016/j.biomaterials.2018.07.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/17/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022]
Abstract
The inhibition of angiogenesis is a critical element of cancer therapy, as cancer vasculature contributes to tumor expansion. While numerous drugs have proven to be effective at disrupting cancer vasculature, patient survival has not significantly improved as a result of anti-angiogenic drug treatment. Emerging evidence suggests that this is due to a combination of unintended side effects resulting from the application of anti-angiogenic compounds, including angiogenic rebound after treatment and the activation of metastasis in the tumor. There is currently a need to better understand the far-reaching effects of anti-angiogenic drug treatments in the context of cancer. Numerous innovations and discoveries in biomaterials design and tissue engineering techniques are providing investigators with tools to develop physiologically relevant vascular models and gain insights into the holistic impact of drug treatments on tumors. This review examines recent advances in the design of pro-angiogenic biomaterials, specifically in controlling integrin-mediated cell adhesion, growth factor signaling, mechanical properties and oxygen tension, as well as the implementation of pro-angiogenic materials into sophisticated co-culture models of cancer vasculature.
Collapse
Affiliation(s)
- Eric H Nguyen
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA; Human Models for Analysis of Pathways (Human MAPs) Center, University of Wisconsin, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA; Human Models for Analysis of Pathways (Human MAPs) Center, University of Wisconsin, Madison, WI, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
10
|
Abstract
Stem cells are a powerful resource for many applications including regenerative medicine, patient-specific disease modeling, and toxicology screening. However, eliciting the desired behavior from stem cells, such as expansion in a naïve state or differentiation into a particular mature lineage, remains challenging. Drawing inspiration from the native stem cell niche, hydrogel platforms have been developed to regulate stem cell fate by controlling microenvironmental parameters including matrix mechanics, degradability, cell-adhesive ligand presentation, local microstructure, and cell-cell interactions. We survey techniques for modulating hydrogel properties and review the effects of microenvironmental parameters on maintaining stemness and controlling differentiation for a variety of stem cell types. Looking forward, we envision future hydrogel designs spanning a spectrum of complexity, ranging from simple, fully defined materials for industrial expansion of stem cells to complex, biomimetic systems for organotypic cell culture models.
Collapse
Affiliation(s)
- Christopher M Madl
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
11
|
Perugini V, Best M, Kumar S, Guildford AL, Bone AJ, Macfarlane WM, Santin M, Phillips GJ. Carboxybetaine-modified succinylated chitosan-based beads encourage pancreatic β-cells (Min-6) to form islet-like spheroids under in vitro conditions. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 29:15. [PMID: 29290028 PMCID: PMC5748029 DOI: 10.1007/s10856-017-6018-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/05/2017] [Indexed: 05/13/2023]
Abstract
In vitro, pancreatic β-cells tend to reduce their ability to aggregate into islets and lose insulin-producing ability, likely due to insufficient cell-cell and cell-matrix interactions that are essential for β-cell retention, viability and functionality. In response to these needs, surfaces of succinylated chitosan-based beads (NSC) were modified with zwitterionic carboxy-betaine (CB) moieties, a compatible osmolyte known to regulate cellular hydration state, and used to promote the formation of β-cell spheroids using a conventional 2D cell culture technique. The NSC were synthesised by ionic gelation and surface-functionalised with CB using carbodiimide chemistry. Scanning electron microscopy (SEM), dynamic laser scattering (DLS) and Fourier transform infrared spectroscopy (FTIR) were employed as characterisation tools to confirm the successful modification of the succinylated chitosan material into spherical beads with rough surfaces and a diameter of 0.4 µm. NSC with and without CB were re-suspended at concentrations of 0.1, 0.3 and 0.6 mg/mL in saline medium and tested in vitro with MIN6 murine pancreatic β-cell line. Results showed that a concentration of 0.3 mg/mL, NSC-CB encouraged pancreatic MIN6 cells to proliferate and form spheroids via E-cadherin and Pdx-1 activation within 48 h in culture. These spheroids, with a size of approximately 80 µm, exhibited high cell viability and enhanced insulin protein expression and secretion when compared to cells organised by the non-modified beads.
Collapse
Affiliation(s)
- Valeria Perugini
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building Lewes Road, Brighton, BN2 4GJ, UK
| | - Mark Best
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building Lewes Road, Brighton, BN2 4GJ, UK
| | - Sandeep Kumar
- Cellon S.A., ZAE Robert Steichen, 16 rue Hèierchen, L-4940, Bascharage, Luxembourg
| | - Anna L Guildford
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building Lewes Road, Brighton, BN2 4GJ, UK
| | - Adrian J Bone
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building Lewes Road, Brighton, BN2 4GJ, UK
| | - Wendy M Macfarlane
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building Lewes Road, Brighton, BN2 4GJ, UK
| | - Matteo Santin
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building Lewes Road, Brighton, BN2 4GJ, UK.
| | - Gary J Phillips
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building Lewes Road, Brighton, BN2 4GJ, UK
| |
Collapse
|
12
|
Marcucio RS, Qin L, Alsberg E, Boerckel JD. Reverse engineering development: Crosstalk opportunities between developmental biology and tissue engineering. J Orthop Res 2017; 35:2356-2368. [PMID: 28660712 DOI: 10.1002/jor.23636] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/12/2017] [Indexed: 02/04/2023]
Abstract
The fields of developmental biology and tissue engineering have been revolutionized in recent years by technological advancements, expanded understanding, and biomaterials design, leading to the emerging paradigm of "developmental" or "biomimetic" tissue engineering. While developmental biology and tissue engineering have long overlapping histories, the fields have largely diverged in recent years at the same time that crosstalk opportunities for mutual benefit are more salient than ever. In this perspective article, we will use musculoskeletal development and tissue engineering as a platform on which to discuss these emerging crosstalk opportunities and will present our opinions on the bright future of these overlapping spheres of influence. The multicellular programs that control musculoskeletal development are rapidly becoming clarified, represented by shifting paradigms in our understanding of cellular function, identity, and lineage specification during development. Simultaneously, advancements in bioartificial matrices that replicate the biochemical, microstructural, and mechanical properties of developing tissues present new tools and approaches for recapitulating development in tissue engineering. Here, we introduce concepts and experimental approaches in musculoskeletal developmental biology and biomaterials design and discuss applications in tissue engineering as well as opportunities for tissue engineering approaches to inform our understanding of fundamental biology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2356-2368, 2017.
Collapse
Affiliation(s)
- Ralph S Marcucio
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 36th Street and Hamilton Walk, Philadelphia 19104-6081, Pennsylvania
| | - Eben Alsberg
- Departments of Biomedical Engineering and Orthopaedic Surgery, Case Western Reserve University, Cleveland, Ohio
| | - Joel D Boerckel
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 36th Street and Hamilton Walk, Philadelphia 19104-6081, Pennsylvania.,Department of Bioengineering, University of Pennslyvania, Philadelphia, Pennsylvania.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
13
|
Controlled release of GAG-binding enhanced transduction (GET) peptides for sustained and highly efficient intracellular delivery. Acta Biomater 2017; 57:225-237. [PMID: 28457961 DOI: 10.1016/j.actbio.2017.04.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 12/12/2022]
Abstract
Controlled release systems for therapeutic molecules are vital to allow the sustained local delivery of their activities which direct cell behaviour and enable novel regenerative strategies. Direct programming of cells using exogenously delivered transcription factors can by-pass growth factor signalling but there is still a requirement to deliver such activity spatio-temporally. We previously developed a technology termed GAG-binding enhanced transduction (GET) to efficiently deliver a variety of cargoes intracellularly, using GAG-binding domains which promote cell targeting, and cell penetrating peptides (CPPs) which allow cell entry. Herein we demonstrate that GET system can be used in controlled release systems to mediate sustained intracellular transduction over one week. We assessed the stability and activity of GET peptides in poly(dl-lactic acid-co-glycolic acid) (PLGA) microparticles (MPs) prepared using a S/O/W double emulsion method. Efficient encapsulation (∼65%) and tailored protein release profiles could be achieved, however intracellular transduction was significantly inhibited post-release. To retain GET peptide activity we optimized a strategy of co-encapsulation of l-Histidine, which may form a complex with the PLGA degradation products under acidic conditions. Simulations of the polymer microclimate showed that hydrolytic acidic PLGA degradation products directly inhibited GET peptide transduction activity, and use of l-Histidine significantly enhanced released protein delivery. The ability to control the intracellular transduction of functional proteins into cells will facilitate new localized delivery methods and allow approaches to direct cellular behaviour for many regenerative medicine applications. STATEMENT OF SIGNIFICANCE The goal for regenerative medicine is to restore functional biological tissue by controlling and augmenting cellular behaviour. Either Transcription (TFs) or growth factors (GFs) can be presented to cells in spatio-temporal gradients for programming cell fate and gene expression. Here, we have created a sustained and controlled release system for GET (Glycosaminoglycan-enhanced transducing)-tagged proteins using S/O/W PLGA microparticle fabrication. We demonstrated that PLGA and its acidic degradants inhibit GET-mediated transduction, which can be overcome by using pH-activated l-Histidine. l-Histidine inhibits the electrostatic interaction of GET/PLGA and allows enhanced intracellular transduction. GET could provide a powerful tool to program cell behaviour either in gradients or with sustained delivery. We believe that our controlled release systems will allow application of GET for tissue regeneration directly by TF cellular programming.
Collapse
|
14
|
Development of polymeric functionally graded scaffolds: a brief review. J Appl Biomater Funct Mater 2017; 15:e107-e121. [PMID: 28009418 DOI: 10.5301/jabfm.5000332] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 12/20/2022] Open
Abstract
Over recent years, there has been a growing interest in multilayer scaffolds fabrication approaches. In fact, functionally graded scaffolds (FGSs) provide biological and mechanical functions potentially similar to those of native tissues. Based on the final application of the scaffold, there are different properties (physical, mechanical, biochemical, etc.) which need to gradually change in space. Therefore, a number of different technologies have been investigated, and often combined, to customize each region of the scaffolds as much as possible, aiming at achieving the best regenerative performance.In general, FGSs can be categorized as bilayered or multilayered, depending on the number of layers in the whole structure. In other cases, scaffolds are characterized by a continuous gradient of 1 or more specific properties that cannot be related to the presence of clearly distinguished layers. Since each traditional approach presents peculiar advantages and disadvantages, FGSs are good candidates to overcome the limitations of current treatment options. In contrast to the reviews reported in the literature, which usually focus on the application of FGS, this brief review provides an overview of the most common strategies adopted to prepare FGS.
Collapse
|
15
|
Eltaher HM, Yang J, Shakesheff KM, Dixon JE. Highly efficient intracellular transduction in three-dimensional gradients for programming cell fate. Acta Biomater 2016; 41:181-92. [PMID: 27265151 DOI: 10.1016/j.actbio.2016.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/22/2016] [Accepted: 06/02/2016] [Indexed: 01/01/2023]
Abstract
UNLABELLED Fundamental behaviour such as cell fate, growth and death are mediated through the control of key genetic transcriptional regulators. These regulators are activated or repressed by the integration of multiple signalling molecules in spatio-temporal gradients. Engineering these gradients is complex but considered key in controlling tissue formation in regenerative medicine approaches. Direct programming of cells using exogenously delivered transcription factors can by-pass growth factor complexity but there is still a requirement to deliver such activity spatio-temporally. We previously developed a technology termed GAG-binding enhanced transduction (GET) to efficiently deliver a variety of cargoes intracellularly using GAG-binding domains to promote cell targeting, and cell penetrating peptides (CPPs) to allow cell entry. Herein we demonstrate that GET can be used in a three dimensional (3D) hydrogel matrix to produce gradients of intracellular transduction of mammalian cells. Using a compartmentalised diffusion model with a source-gel-sink (So-G-Si) assembly, we created gradients of reporter proteins (mRFP1-tagged) and a transcription factor (TF, myogenic master regulator MyoD) and showed that GET can be used to deliver molecules into cells spatio-temporally by monitoring intracellular transduction and gene expression programming as a function of location and time. The ability to spatio-temporally control the intracellular delivery of functional proteins will allow the establishment of gradients of cell programming in hydrogels and approaches to direct cellular behaviour for many regenerative medicine applications. STATEMENT OF SIGNIFICANCE Regenerative medicine aims to reform functional biological tissues by controlling cell behaviour. Growth factors (GFs) are soluble cues presented to cells in spatio-temporal gradients and play important roles programming cell fate and gene expression. The efficient transduction of cells by GET (Glycosaminoglycan-enhanced transducing)-tagged transcription factors (TFs) can be used to by-pass GF-stimulation and directly program cells. For the first time we demonstrate diffusion of GET proteins generate stable protein transduction gradients. We demonstrated the feasibility of creating spatio-temporal gradients of GET-MyoD and show differential programing of myogenic differentiation. We believe that GET could provide a powerful tool to program cell behaviour using gradients of recombinant proteins that allow tissue generation directly by programming gene expression with TFs.
Collapse
|
16
|
Wang S, Cai X, Wang L, Li J, Li Q, Zuo X, Shi J, Huang Q, Fan C. DNA orientation-specific adhesion and patterning of living mammalian cells on self-assembled DNA monolayers. Chem Sci 2016; 7:2722-2727. [PMID: 28660047 PMCID: PMC5477012 DOI: 10.1039/c5sc04102c] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/04/2016] [Indexed: 12/13/2022] Open
Abstract
To better understand cell behaviors on substrates, the precise control of density and orientation of cell-specific ligands remains a great challenge. In this study, we established an easy-to-use approach to manipulate the adhesion and patterning of mammalian cells on gold substrates. We prepared DNA self-assembled monolayers (DNA-SAMs) on gold substrates and found that the sequence-specific orientation of DNA-SAMs played an important role in modulating cell adhesion. We also found that the DNA-SAMs on gold substrates could be used as a potentially universal cell culture substrate, which showed properties similar to cationic polymers (e.g. poly-l lysine, PLL) substrates. Furthermore, we could manipulate cell adhesion by tuning the length of poly adenine (polyA) in the DNA sequence. We also prepared a DNA aptamer-based SAM to regulate cell adhesion by exploiting stimuli-responsive conformational change of the aptamer. By using the well-established DNA spotting technology, we patterned cells on DNA-SAMs to form a spot matrix and four English letters "CELL". Our findings suggest that DNA-SAMs on gold substrates are potentially useful for making smart surfaces for cell studies, thus introducing a new platform for cell/tissue engineering research.
Collapse
Affiliation(s)
- Shaopeng Wang
- Division of Physical Biology & Bioimaging Center , Shanghai Synchrotron Radiation Facility , CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai , 201800 , China .
| | - Xiaoqing Cai
- Division of Physical Biology & Bioimaging Center , Shanghai Synchrotron Radiation Facility , CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai , 201800 , China .
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center , Shanghai Synchrotron Radiation Facility , CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai , 201800 , China .
| | - Jiang Li
- Division of Physical Biology & Bioimaging Center , Shanghai Synchrotron Radiation Facility , CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai , 201800 , China .
| | - Qian Li
- Division of Physical Biology & Bioimaging Center , Shanghai Synchrotron Radiation Facility , CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai , 201800 , China .
| | - Xiaolei Zuo
- Division of Physical Biology & Bioimaging Center , Shanghai Synchrotron Radiation Facility , CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai , 201800 , China .
| | - Jiye Shi
- Division of Physical Biology & Bioimaging Center , Shanghai Synchrotron Radiation Facility , CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai , 201800 , China .
- UCB Pharma , Slough SL 1 3 WE , UK
| | - Qing Huang
- Division of Physical Biology & Bioimaging Center , Shanghai Synchrotron Radiation Facility , CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai , 201800 , China .
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center , Shanghai Synchrotron Radiation Facility , CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai , 201800 , China .
| |
Collapse
|
17
|
Abstract
Biomaterials that interface with biological systems are used to deliver drugs safely and efficiently; to prevent, detect, and treat disease; to assist the body as it heals; and to engineer functional tissues outside of the body for organ replacement. The field has evolved beyond selecting materials that were originally designed for other applications with a primary focus on properties that enabled restoration of function and mitigation of acute pathology. Biomaterials are now designed rationally with controlled structure and dynamic functionality to integrate with biological complexity and perform tailored, high-level functions in the body. The transition has been from permissive to promoting biomaterials that are no longer bioinert but bioactive. This perspective surveys recent developments in the field of polymeric and soft biomaterials with a specific emphasis on advances in nano- to macroscale control, static to dynamic functionality, and biocomplex materials.
Collapse
|
18
|
Hettiaratchi MH, Guldberg RE, McDevitt TC. Biomaterial strategies for controlling stem cell fate via morphogen sequestration. J Mater Chem B 2016; 4:3464-3481. [DOI: 10.1039/c5tb02575c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review explores the role of protein sequestration in the stem cell niche and how it has inspired the design of biomaterials that exploit natural protein sequestration to influence stem cell fate.
Collapse
Affiliation(s)
- M. H. Hettiaratchi
- The Parker H. Petit Institute for Bioengineering and Bioscience
- Georgia Institute of Technology
- Atlanta
- USA
- The Wallace H. Coulter Department of Biomedical Engineering
| | - R. E. Guldberg
- The Parker H. Petit Institute for Bioengineering and Bioscience
- Georgia Institute of Technology
- Atlanta
- USA
- The George W. Woodruff School of Mechanical Engineering
| | - T. C. McDevitt
- The Gladstone Institute of Cardiovascular Disease
- San Francisco
- USA
- The Department of Bioengineering and Therapeutic Sciences
- University of California San Francisco
| |
Collapse
|
19
|
Abstract
Understanding the processes by which stem cells give rise to de novo tissues is an active focus of stem cell biology and bioengineering disciplines. Instructive morphogenic cues surrounding the stem cell during morphogenesis create what is referred to as the stem cell microenvironment. An emerging paradigm in stem cell bioengineering involves "biologically driven assembly," in which stem cells are encouraged to largely define their own morphogenesis processes. However, even in the case of biologically driven assembly, stem cells do not act alone. The properties of the surrounding microenvironment can be critical regulators of cell fate. Stem cell-material interactions are among the most well-characterized microenvironmental effectors of stem cell fate and establish a signaling "context" that can define the mode of influence for morphogenic cues. Here we describe illustrative examples of cell-material interactions that occur during in vitro stem cell studies, with an emphasis on how cell-material interactions create instructive contexts for stem cell differentiation and morphogenesis.
Collapse
Affiliation(s)
- Andrew S. Khalil
- Department of Biomedical Engineering, Orthopedics University of Wisconsin, Madison, Wisconsin 53705, USA
| | - Angela W. Xie
- Department of Biomedical Engineering, Orthopedics University of Wisconsin, Madison, Wisconsin 53705, USA
| | - William L. Murphy
- Department of Biomedical Engineering, Orthopedics University of Wisconsin, Madison, Wisconsin 53705, USA
- Department of Biomedical Rehabilitation, and Material Science University of Wisconsin, Madison, Wisconsin 53705, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin 53705, USA
| |
Collapse
|
20
|
Jeon O, Alt DS, Linderman SW, Alsberg E. Biochemical and physical signal gradients in hydrogels to control stem cell behavior. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:6366-72. [PMID: 23983019 PMCID: PMC3863582 DOI: 10.1002/adma.201302364] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/11/2013] [Indexed: 05/19/2023]
Abstract
Three-dimensional (3D) gradients of biochemical and physical signals in macroscale degradable hydrogels are engineered that can regulate photoencapsulated human mesenchymal stem cell (hMSC) behavior. This simple, cytocompatible, and versatile gradient system may be a valuable tool for researchers in biomaterials science to control stem cell fate in 3D and guide tissue regeneration.
Collapse
Affiliation(s)
- Oju Jeon
- Department of Biomedical Engineering, Case Western Reserve University Cleveland, OH 44106 (USA)
| | - Daniel S. Alt
- Department of Biomedical Engineering, Case Western Reserve University Cleveland, OH 44106 (USA)
| | | | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University Cleveland, OH 44106 (USA)
- Department of Orthopaedic Surgery, Case Western Reserve University Cleveland, OH 44106 (USA)
| |
Collapse
|
21
|
Wu J, Wu X, Lin F. Recent developments in microfluidics-based chemotaxis studies. LAB ON A CHIP 2013; 13:2484-99. [PMID: 23712326 DOI: 10.1039/c3lc50415h] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Microfluidic devices can better control cellular microenvironments compared to conventional cell migration assays. Over the past few years, microfluidics-based chemotaxis studies showed a rapid growth. New strategies were developed to explore cell migration in manipulated chemical gradients. In addition to expanding the use of microfluidic devices for a broader range of cell types, microfluidic devices were used to study cell migration and chemotaxis in complex environments. Furthermore, high-throughput microfluidic chemotaxis devices and integrated microfluidic chemotaxis systems were developed for medical and commercial applications. In this article, we review recent developments in microfluidics-based chemotaxis studies and discuss the new trends in this field observed over the past few years.
Collapse
Affiliation(s)
- Jiandong Wu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | | |
Collapse
|
22
|
Burdick JA, Murphy WL. Moving from static to dynamic complexity in hydrogel design. Nat Commun 2013; 3:1269. [PMID: 23232399 DOI: 10.1038/ncomms2271] [Citation(s) in RCA: 332] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 11/08/2012] [Indexed: 12/22/2022] Open
Abstract
Hydrogels are water-swollen polymer networks that have found a range of applications from biological scaffolds to contact lenses. Historically, their design has consisted primarily of static systems and those that exhibit simple degradation. However, advances in polymer synthesis and processing have led to a new generation of dynamic systems that are capable of responding to artificial triggers and biological signals with spatial precision. These systems will open up new possibilities for the use of hydrogels as model biological structures and in tissue regeneration.
Collapse
Affiliation(s)
- Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd street, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
23
|
Almodóvar J, Crouzier T, Selimović Š, Boudou T, Khademhosseini A, Picart C. Gradients of physical and biochemical cues on polyelectrolyte multilayer films generated via microfluidics. LAB ON A CHIP 2013; 13:1562-70. [PMID: 23440074 PMCID: PMC4155072 DOI: 10.1039/c3lc41407h] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The cell microenvironment is a complex and anisotropic matrix composed of a number of physical and biochemical cues that control cellular processes. A current challenge in biomaterials is the engineering of biomimetic materials which present spatially controlled physical and biochemical cues. The layer-by-layer assembly of polyelectrolyte multilayers (PEM) has been demonstrated to be a promising candidate for a biomaterial mimicking the native extracellular matrix. In this work, gradients of biochemical and physical cues were generated on PEM films composed of hyaluronan (HA) and poly(l-lysine) (PLL) using a microfluidic device. As a proof of concept, four different types of surface concentration gradients adsorbed onto the films were generated. These included surface concentration gradients of fluorescent PLL, fluorescent microbeads, a cross-linker, and one consisting of a polyelectrolyte grafted with a cell adhesive peptide. In all cases, reproducible centimeter-long linear gradients were obtained. Fluorescence microscopy, Fourier transform infrared spectroscopy and atomic force microscopy were used to characterize these gradients. Cell responses to the stiffness gradient and to the peptide gradient were studied. Pre-osteoblastic cells were found to adhere and spread more along the stiffness gradient, which varied linearly from 200 kPa-600 kPa. Myoblast cell spreading also increased throughout the length of the increasing RGD-peptide gradient. This work demonstrates a simple method to modify PEM films with concentration gradients of non-covalently bound biomolecules and with gradients in stiffness. These results highlight the potential of this technique to efficiently and quickly determine the optimal biochemical and mechanical cues necessary for specific cellular processes.
Collapse
Affiliation(s)
- Jorge Almodóvar
- LMGP, UMR 5628, CNRS and Grenoble Institute of Technology, MINATEC, 3 parvis Louis Néel, 38016, Grenoble, France
| | - Thomas Crouzier
- LMGP, UMR 5628, CNRS and Grenoble Institute of Technology, MINATEC, 3 parvis Louis Néel, 38016, Grenoble, France
| | - Šeila Selimović
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Thomas Boudou
- LMGP, UMR 5628, CNRS and Grenoble Institute of Technology, MINATEC, 3 parvis Louis Néel, 38016, Grenoble, France
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Catherine Picart
- LMGP, UMR 5628, CNRS and Grenoble Institute of Technology, MINATEC, 3 parvis Louis Néel, 38016, Grenoble, France
| |
Collapse
|
24
|
Kubinová S, Syková E. Biomaterials combined with cell therapy for treatment of spinal cord injury. Regen Med 2012; 7:207-24. [PMID: 22397610 DOI: 10.2217/rme.11.121] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating traumatic injury resulting in paralysis or sensory deficits due to tissue damage and the poor ability of axons to regenerate across the lesion. Despite extensive research, there is still no effective treatment that would restore lost function after SCI. A possible therapeutic approach would be to bridge the area of injury with a bioengineered scaffold that would create a stimulatory environment as well as provide guidance cues for the re-establishment of damaged axonal connections. Advanced scaffold design aims at the fabrication of complex materials providing the concomitant delivery of cells, neurotrophic factors or other bioactive substances to achieve a synergistic effect for treatment. This review summarizes the current utilization of scaffolding materials for SCI treatment in terms of their physicochemical properties and emphasizes their use in combination with various cell types, as well as with other combinatorial approaches promoting spinal cord repair.
Collapse
Affiliation(s)
- Sárka Kubinová
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | |
Collapse
|
25
|
Santo VE, Gomes ME, Mano JF, Reis RL. From nano- to macro-scale: nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering. Nanomedicine (Lond) 2012; 7:1045-66. [DOI: 10.2217/nnm.12.78] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The field of biomaterials has advanced towards the molecular and nanoscale design of bioactive systems for tissue engineering, regenerative medicine and drug delivery. Spatial cues are displayed in the 3D extracellular matrix and can include signaling gradients, such as those observed during chemotaxis. Architectures range from the nanometer to the centimeter length scales as exemplified by extracellular matrix fibers, cells and macroscopic shapes. The main focus of this review is the application of a biomimetic approach by the combination of architectural cues, obtained through the application of micro- and nanofabrication techniques, with the ability to sequester and release growth factors and other bioactive agents in a spatiotemporal controlled manner for bone and cartilage engineering.
Collapse
Affiliation(s)
- Vítor E Santo
- 3B’s Research Group - Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| | - Manuela E Gomes
- 3B’s Research Group - Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| | - João F Mano
- 3B’s Research Group - Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| | - Rui L Reis
- 3B’s Research Group - Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| |
Collapse
|
26
|
Edalat F, Sheu I, Manoucheri S, Khademhosseini A. Material strategies for creating artificial cell-instructive niches. Curr Opin Biotechnol 2012; 23:820-5. [PMID: 22705446 DOI: 10.1016/j.copbio.2012.05.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 12/26/2022]
Abstract
There has been a tremendous growth in the use of biomaterials serving as cellular scaffolds for tissue engineering applications. Recently, advanced material strategies have been developed to incorporate structural, mechanical, and biochemical signals that can interact with the cell and the in vivo environment in a biologically specific manner. In this article, strategies such as the use of composite materials and material processing methods to better mimic the extracellular matrix, integration of mechanical and topographical properties of materials in scaffold design, and incorporation of biochemical cues such as cytokines in tethered, soluble, or time-released forms are presented. Finally, replication of the dynamic forces and biochemical gradients of the in vivo cellular environment through the use of microfluidics is highlighted.
Collapse
Affiliation(s)
- Faramarz Edalat
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
27
|
Zorlutuna P, Annabi N, Camci-Unal G, Nikkhah M, Cha JM, Nichol JW, Manbachi A, Bae H, Chen S, Khademhosseini A. Microfabricated biomaterials for engineering 3D tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:1782-804. [PMID: 22410857 PMCID: PMC3432416 DOI: 10.1002/adma.201104631] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Indexed: 05/04/2023]
Abstract
Mimicking natural tissue structure is crucial for engineered tissues with intended applications ranging from regenerative medicine to biorobotics. Native tissues are highly organized at the microscale, thus making these natural characteristics an integral part of creating effective biomimetic tissue structures. There exists a growing appreciation that the incorporation of similar highly organized microscale structures in tissue engineering may yield a remedy for problems ranging from vascularization to cell function control/determination. In this review, we highlight the recent progress in the field of microscale tissue engineering and discuss the use of various biomaterials for generating engineered tissue structures with microscale features. In particular, we will discuss the use of microscale approaches to engineer the architecture of scaffolds, generate artificial vasculature, and control cellular orientation and differentiation. In addition, the emergence of microfabricated tissue units and the modular assembly to emulate hierarchical tissues will be discussed.
Collapse
Affiliation(s)
- Pinar Zorlutuna
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Woodford C, Zandstra PW. Tissue engineering 2.0: guiding self-organization during pluripotent stem cell differentiation. Curr Opin Biotechnol 2012; 23:810-9. [PMID: 22444525 DOI: 10.1016/j.copbio.2012.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 03/03/2012] [Accepted: 03/05/2012] [Indexed: 01/16/2023]
Abstract
Human pluripotent stem cell (hPSC) differentiation aims to mimic development using growth factors or small molecules in a time-dependent and dose-dependent manner. However, the cell types produced using this approach are predominantly fetal-like in phenotype and function, limiting their use in regenerative medicine. This is particularly true in current efforts to produce pancreatic beta cells, wherein robust pancreatic progenitor maturation can only be accomplished upon transplantation into mice. Recent studies have suggested that hPSC-derived cells are capable of self-organizing in vitro, revealing a new paradigm for creating mature cells and tissues. Tissue engineering strategies that provide subtle and dynamic signals to developmentally naïve cells may be applied to mimic in vitro the self-organization aspects of pancreatic development.
Collapse
Affiliation(s)
- Curtis Woodford
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | | |
Collapse
|
29
|
Poster Presentations. Regen Med 2011. [DOI: 10.2217/rme.12.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Hudalla GA, Murphy WL. Chemically well-defined self-assembled monolayers for cell culture: toward mimicking the natural ECM. SOFT MATTER 2011; 7:9561-9571. [PMID: 25214878 PMCID: PMC4159093 DOI: 10.1039/c1sm05596h] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The extracellular matrix (ECM) is a network of biological macromolecules that surrounds cells within tissues. In addition to serving as a physical support, the ECM actively influences cell behavior by providing sites for cell adhesion, establishing soluble factor gradients, and forming interfaces between different cell types within a tissue. Thus, elucidating the influence of ECM-derived biomolecules on cell behavior is an important aspect of cell biology. Self-assembled monolayers (SAMs) have emerged as promising tools to mimic the ECM as they provide chemically well-defined substrates that can be precisely tailored for specific cell culture applications, and their application in this regard is the focus of this review. In particular, this review will describe various approaches to prepare SAM-based culture substrates via non-specific adsorption, covalent immobilization, or non-covalent sequestering of ECM-derived biomolecules. Additionally, this review will highlight SAMs that present ECM-derived biomolecules to cells to probe the role of these molecules in cell-ECM interactions, including cell attachment, spreading and 'outside-in' signaling via focal adhesion complex formation. Finally, this review will introduce SAMs that can present or sequester soluble signaling molecules, such as growth factors, to study the influence of localized soluble factor activity on cell behavior. Together, these examples demonstrate that the chemical specificity and variability afforded by SAMs can provide robust, well-defined substrates for cell culture that can simplify experimental design and analysis by eliminating many of the confounding factors associated with traditional culture substrates.
Collapse
Affiliation(s)
- Gregory A. Hudalla
- Department of Biomedical Engineering, University of Wisconsin, 5009 Wisconsin Institutes of Medical Research, 1111 Highland Ave., Madison, WI, 53705, USA
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin, 5009 Wisconsin Institutes of Medical Research, 1111 Highland Ave., Madison, WI, 53705, USA
- Department of Pharmacology, University of Wisconsin, 5009 Wisconsin Institutes of Medical Research, 1111 Highland Ave., Madison, WI, 53705, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin, 5009 Wisconsin Institutes of Medical Research, 1111 Highland Ave., Madison, WI, 53705, USA
| |
Collapse
|
31
|
Jang JH, Schaffer DV, Shea LD. Engineering biomaterial systems to enhance viral vector gene delivery. Mol Ther 2011; 19:1407-15. [PMID: 21629221 DOI: 10.1038/mt.2011.111] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Integrating viral gene delivery with engineered biomaterials is a promising strategy to overcome a number of challenges associated with virus-mediated gene delivery, including inefficient delivery to specific cell types, limited tropism, spread of vectors to distant sites, and immune responses. Viral vectors can be combined with biomaterials either through encapsulation within the material or immobilization onto a material surface. Subsequent biomaterial-based delivery can increase the vector's residence time within the target site, thereby potentially providing localized delivery, enhancing transduction, and extending the duration of gene expression. Alternatively, physical or chemical modification of viral vectors with biomaterials can be employed to modulate the tropism of viruses or reduce inflammatory and immune responses, both of which may benefit transduction. This review describes strategies to promote viral gene delivery technologies using biomaterials, potentially providing opportunities for numerous applications of gene therapy to inherited or acquired disorders, infectious disease, and regenerative medicine.
Collapse
Affiliation(s)
- Jae-Hyung Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Korea.
| | | | | |
Collapse
|