1
|
Proteomic Analysis of Decellularized Extracellular Matrix: Achieving a Competent Biomaterial for Osteogenesis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6884370. [PMID: 36267842 PMCID: PMC9578822 DOI: 10.1155/2022/6884370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/29/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022]
Abstract
Decellularized ECMs have been used as biological scaffolds for tissue repair due to their tissue-specific biochemical and mechanical composition, poorly simulated by other materials. It is used as patches and powders, and it could be further processed via enzymatic digestion under acidic conditions using pepsin. However, part of the bioactivity is lost during the digestion process due to protein denaturation. Here, stepwise digestion was developed to prepare a competent biomaterial for osteogenesis from three different ECM sources. In addition, three different proteases were compared to evaluate the most effective digestion protocol for specific cellular processes. GAGs and peptide quantification showed that the stepwise method yielded a higher concentration of bioactive residues. Circular dichroism analysis also showed that the stepwise approach preserved the secondary structures better. The protein profiles of the digested ECMs were analyzed, and it was found to be highly diverse and tissue-specific. The digestion of ECM from pericardium produced peptides originated from 94 different proteins, followed by 48 proteins in ECM from tendon and 35 proteins in ECM from bone. In addition, digested products from pericardium ECM yielded increased proliferation and differentiation of bone marrow mesenchymal stem cells to mature osteoblasts.
Collapse
|
2
|
Zhuang Y, Zhang C, Cheng M, Huang J, Liu Q, Yuan G, Lin K, Yu H. Challenges and strategies for in situ endothelialization and long-term lumen patency of vascular grafts. Bioact Mater 2021; 6:1791-1809. [PMID: 33336112 PMCID: PMC7721596 DOI: 10.1016/j.bioactmat.2020.11.028] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
Vascular diseases are the most prevalent cause of ischemic necrosis of tissue and organ, which even result in dysfunction and death. Vascular regeneration or artificial vascular graft, as the conventional treatment modality, has received keen attentions. However, small-diameter (diameter < 4 mm) vascular grafts have a high risk of thrombosis and intimal hyperplasia (IH), which makes long-term lumen patency challengeable. Endothelial cells (ECs) form the inner endothelium layer, and are crucial for anti-coagulation and thrombogenesis. Thus, promoting in situ endothelialization in vascular graft remodeling takes top priority, which requires recruitment of endothelia progenitor cells (EPCs), migration, adhesion, proliferation and activation of EPCs and ECs. Chemotaxis aimed at ligands on EPC surface can be utilized for EPC homing, while nanofibrous structure, biocompatible surface and cell-capturing molecules on graft surface can be applied for cell adhesion. Moreover, cell orientation can be regulated by topography of scaffold, and cell bioactivity can be modulated by growth factors and therapeutic genes. Additionally, surface modification can also reduce thrombogenesis, and some drug release can inhibit IH. Considering the influence of macrophages on ECs and smooth muscle cells (SMCs), scaffolds loaded with drugs that can promote M2 polarization are alternative strategies. In conclusion, the advanced strategies for enhanced long-term lumen patency of vascular grafts are summarized in this review. Strategies for recruitment of EPCs, adhesion, proliferation and activation of EPCs and ECs, anti-thrombogenesis, anti-IH, and immunomodulation are discussed. Ideal vascular grafts with appropriate surface modification, loading and fabrication strategies are required in further studies.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Chenglong Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Mengjia Cheng
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jinyang Huang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Qingcheng Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Hongbo Yu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
3
|
de Sousa Victor R, Marcelo da Cunha Santos A, Viana de Sousa B, de Araújo Neves G, Navarro de Lima Santana L, Rodrigues Menezes R. A Review on Chitosan's Uses as Biomaterial: Tissue Engineering, Drug Delivery Systems and Cancer Treatment. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4995. [PMID: 33171898 PMCID: PMC7664280 DOI: 10.3390/ma13214995] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Chitosan, derived from chitin, is a biopolymer consisting of arbitrarily distributed β-(1-4)-linked D-glucosamine and N-acetyl-D-glucosamine that exhibits outstanding properties- biocompatibility, biodegradability, non-toxicity, antibacterial activity, the capacity to form films, and chelating of metal ions. Most of these peculiar properties are attributed to the presence of free protonable amino groups along the chitosan backbone, which also gives it solubility in acidic conditions. Moreover, this biopolymer can also be physically modified, thereby presenting a variety of forms to be developed. Consequently, this polysaccharide is used in various fields, such as tissue engineering, drug delivery systems, and cancer treatment. In this sense, this review aims to gather the state-of-the-art concerning this polysaccharide when used as a biomaterial, providing information about its characteristics, chemical modifications, and applications. We present the most relevant and new information about this polysaccharide-based biomaterial's applications in distinct fields and also the ability of chitosan and its various derivatives to selectively permeate through the cancer cell membranes and exhibit anticancer activity, and the possibility of adding several therapeutic metal ions as a strategy to improve the therapeutic potential of this polymer.
Collapse
Affiliation(s)
- Rayssa de Sousa Victor
- Graduate Program in Materials Science and Engineering, Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, Brazil
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| | - Adillys Marcelo da Cunha Santos
- Center for Science and Technology in Energy and Sustainability (CETENS), Federal University of Recôncavo da Bahia (UFRB), Feira de Santana 44042-280, Brazil;
| | - Bianca Viana de Sousa
- Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil;
| | - Gelmires de Araújo Neves
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| | - Lisiane Navarro de Lima Santana
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| |
Collapse
|
4
|
Ardila DC, Liou JJ, Maestas D, Slepian MJ, Badowski M, Wagner WR, Harris D, Vande Geest JP. Surface Modification of Electrospun Scaffolds for Endothelialization of Tissue-Engineered Vascular Grafts Using Human Cord Blood-Derived Endothelial Cells. J Clin Med 2019; 8:E185. [PMID: 30720769 PMCID: PMC6416564 DOI: 10.3390/jcm8020185] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/22/2019] [Accepted: 02/01/2019] [Indexed: 01/09/2023] Open
Abstract
Tissue engineering has gained attention as an alternative approach for developing small diameter tissue-engineered vascular grafts intended for bypass surgery, as an option to treat coronary heart disease. To promote the formation of a healthy endothelial cell monolayer in the lumen of the graft, polycaprolactone/gelatin/fibrinogen scaffolds were developed, and the surface was modified using thermoforming and coating with collagen IV and fibronectin. Human cord blood-derived endothelial cells (hCB-ECs) were seeded onto the scaffolds and the important characteristics of a healthy endothelial cell layer were evaluated under static conditions using human umbilical vein endothelial cells as a control. We found that polycaprolactone/gelatin/fibrinogen scaffolds that were thermoformed and coated are the most suitable for endothelial cell growth. hCB-ECs can proliferate, produce endothelial nitric oxide synthase, respond to interleukin 1 beta, and reduce platelet deposition.
Collapse
Affiliation(s)
| | - Jr-Jiun Liou
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - David Maestas
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21231, USA.
| | - Marvin J Slepian
- Sarver Heart Center, The University of Arizona, Tucson, AZ 85721, USA.
- The Arizona Center for Accelerated BioMedical Innovation, University of Arizona, Tucson, AZ 85721, USA.
- BIO5 Institute for Biocollaborative Research, The University of Arizona, Tucson, AZ 85721, USA.
- Interventional Cardiology, University of Arizona, Tucson, AZ 85721, USA.
| | - Michael Badowski
- Arizona Health Science Center Biorepository, University of Arizona, Tucson, AZ 85724, USA.
| | - William R. Wagner
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - David Harris
- Arizona Health Science Center Biorepository, University of Arizona, Tucson, AZ 85724, USA.
- Department of Immunobiology, Arizona Health Science Center Biorepository, University of Arizona, Tucson, AZ 85724, USA.
| | - Jonathan P Vande Geest
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
5
|
Soares RM, Siqueira NM, Prabhakaram MP, Ramakrishna S. Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:969-982. [DOI: 10.1016/j.msec.2018.08.004] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 07/12/2018] [Accepted: 08/02/2018] [Indexed: 01/13/2023]
|
6
|
Observation of triple helix motif on electrospun collagen nanofibers and its effect on the physical and structural properties. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.09.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
7
|
Celikkin N, Rinoldi C, Costantini M, Trombetta M, Rainer A, Święszkowski W. Naturally derived proteins and glycosaminoglycan scaffolds for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:1277-1299. [PMID: 28575966 DOI: 10.1016/j.msec.2017.04.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 12/25/2022]
Abstract
Tissue engineering (TE) aims to mimic the complex environment where organogenesis takes place using advanced materials to recapitulate the tissue niche. Cells, three-dimensional scaffolds and signaling factors are the three main and essential components of TE. Over the years, materials and processes have become more and more sophisticated, allowing researchers to precisely tailor the final chemical, mechanical, structural and biological features of the designed scaffolds. In this review, we will pose the attention on two specific classes of naturally derived polymers: fibrous proteins and glycosaminoglycans (GAGs). These materials hold great promise for advances in the field of regenerative medicine as i) they generally undergo a fast remodeling in vivo favoring neovascularization and functional cells organization and ii) they elicit a negligible immune reaction preventing severe inflammatory response, both representing critical requirements for a successful integration of engineered scaffolds with the host tissue. We will discuss the recent achievements attained in the field of regenerative medicine by using proteins and GAGs, their merits and disadvantages and the ongoing challenges to move the current concepts to practical clinical application.
Collapse
Affiliation(s)
- Nehar Celikkin
- Warsaw University of Technology, Faculty of Material Science and Engineering, 141 Woloska str., 02-507 Warsaw, Poland
| | - Chiara Rinoldi
- Warsaw University of Technology, Faculty of Material Science and Engineering, 141 Woloska str., 02-507 Warsaw, Poland
| | - Marco Costantini
- Tissue Engineering Unit, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Marcella Trombetta
- Tissue Engineering Unit, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Alberto Rainer
- Tissue Engineering Unit, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Wojciech Święszkowski
- Warsaw University of Technology, Faculty of Material Science and Engineering, 141 Woloska str., 02-507 Warsaw, Poland.
| |
Collapse
|
8
|
Hauser S, Jung F, Pietzsch J. Human Endothelial Cell Models in Biomaterial Research. Trends Biotechnol 2016; 35:265-277. [PMID: 27789063 DOI: 10.1016/j.tibtech.2016.09.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/15/2016] [Accepted: 09/28/2016] [Indexed: 01/05/2023]
Abstract
Endothelial cell (EC) models have evolved as important tools in biomaterial research due to ubiquitously occurring interactions between implanted materials and the endothelium. However, screening the available literature has revealed a gap between material scientists and physiologists in terms of their understanding of these biomaterial-endothelium interactions and their relative importance. Consequently, EC models are often applied in nonphysiological experimental setups, or too extensive conclusions are drawn from their results. The question arises whether this might be one reason why, among the many potential biomaterials, only a few have found their way into the clinic. In this review, we provide an overview of established EC models and possible selection criteria to enable researchers to determine the most reliable and relevant EC model to use.
Collapse
Affiliation(s)
- Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany; Helmholtz Virtual Institute 'Multifunctional Biomaterials for Medicine', Teltow, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Dresden, Germany; Technische Universität Dresden, Department of Chemistry and Food Chemistry, Dresden, Germany.
| |
Collapse
|
9
|
Gonçalves F, de Moraes MS, Ferreira LB, Carreira ACO, Kossugue PM, Boaro LCC, Bentini R, Garcia CRDS, Sogayar MC, Arana-Chavez VE, Catalani LH. Combination of Bioactive Polymeric Membranes and Stem Cells for Periodontal Regeneration: In Vitro and In Vivo Analyses. PLoS One 2016; 11:e0152412. [PMID: 27031990 PMCID: PMC4816539 DOI: 10.1371/journal.pone.0152412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 03/14/2016] [Indexed: 11/18/2022] Open
Abstract
Regeneration of periodontal tissues requires a concerted effort to obtain consistent and predictable results in vivo. The aim of the present study was to test a new family of bioactive polymeric membranes in combination with stem cell therapy for periodontal regeneration. In particular, the novel polyester poly(isosorbide succinate-co-L-lactide) (PisPLLA) was compared with poly(L-lactide) (PLLA). Both polymers were combined with collagen (COL), hydroxyapatite (HA) and the growth factor bone morphogenetic protein-7 (BMP7), and their osteoinductive capacity was evaluated via in vitro and in vivo experiments. Membranes composed of PLLA/COL/HA or PisPLLA/COL/HA were able to promote periodontal regeneration and new bone formation in fenestration defects in rat jaws. According to quantitative real-time polymerase chain reaction (qRT-PCR) and Alizarin Red assays, better osteoconductive capacity and increased extracellular mineralization were observed for PLLA/COL/HA, whereas better osteoinductive properties were associated with PisPLLA/COL/HA. We concluded that membranes composed of either PisPLLA/COL/HA or PLLA/COL/HA present promising results in vitro as well as in vivo and that these materials could be potentially applied in periodontal regeneration.
Collapse
Affiliation(s)
- Flávia Gonçalves
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Míriam Santos de Moraes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–090
| | - Lorraine Braga Ferreira
- Departamento de Biomateriais e Biologia Oral, Faculdade de Odontologia, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Ana Cláudia Oliveira Carreira
- NUCEL/NETCEM—Núcleo de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil, 05360–130
| | - Patrícia Mayumi Kossugue
- NUCEL/NETCEM—Núcleo de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil, 05360–130
| | - Letícia Cristina Cidreira Boaro
- Departamento de Biomateriais e Biologia Oral, Faculdade de Odontologia, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Ricardo Bentini
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Célia Regina da Silva Garcia
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–090
| | - Mari Cleide Sogayar
- NUCEL/NETCEM—Núcleo de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil, 05360–130
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Victor Elias Arana-Chavez
- Departamento de Biomateriais e Biologia Oral, Faculdade de Odontologia, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Luiz Henrique Catalani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
- * E-mail:
| |
Collapse
|
10
|
Torres-Giner S, Pérez-Masiá R, Lagaron JM. A review on electrospun polymer nanostructures as advanced bioactive platforms. POLYM ENG SCI 2016. [DOI: 10.1002/pen.24274] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Avenida Agustín Escardino 7; Paterna 46980 Spain
| | - Rocío Pérez-Masiá
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Avenida Agustín Escardino 7; Paterna 46980 Spain
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Avenida Agustín Escardino 7; Paterna 46980 Spain
| |
Collapse
|
11
|
Ahmed M, Ramos TADS, Damanik F, Quang Le B, Wieringa P, Bennink M, van Blitterswijk C, de Boer J, Moroni L. A combinatorial approach towards the design of nanofibrous scaffolds for chondrogenesis. Sci Rep 2015; 5:14804. [PMID: 26445026 PMCID: PMC4595832 DOI: 10.1038/srep14804] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/07/2015] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) is a three-dimensional (3D) structure composed of proteinaceous fibres that provide physical and biological cues to direct cell behaviour. Here, we build a library of hybrid collagen-polymer fibrous scaffolds with nanoscale dimensions and screen them for their ability to grow chondrocytes for cartilage repair. Poly(lactic acid) and poly (lactic-co-glycolic acid) at two different monomer ratios (85:15 and 50:50) were incrementally blended with collagen. Physical properties (wettability and stiffness) of the scaffolds were characterized and related to biological performance (proliferation, ECM production, and gene expression) and structure-function relationships were developed. We found that soft scaffolds with an intermediate wettability composed of the highly biodegradable PLGA50:50 and collagen, in two ratios (40:60 and 60:40), were optimal for chondrogenic differentiation of ATDC5 cells as determined by increased ECM production and enhanced cartilage specific gene expression. Long-term cultures indicated a stable phenotype with minimal de-differentiation or hypertrophy. The combinatorial methodology applied herein is a promising approach for the design and development of scaffolds for regenerative medicine.
Collapse
Affiliation(s)
- Maqsood Ahmed
- University of Twente, Department of Tissue Regeneration, Enschede, 7500 AE, The Netherlands
| | - Tiago André da Silva Ramos
- University of Twente, Department of Tissue Regeneration, Enschede, 7500 AE, The Netherlands.,Faculty of Engineering, University of Oporto, 4200-465 Porto, Portugal
| | - Febriyani Damanik
- University of Twente, Department of Tissue Regeneration, Enschede, 7500 AE, The Netherlands
| | - Bach Quang Le
- University of Twente, Department of Tissue Regeneration, Enschede, 7500 AE, The Netherlands
| | - Paul Wieringa
- University of Twente, Department of Tissue Regeneration, Enschede, 7500 AE, The Netherlands
| | - Martin Bennink
- University of Twente, Department of Nanobiophysics, Enschede, 7500 AE, The Netherlands
| | | | - Jan de Boer
- University of Twente, Department of Tissue Regeneration, Enschede, 7500 AE, The Netherlands
| | - Lorenzo Moroni
- University of Twente, Department of Tissue Regeneration, Enschede, 7500 AE, The Netherlands
| |
Collapse
|
12
|
Ryan AJ, O'Brien FJ. Insoluble elastin reduces collagen scaffold stiffness, improves viscoelastic properties, and induces a contractile phenotype in smooth muscle cells. Biomaterials 2015; 73:296-307. [PMID: 26431909 DOI: 10.1016/j.biomaterials.2015.09.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/03/2015] [Accepted: 09/09/2015] [Indexed: 12/23/2022]
Abstract
Biomaterials with the capacity to innately guide cell behaviour while also displaying suitable mechanical properties remain a challenge in tissue engineering. Our approach to this has been to utilise insoluble elastin in combination with collagen as the basis of a biomimetic scaffold for cardiovascular tissue engineering. Elastin was found to markedly alter the mechanical and biological response of these collagen-based scaffolds. Specifically, during extensive mechanical assessment elastin was found to reduce the specific tensile and compressive moduli of the scaffolds in a concentration dependant manner while having minimal effect on scaffold microarchitecture with both scaffold porosity and pore size still within the ideal ranges for tissue engineering applications. However, the viscoelastic properties were significantly improved with elastin addition with a 3.5-fold decrease in induced creep strain, a 6-fold increase in cyclical strain recovery, and with a four-parameter viscoelastic model confirming the ability of elastin to confer resistance to long term deformation/creep. Furthermore, elastin was found to result in the modulation of SMC phenotype towards a contractile state which was determined via reduced proliferation and significantly enhanced expression of early (α-SMA), mid (calponin), and late stage (SM-MHC) contractile proteins. This allows the ability to utilise extracellular matrix proteins alone to modulate SMC phenotype without any exogenous factors added. Taken together, the ability of elastin to alter the mechanical and biological response of collagen scaffolds has led to the development of a biomimetic biomaterial highly suitable for cardiovascular tissue engineering.
Collapse
Affiliation(s)
- Alan J Ryan
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
13
|
Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev 2015; 44:5680-742. [DOI: 10.1039/c4cs00483c] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the recent developments of surface modification and endothelialization of biomaterials in vascular tissue engineering applications.
Collapse
Affiliation(s)
- Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Haixia Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Qian Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xuefang Hao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Juan Lv
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Nan Ma
- Institute of Chemistry and Biochemistry
- Free University of Berlin
- D-14195 Berlin
- Germany
| | - Wenzhong Li
- Department of Cardiac Surgery
- University of Rostock
- D-18057 Rostock
- Germany
| |
Collapse
|
14
|
Alekseeva T, Unger RE, Brochhausen C, Brown RA, Kirkpatrick JC. Engineering a microvascular capillary bed in a tissue-like collagen construct. Tissue Eng Part A 2014; 20:2656-65. [PMID: 24684395 PMCID: PMC4195478 DOI: 10.1089/ten.tea.2013.0570] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 03/19/2014] [Indexed: 01/14/2023] Open
Abstract
Previous studies have shown that plastic compression (PC) of collagen gels allows a rapid and controlled fabrication of matrix- and cell-rich constructs in vitro that closely mimic the structure and characteristics of tissues in vivo. Microvascular endothelial cells, the major cell type making up the blood vessels in the body, were added to the PC collagen to determine whether cells attach, survive, grow, and express endothelial cell characteristics when seeded alone or in coculture with other cells. Endothelial cells seeded on the PC collagen containing human foreskin fibroblasts (HFF) or human osteoblasts (HOS) formed vessel-like structures over 3 weeks in culture without the addition of exogenous growth factors in the medium. In contrast, on the PC scaffolds without HFF or HOS, human dermal microvascular endothelial cells (HDMEC) exhibited a typical cobblestone morphology for 21 days under the same conditions. We propose that the coculture of primary endothelial cells with PC collagen constructs, containing a stromal cell population, is a valuable technique for in vitro modeling of proangiogenic responses toward such biomimetic constructs in vivo. A major observation in the cocultures was the absence of gel contraction, even after 3 weeks of fibroblast culture. This collagen form could, for example, be of great value in tissue engineering of the skin, as contractures are both aesthetically and functionally disabling.
Collapse
Affiliation(s)
- Tijna Alekseeva
- REPAIR Lab, Institute of Pathology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ronald E. Unger
- REPAIR Lab, Institute of Pathology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Christoph Brochhausen
- REPAIR Lab, Institute of Pathology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | | | - James C. Kirkpatrick
- REPAIR Lab, Institute of Pathology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
15
|
Al Meslmani B, Mahmoud G, Strehlow B, Mohr E, Leichtweiß T, Bakowsky U. Development of thrombus-resistant and cell compatible crimped polyethylene terephthalate cardiovascular grafts using surface co-immobilized heparin and collagen. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 43:538-46. [DOI: 10.1016/j.msec.2014.07.059] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/26/2014] [Accepted: 07/16/2014] [Indexed: 12/21/2022]
|
16
|
Savoji H, Hadjizadeh A, Maire M, Ajji A, Wertheimer MR, Lerouge S. Electrospun Nanofiber Scaffolds and Plasma Polymerization: A Promising Combination Towards Complete, Stable Endothelial Lining for Vascular Grafts. Macromol Biosci 2014; 14:1084-95. [DOI: 10.1002/mabi.201300545] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/10/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Houman Savoji
- Laboratory of Endovascular Biomaterials (LBeV); Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM); 900 Saint Denis Street Montreal QC H2X 0A9 Canada
- Institute of Biomedical Engineering; École Polytechnique de Montréal; Montreal QC H3C 3A7 Canada
| | - Afra Hadjizadeh
- Department of Chemical Engineering; École Polytechnique de Montréal; Montreal QC H3C 3A7 Canada
| | - Marion Maire
- Laboratory of Endovascular Biomaterials (LBeV); Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM); 900 Saint Denis Street Montreal QC H2X 0A9 Canada
| | - Abdellah Ajji
- Institute of Biomedical Engineering; École Polytechnique de Montréal; Montreal QC H3C 3A7 Canada
- Department of Chemical Engineering; École Polytechnique de Montréal; Montreal QC H3C 3A7 Canada
| | - Michael R. Wertheimer
- Institute of Biomedical Engineering; École Polytechnique de Montréal; Montreal QC H3C 3A7 Canada
- Department of Engineering Physics; École Polytechnique de Montréal; Montreal QC H3C 3A7 Canada
| | - Sophie Lerouge
- Laboratory of Endovascular Biomaterials (LBeV); Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM); 900 Saint Denis Street Montreal QC H2X 0A9 Canada
- Department of Mechanical Engineering; École de technologie supérieure; Montreal QC H3C 1K3 Canada
| |
Collapse
|
17
|
Dai G, Xiao H, Zhu S, Shi M. Collagen-immobilized poly(ethylene terephthalate)-g-poly(vinyl alcohol) fibers prepared by electron-beam co-irradiation. J Appl Polym Sci 2014. [DOI: 10.1002/app.40597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Guoliang Dai
- College of Textiles; Donghua University; Shanghai 201620 China
| | - Hong Xiao
- The Quartermaster Research Institute of the General Logistics Department of the Chinese People's Liberation Army (CPLA); Beijing 100082 China
| | - Shifeng Zhu
- College of Textiles; Donghua University; Shanghai 201620 China
| | - Meiwu Shi
- College of Textiles; Donghua University; Shanghai 201620 China
- The Quartermaster Research Institute of the General Logistics Department of the Chinese People's Liberation Army (CPLA); Beijing 100082 China
| |
Collapse
|
18
|
Barros JAG, Filippin-Monteiro FB, de Oliveira EM, Campa A, Catalani LH, Pitombo RDNM, Polakiewicz B. Cytotoxicity of PVPAC-treated bovine pericardium: a potential replacement for glutaraldehyde in biological heart valves. J Biomed Mater Res B Appl Biomater 2013; 102:574-82. [PMID: 24123957 DOI: 10.1002/jbm.b.33036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 07/05/2013] [Accepted: 09/02/2013] [Indexed: 12/22/2022]
Abstract
Acellular biological tissues, including bovine pericardium (BP), have been proposed as biomaterial for tissue engineering. BP is usually modified chemically to improve mechanical and biological properties using glutaraldehyde, the standard reagent for preservation of fresh bioprosthetic materials. Glutaraldehyde-fixed BP (Glut-BP), the most widely used material in heart valve manufacture, has been associated with calcification in vivo. In an attempt to reduce this issue and maintain its biocompatibility, this study assesses the physical properties and cytotoxicity of lyophilized BP treated with poly (vinylpyrrolidone-co-acrolein) (PVPAC-BP), a novel copolymer, as a substitute for glutaraldehyde. For that, PVPAC-BP surface ultrastructure, elastic function, water uptake and tissue calcification were evaluated. For the analysis of biocompatibility, fibroblasts (3T3-L1) and endothelial cells (HUVEC) were cultured on PVPAC-BP, Untreated-BP and Glut-BP. Nitric oxide (NO) release assay, fluorescence and SEM images of endothelial cells adhered on scaffolds were also performed. As results, the data show some advantages of PVPAC-BP over the Glut-BP. The PVPAC-BP maintains partially the original ultrastructure and elastic properties, improves scaffold hydration, and presents less calcium phosphate deposits. The cells demonstrated strong attachment, high proliferation rate, and formation of a monolayer on PVPAC-BP. Attached cells were also able to release NO de-monstrating regular metabolism. In conclusion, PVPAC may be considered as a promising alternative to BP treatment improving the efficiency of cell attachment and proliferation and also avoid immunogenicity.
Collapse
Affiliation(s)
- Janaina Aline Galvão Barros
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Lineu Prestes, 580 BL17, São Paulo, SP, Brazil; Institute of Chemistry, University of São Paulo, Lineu Prestes, 580 BL17, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
19
|
Luo T, Kiick KL. Collagen-like peptides and peptide–polymer conjugates in the design of assembled materials. Eur Polym J 2013; 49:2998-3009. [DOI: 10.1016/j.eurpolymj.2013.05.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|