1
|
Adams M, Cottrell J. Development and characterization of an in vitro fluorescently tagged 3D bone-cartilage interface model. Front Endocrinol (Lausanne) 2024; 15:1484912. [PMID: 39600948 PMCID: PMC11588493 DOI: 10.3389/fendo.2024.1484912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Three-dimensional cultures are widely used to study bone and cartilage. These models often focus on the interaction between osteoblasts and osteoclasts or osteoblasts and chondrocytes. A culture of osteoblasts, osteoclasts and chondrocytes would represent the cells that interact in the joint and a model with these cells could be used to study many diseases that affect the joints. The goal of this study was to develop 3D bone-cartilage interface (3D-BCI) that included osteoblasts, osteocytes, osteoclasts, and cartilage. Fluorescently tagged cell lines were developed to assess the interactions as cells differentiate to form bone and cartilage. Mouse cell line, MC3T3, was labeled with a nuclear GFP tag and differentiated into osteoblasts and osteocytes in Matrigel. Raw264.7 cells transfected with a red cytoplasmic tag were added to the system and differentiated with the MC3T3 cells to form osteoclasts. A new method was developed to differentiate chondrocyte cell line ATDC5 in a cartilage spheroid, and the ATDC5 spheroid was added to the MC3T3 and Raw264.7 cell model. We used an Incucyte and functional analysis to assess the cells throughout the differentiation process. The 3D-BCI model was found to be positive for TRAP, ALP, Alizarin red and Alcian blue staining to confirm osteoblastogenesis, osteoclastogenesis, and cartilage formation. Gene expression confirmed differentiation of cells based on increased expression of osteoblast markers: Alpl, Bglap, Col1A2, and Runx2, cartilage markers: Acan, Col2A1, Plod2, and osteoclast markers: Acp5, Rank and Ctsk. Based on staining, protein expression and gene expression results, we conclude that we successfully developed a mouse model with a 3D bone-cartilage interface.
Collapse
Affiliation(s)
- Mary Adams
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, United States
- Immunology Translational Research, Translational Early Development, Bristol Myers Squibb, Summit, NJ, United States
| | - Jessica Cottrell
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, United States
| |
Collapse
|
2
|
Gagni P, Lodigiani G, Frigerio R, Cretich M, Gori A, Bergamaschi G. Supramolecular Hydrogels for 3D Biosensors and Bioassays. Chemistry 2024; 30:e202400974. [PMID: 38871646 DOI: 10.1002/chem.202400974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Supramolecular hydrogels play a pivotal role in many fields of biomedical research, including emerging applications in designing advanced tools for point-of-care testing, clinical diagnostics, and lab-on-chip analysis. This review outlines the growing relevance of supramolecular hydrogels in biosensing and bioassay devices, highlighting recent advancements that deliver increased sensitivity, real-time monitoring, and multiplexing capabilities through the distinctive properties of these nanomaterials. Furthermore, the exploration extends to additional applications, such as using hydrogels as three-dimensional matrices for cell-based assays.
Collapse
Affiliation(s)
- Paola Gagni
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy (SCITEC-CNR), 20131, Milan, Italy
| | - Giulia Lodigiani
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy (SCITEC-CNR), 20131, Milan, Italy
| | - Roberto Frigerio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy (SCITEC-CNR), 20131, Milan, Italy
| | - Marina Cretich
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy (SCITEC-CNR), 20131, Milan, Italy
| | - Alessandro Gori
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy (SCITEC-CNR), 20131, Milan, Italy
| | - Greta Bergamaschi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy (SCITEC-CNR), 20131, Milan, Italy
| |
Collapse
|
3
|
Fowler EW, Witt RL, Jia X. Basement Membrane Mimetic Hydrogel Cooperates with Rho-Associated Protein Kinase Inhibitor to Promote the Development of Acini-Like Salivary Gland Spheroids. ADVANCED NANOBIOMED RESEARCH 2023; 3:2300088. [PMID: 38645834 PMCID: PMC11031203 DOI: 10.1002/anbr.202300088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024] Open
Abstract
Successful engineering of functional salivary glands necessitates the creation of cell-instructive environments for ex vivo expansion and lineage specification of primary human salivary gland stem cells (hS/PCs). Herein, basement membrane mimetic hydrogels were prepared using hyaluronic acid, cell adhesive peptides, and hyperbranched polyglycerol (HPG), with or without sulfate groups, to produce "hyperGel+" or "hyperGel", respectively. Differential scanning fluorescence experiments confirmed the ability of the sulphated HPG precursor to stabilize fibroblast growth factor 10. The hydrogels were nanoporous, cytocompatibile and cell-permissive, enabling the development of multicellular hS/PC spheroids in 14 days. Incorporation of sulfated HPG species in the hydrogel enhanced cell proliferation. Culture of hS/PCs in hyperGel+ in the presence of a Rho kinase inhibitor, Y-27632 (Y-27), led to the development of spheroids with a central lumen, increased the expression of acinar marker aquaporin-3 at the transcript level (AQP3), and decreased the expression of ductal marker keratin 7 at both the transcript (KRT7) and the protein levels (K7). Reduced expression of transforming growth factor beta (TGF-β) targets SMAD2/3 was also observed in Y27-treated cultures, suggesting attenuation of TGF-β signaling. Thus, hyperGel+ cooperates with the ROCK inhibitor to promote the development of lumened spheroids with enhanced expression of acinar markers.
Collapse
Affiliation(s)
- Eric W. Fowler
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, USA
| | - Robert L. Witt
- Helen F. Graham Cancer Center and Research Institute, Christiana Care, Newark, Delaware, 19713, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, USA
- Delaware Biotechnology Institute, 590 Avenue 1743, Newark, DE 19713, USA
| |
Collapse
|
4
|
Gupta A, Lee J, Ghosh T, Nguyen VQ, Dey A, Yoon B, Um W, Park JH. Polymeric Hydrogels for Controlled Drug Delivery to Treat Arthritis. Pharmaceutics 2022; 14:540. [PMID: 35335915 PMCID: PMC8948938 DOI: 10.3390/pharmaceutics14030540] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) are disabling musculoskeletal disorders that affect joints and cartilage and may lead to bone degeneration. Conventional delivery of anti-arthritic agents is limited due to short intra-articular half-life and toxicities. Innovations in polymer chemistry have led to advancements in hydrogel technology, offering a versatile drug delivery platform exhibiting tissue-like properties with tunable drug loading and high residence time properties This review discusses the advantages and drawbacks of polymeric materials along with their modifications as well as their applications for fabricating hydrogels loaded with therapeutic agents (small molecule drugs, immunotherapeutic agents, and cells). Emphasis is given to the biological potentialities of hydrogel hybrid systems/micro-and nanotechnology-integrated hydrogels as promising tools. Applications for facile tuning of therapeutic drug loading, maintaining long-term release, and consequently improving therapeutic outcome and patient compliance in arthritis are detailed. This review also suggests the advantages, challenges, and future perspectives of hydrogels loaded with anti-arthritic agents with high therapeutic potential that may alter the landscape of currently available arthritis treatment modalities.
Collapse
Affiliation(s)
- Anuradha Gupta
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Jungmi Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Torsha Ghosh
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Van Quy Nguyen
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Anup Dey
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Been Yoon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Wooram Um
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
5
|
Chen Y, Wang Y, Luo SC, Zheng X, Kankala RK, Wang SB, Chen AZ. Advances in Engineered Three-Dimensional (3D) Body Articulation Unit Models. Drug Des Devel Ther 2022; 16:213-235. [PMID: 35087267 PMCID: PMC8789231 DOI: 10.2147/dddt.s344036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
Indeed, the body articulation units, commonly referred to as body joints, play significant roles in the musculoskeletal system, enabling body flexibility. Nevertheless, these articulation units suffer from several pathological conditions, such as osteoarthritis (OA), rheumatoid arthritis (RA), ankylosing spondylitis, gout, and psoriatic arthritis. There exist several treatment modalities based on the utilization of anti-inflammatory and analgesic drugs, which can reduce or control the pathophysiological symptoms. Despite the success, these treatment modalities suffer from major shortcomings of enormous cost and poor recovery, limiting their applicability and requiring promising strategies. To address these limitations, several engineering strategies have been emerged as promising solutions in fabricating the body articulation as unit models towards local articulation repair for tissue regeneration and high-throughput screening for drug development. In this article, we present challenges related to the selection of biomaterials (natural and synthetic sources), construction of 3D articulation models (scaffold-free, scaffold-based, and organ-on-a-chip), architectural designs (microfluidics, bioprinting, electrospinning, and biomineralization), and the type of culture conditions (growth factors and active peptides). Then, we emphasize the applicability of these articulation units for emerging biomedical applications of drug screening and tissue repair/regeneration. In conclusion, we put forward the challenges and difficulties for the further clinical application of the in vitro 3D articulation unit models in terms of the long-term high activity of the models.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People’s Republic of China
| | - Ying Wang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523059, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510080, Guangdong, People’s Republic of China
| | - Sheng-Chang Luo
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People’s Republic of China
| | - Xiang Zheng
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People’s Republic of China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People’s Republic of China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People’s Republic of China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People’s Republic of China
| |
Collapse
|
6
|
Tan Z, Bilal M, Raza A, Cui J, Ashraf SS, Iqbal HMN. Expanding the Biocatalytic Scope of Enzyme-Loaded Polymeric Hydrogels. Gels 2021; 7:gels7040194. [PMID: 34842692 PMCID: PMC8628689 DOI: 10.3390/gels7040194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 02/05/2023] Open
Abstract
In recent years, polymeric hydrogels have appeared promising matrices for enzyme immobilization to design, signify and expand bio-catalysis engineering. Therefore, the development and deployment of polymeric supports in the form of hydrogels and other robust geometries are continuously growing to green the twenty-first-century bio-catalysis. Furthermore, adequately fabricated polymeric hydrogel materials offer numerous advantages that shield pristine enzymes from denaturation under harsh reaction environments. For instance, cross-linking modulation of hydrogels, distinct rheological behavior, tunable surface entities along with elasticity and mesh size, larger surface-volume area, and hydrogels' mechanical cushioning attributes are of supreme interest makes them the ideal candidate for enzyme immobilization. Furthermore, suitable coordination of polymeric hydrogels with requisite enzyme fraction enables pronounced loading, elevated biocatalytic activity, and exceptional stability. Additionally, the unique catalytic harmony of enzyme-loaded polymeric hydrogels offers numerous applications, such as hydrogels as immobilization matrix, bio-catalysis, sensing, detection and monitoring, tissue engineering, wound healing, and drug delivery applications. In this review, we spotlight the applied perspective of enzyme-loaded polymeric hydrogels with recent and relevant examples. The work also signifies the combined use of multienzyme systems and the future directions that should be attempted in this field.
Collapse
Affiliation(s)
- Zhongbiao Tan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
- Correspondence: (M.B.); (H.M.N.I.)
| | - Ali Raza
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China;
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China;
| | - Syed Salman Ashraf
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates;
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Correspondence: (M.B.); (H.M.N.I.)
| |
Collapse
|
7
|
Samvelyan HJ, Hughes D, Stevens C, Staines KA. Models of Osteoarthritis: Relevance and New Insights. Calcif Tissue Int 2021; 109:243-256. [PMID: 32062692 PMCID: PMC8403120 DOI: 10.1007/s00223-020-00670-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/05/2020] [Indexed: 12/31/2022]
Abstract
Osteoarthritis (OA) is a progressive and disabling musculoskeletal disease affecting millions of people and resulting in major healthcare costs worldwide. It is the most common form of arthritis, characterised by degradation of the articular cartilage, formation of osteophytes, subchondral sclerosis, synovial inflammation and ultimate loss of joint function. Understanding the pathogenesis of OA and its multifactorial aetiology will lead to the development of effective treatments, which are currently lacking. Two-dimensional (2D) in vitro tissue models of OA allow affordable, high-throughput analysis and stringent control over specific variables. However, they are linear in fashion and are not representative of physiological conditions. Recent in vitro studies have adopted three-dimensional (3D) tissue models of OA, which retain the advantages of 2D models and are able to mimic physiological conditions, thereby allowing investigation of additional variables including interactions between the cells and their surrounding extracellular matrix. Numerous spontaneous and induced animal models are used to reproduce the onset and monitor the progression of OA based on the aetiology under investigation. This therefore allows elucidation of the pathogenesis of OA and will ultimately enable the development of novel and specific therapeutic interventions. This review summarises the current understanding of in vitro and in vivo OA models in the context of disease pathophysiology, classification and relevance, thus providing new insights and directions for OA research.
Collapse
Affiliation(s)
| | - David Hughes
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, UK
| | - Craig Stevens
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, UK
| | - Katherine Ann Staines
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, UK.
| |
Collapse
|
8
|
Herrmann A, Haag R, Schedler U. Hydrogels and Their Role in Biosensing Applications. Adv Healthc Mater 2021; 10:e2100062. [PMID: 33939333 PMCID: PMC11468738 DOI: 10.1002/adhm.202100062] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/12/2021] [Indexed: 12/16/2022]
Abstract
Hydrogels play an important role in the field of biomedical research and diagnostic medicine. They are emerging as a powerful tool in the context of bioanalytical assays and biosensing. In this context, this review gives an overview of different hydrogels and the role they adopt in a range of applications. Not only are hydrogels beneficial for the immobilization and embedding of biomolecules, but they are also used as responsive material, as wearable devices, or as functional material. In particular, the scientific and technical progress during the last decade is discussed. The newest hydrogel types, their synthesis, and many applications are presented. Advantages and performance improvements are described, along with their limitations.
Collapse
Affiliation(s)
- Anna Herrmann
- Department of Biology, Chemistry, PharmacyFreie Universität BerlinTakustr. 3Berlin14195Germany
| | - Rainer Haag
- Department of Biology, Chemistry, PharmacyFreie Universität BerlinTakustr. 3Berlin14195Germany
| | - Uwe Schedler
- PolyAn GmbHRudolf‐Baschant‐Straße 2Berlin13086Germany
| |
Collapse
|
9
|
Wolde-Kidan A, Herrmann A, Prause A, Gradzielski M, Haag R, Block S, Netz RR. Particle Diffusivity and Free-Energy Profiles in Hydrogels from Time-Resolved Penetration Data. Biophys J 2021; 120:463-475. [PMID: 33421414 PMCID: PMC7896003 DOI: 10.1016/j.bpj.2020.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 02/02/2023] Open
Abstract
A combined experimental and theoretical method to simultaneously determine diffusivity and free-energy profiles of particles that penetrate into inhomogeneous hydrogel systems is presented. As the only input, arbitrarily normalized concentration profiles from fluorescence intensity data of labeled tracer particles for different penetration times are needed. The method is applied to dextran molecules of varying size that penetrate into hydrogels of polyethylene-glycol chains with different lengths that are covalently cross-linked by hyperbranched polyglycerol hubs. Extracted dextran bulk diffusivities agree well with fluorescence correlation spectroscopy data obtained separately. Empirical scaling laws for dextran diffusivities and free energies inside the hydrogel are identified as a function of the dextran mass. An elastic free-volume model that includes dextran as well as polyethylene-glycol linker flexibility quantitively describes the repulsive dextran-hydrogel interaction free energy, which is of steric origin, and furthermore suggests that the hydrogel mesh-size distribution is rather broad and particle penetration is dominated by large hydrogel pores. Particle penetration into hydrogels for steric particle-hydrogel interactions is thus suggested to be governed by an elastic size-filtering mechanism that involves the tail of the hydrogel pore-size distribution.
Collapse
Affiliation(s)
| | - Anna Herrmann
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Albert Prause
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | | | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Stephan Block
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Roland R Netz
- Fachbereich Physik, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
10
|
Kumari M, Prasad S, Fruk L, Parshad B. Polyglycerol-based hydrogels and nanogels: from synthesis to applications. Future Med Chem 2021; 13:419-438. [PMID: 33403867 DOI: 10.4155/fmc-2020-0205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hydrogels and nanogels have emerged as promising materials for biomedical applications owing to their large surface area and tunable mechanical and chemical properties. Their large surface area is well suited for bioconjugation, whilst the interior porous network can be utilized for the transport of valuable biomolecules. The use of biocompatible hydrophilic building blocks/linkers for the preparation of hydrogels and nanogels not only avoids undesired side effects within the biological system, but also retains high water content, thereby creating an environment which is very similar to extracellular matrix. Their tunable multivalency and hydrophilicity and excellent biocompatibility, together with ease of functionalization, makes polyglycerol macromonomers well suited for synthesizing cross-linked networks that can be used as extracellular matrix mimics. Here we provide an overview of the synthesis of polyglycerol-based hydrogels and nanogels for various biomedical applications.
Collapse
Affiliation(s)
- Meena Kumari
- Department of Chemistry, Government College for Women, Badhra, Ch. Dadri, Haryana 127308, India
| | - Suchita Prasad
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ljiljana Fruk
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Badri Parshad
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| |
Collapse
|
11
|
Liao Y, He Q, Zhou F, Zhang J, Liang R, Yao X, Bunpetch V, Li J, Zhang S, Ouyang H. Current Intelligent Injectable Hydrogels for In Situ Articular Cartilage Regeneration. POLYM REV 2019. [DOI: 10.1080/15583724.2019.1683028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Youguo Liao
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiulin He
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Feifei Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingwei Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Renjie Liang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xudong Yao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajin Li
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Shufang Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Hongwei Ouyang
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Dendronized fluorosurfactant for highly stable water-in-fluorinated oil emulsions with minimal inter-droplet transfer of small molecules. Nat Commun 2019; 10:4546. [PMID: 31586046 PMCID: PMC6778136 DOI: 10.1038/s41467-019-12462-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 08/28/2019] [Indexed: 02/03/2023] Open
Abstract
Fluorosurfactant-stabilized microfluidic droplets are widely used as pico- to nanoliter volume reactors in chemistry and biology. However, current surfactants cannot completely prevent inter-droplet transfer of small organic molecules encapsulated or produced inside the droplets. In addition, the microdroplets typically coalesce at temperatures higher than 80 °C. Therefore, the use of droplet-based platforms for ultrahigh-throughput combination drug screening and polymerase chain reaction (PCR)-based rare mutation detection has been limited. Here, we provide insights into designing surfactants that form robust microdroplets with improved stability and resistance to inter-droplet transfer. We used a panel of dendritic oligo-glycerol-based surfactants to demonstrate that a high degree of inter- and intramolecular hydrogen bonding, as well as the dendritic architecture, contribute to high droplet stability in PCR thermal cycling and minimize inter-droplet transfer of the water-soluble fluorescent dye sodium fluorescein salt and the drug doxycycline. Microdroplets are used as chemical and biological reactors; however, stability and inter-droplet transfer are major issues. Here, the authors report on the development of dendritic glycerol-based surfactants for the creation of stable microdroplets and demonstrate application for PCR, minimal emulsion, and cell encapsulation.
Collapse
|
13
|
Herrmann A, Rödiger S, Schmidt C, Schierack P, Schedler U. Spatial Separation of Microbeads into Detection Levels by a Bioorthogonal Porous Hydrogel for Size-Selective Analysis and Increased Multiplexity. Anal Chem 2019; 91:8484-8491. [PMID: 31247713 DOI: 10.1021/acs.analchem.9b01586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multiplex detection techniques are emerging within the fields of life science research and medical diagnostics where it is mandatory to analyze a great number of molecules. The detection techniques need to be highly efficient but often involve complicated and expensive fabrication procedures. Here, we present the immobilization and geometric separation of fluorescence-labeled microbeads for a multiplex detection in k levels. A compound of differently sized target molecules (DNA, proteins) is channeled into the respective detection levels by making use of a hydrogel as a size selective filter. The immobilized microbeads (10-20 μm) are considerably larger than the pores of the hydrogel network and therefore stay fixed at the well bottom and in higher elevations, respectively. Small biomolecules can diffuse through the pores of the network, whereas medium-sized biomolecules pass slower and large molecules will be excluded. Besides filtering, this method discriminates the used microbeads into k levels and thereby introduces a geometric multiplexity. Additionally, the exclusion of large entities enables the simultaneous detection of two target molecules, which exhibit the same affinity interaction. The hydrogel is formed through the combination of two macromonomers. One component is a homobifunctional polyethylene glycol linker, carrying a strained alkyne (PEG-BCN) and the second component is the azide-functionalized dendritic polyglycerol (dPG-N3). They react via the bioorthogonal strain-promoted azide alkyne cycloaddition (SPAAC). The hydrogel creates a solution-like environment for the diffusion of the investigated biomolecules all the while providing a stable, bioinert, and surface bound network.
Collapse
Affiliation(s)
- Anna Herrmann
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| | - Stefan Rödiger
- Brandenburgische Technische Universität Cottbus-Senftenberg , Universitätsplatz 1 , 01968 Senftenberg , Germany
| | - Carsten Schmidt
- Brandenburgische Technische Universität Cottbus-Senftenberg , Universitätsplatz 1 , 01968 Senftenberg , Germany
| | - Peter Schierack
- Brandenburgische Technische Universität Cottbus-Senftenberg , Universitätsplatz 1 , 01968 Senftenberg , Germany
| | - Uwe Schedler
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany.,PolyAn GmbH , Rudolf-Baschant-Straße 2 , 13086 Berlin , Germany
| |
Collapse
|
14
|
Buwalda SJ, Bethry A, Hunger S, Kandoussi S, Coudane J, Nottelet B. Ultrafast in situ forming poly(ethylene glycol)-poly(amido amine) hydrogels with tunable drug release properties via controllable degradation rates. Eur J Pharm Biopharm 2019; 139:232-239. [PMID: 30954658 DOI: 10.1016/j.ejpb.2019.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 02/25/2019] [Accepted: 04/03/2019] [Indexed: 11/26/2022]
Abstract
Fast in situ forming, chemically crosslinked hydrogels were prepared by the amidation reaction between N-succinimidyl ester end groups of multi-armed poly(ethylene glycol) (PEG) and amino surface groups of poly(amido amine) (PAMAM) dendrimer generation 2.0. To control the properties of the PEG/PAMAM hydrogels, PEGs were used with different arm numbers (4 or 8) as well as different linkers (amide or ester) between the PEG arms and their terminal N-succinimidyl ester groups. Oscillatory rheology measurements showed that the hydrogels form within seconds after mixing the PEG and PAMAM precursor solutions. The storage moduli increased with crosslink density and reached values up to 2.3 kPa for hydrogels based on 4-armed PEG. Gravimetrical degradation experiments demonstrated that hydrogels with ester linkages between PEG and PAMAM degrade within 2 days, whereas amide-linked hydrogels were stable for several months. The release of two different model drugs (fluorescein isothiocyanate-dextran with molecular weights of 4·103 and 2·106 g/mol, FITC-DEX4K and FITC-DEX2000K, respectively) from amide-linked hydrogels was characterized by an initial burst followed by diffusion-controlled release, of which the rate depended on the size of the drug. In contrast, the release of FITC-DEX2000K from ester-containing hydrogels was governed mainly by degradation of the hydrogels and could be modulated via the ratio between ester and amide linkages. In vitro cytotoxicity experiments indicated that the PEG/PAMAM hydrogels are non-toxic to mouse fibroblasts. These in situ forming PEG/PAMAM hydrogels can be tuned with a broad range of mechanical, degradation and release properties and therefore hold promise as a platform for the delivery of therapeutic agents.
Collapse
Affiliation(s)
- Sytze J Buwalda
- IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France.
| | - Audrey Bethry
- IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France
| | - Sylvie Hunger
- IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France
| | - Sofian Kandoussi
- IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France
| | - Jean Coudane
- IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France
| | - Benjamin Nottelet
- IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France
| |
Collapse
|
15
|
Muñoz-González PU, Rivera-Debernardi O, Mendoza-Novelo B, Claudio-Rizo JA, Mata-Mata JL, Delgadillo-Holtfort I, Carriles R, Flores-Moreno M, González-García G, Cauich-Rodríguez JV, Delgado J, Castellano LE. Design of Silica-Oligourethane-Collagen Membranes for Inflammatory Response Modulation: Characterization and Polarization of a Macrophage Cell Line. Macromol Biosci 2018; 18:e1800099. [DOI: 10.1002/mabi.201800099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/09/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Pedro U. Muñoz-González
- División de Ciencias e Ingenierías; Universidad de Guanajuato; Loma del bosque # 103 C.P. 37150 León GTO Mexico
| | - Olivia Rivera-Debernardi
- División de Ciencias e Ingenierías; Universidad de Guanajuato; Loma del bosque # 103 C.P. 37150 León GTO Mexico
| | - Birzabith Mendoza-Novelo
- División de Ciencias e Ingenierías; Universidad de Guanajuato; Loma del bosque # 103 C.P. 37150 León GTO Mexico
| | - Jesús A. Claudio-Rizo
- División de Ciencias e Ingenierías; Universidad de Guanajuato; Loma del bosque # 103 C.P. 37150 León GTO Mexico
| | - José L. Mata-Mata
- División de Ciencias Naturales y Exactas; Universidad de Guanajuato Noria Alta s/n; C.P. 36050 Guanajuato GTO Mexico
| | - Isabel Delgadillo-Holtfort
- División de Ciencias e Ingenierías; Universidad de Guanajuato; Loma del bosque # 103 C.P. 37150 León GTO Mexico
| | - Ramón Carriles
- Centro de Investigaciones en Óptica; A. C., Loma del bosque # 115 C.P. 37150 León GTO Mexico
| | - Mauricio Flores-Moreno
- Centro de Investigaciones en Óptica; A. C., Loma del bosque # 115 C.P. 37150 León GTO Mexico
| | - Gerardo González-García
- División de Ciencias Naturales y Exactas; Universidad de Guanajuato Noria Alta s/n; C.P. 36050 Guanajuato GTO Mexico
| | - Juan V. Cauich-Rodríguez
- Centro de Investigación Científica de Yucatán; A. C., Calle 43 No. 130 C. P. 97205 Mérida YUC Mexico
| | - Jorge Delgado
- División de Ciencias e Ingenierías; Universidad de Guanajuato; Loma del bosque # 103 C.P. 37150 León GTO Mexico
| | - Laura E. Castellano
- División de Ciencias e Ingenierías; Universidad de Guanajuato; Loma del bosque # 103 C.P. 37150 León GTO Mexico
| |
Collapse
|
16
|
Rades N, Licha K, Haag R. Dendritic Polyglycerol Sulfate for Therapy and Diagnostics. Polymers (Basel) 2018; 10:E595. [PMID: 30966629 PMCID: PMC6403730 DOI: 10.3390/polym10060595] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/22/2018] [Accepted: 05/26/2018] [Indexed: 12/15/2022] Open
Abstract
Dendritic polyglycerol sulfate (dPGS) has originally been investigated as an anticoagulant to potentially substitute for the natural glycosaminoglycan heparin. Compared to unfractionated heparin, dPGS possesses lower anticoagulant activity but a much higher anticomplementary effect. Since coagulation, complement activation, and inflammation are often present in the pathophysiology of numerous diseases, dPGS polymers with both anticoagulant and anticomplementary activities represent promising candidates for the development of polymeric drugs of nanosized architecture. In this review, we describe the nanomedical applications of dPGS based on its anti-inflammatory activity. Furthermore, the application of dPGS as a carrier molecule for diagnostic molecules and therapeutic drugs is reviewed, based on the ability to target tumors and localize in tumor cells. Finally, the application of dPGS for inhibition of virus infections is described.
Collapse
Affiliation(s)
- Nadine Rades
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| | - Kai Licha
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| | - Rainer Haag
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| |
Collapse
|
17
|
Xu Z, Bratlie KM. Click Chemistry and Material Selection for in Situ Fabrication of Hydrogels in Tissue Engineering Applications. ACS Biomater Sci Eng 2018; 4:2276-2291. [DOI: 10.1021/acsbiomaterials.8b00230] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zihao Xu
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Kaitlin M. Bratlie
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Division of Materials Science & Engineering, Ames National Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
18
|
Hemmati-Sadeghi S, Dey P, Ringe J, Haag R, Sittinger M, Dehne T. Biomimetic sulfated polyethylene glycol hydrogel inhibits proteoglycan loss and tumor necrosis factor-α-induced expression pattern in an osteoarthritisin vitromodel. J Biomed Mater Res B Appl Biomater 2018; 107:490-500. [DOI: 10.1002/jbm.b.34139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/02/2018] [Accepted: 03/23/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Shabnam Hemmati-Sadeghi
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg School for Regenerative Therapies; Berlin Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin; Berlin Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Tissue Engineering Laboratory, Berlin-Brandenburg Center for Regenerative Therapies & Department of Rheumatology and Clinical Immunology; Berlin Germany
| | - Pradip Dey
- Institut für Chemie und Biochemie, Freie Universität Berlin; Berlin Germany
- Polymer Science Unit, Indian Association for the Cultivation of Science; Kolkata India
| | - Jochen Ringe
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Tissue Engineering Laboratory, Berlin-Brandenburg Center for Regenerative Therapies & Department of Rheumatology and Clinical Immunology; Berlin Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin; Berlin Germany
| | - Michael Sittinger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Tissue Engineering Laboratory, Berlin-Brandenburg Center for Regenerative Therapies & Department of Rheumatology and Clinical Immunology; Berlin Germany
| | - Tilo Dehne
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Tissue Engineering Laboratory, Berlin-Brandenburg Center for Regenerative Therapies & Department of Rheumatology and Clinical Immunology; Berlin Germany
| |
Collapse
|
19
|
Injectable hydrogels for treatment of osteoarthritis – A rheological study. Colloids Surf B Biointerfaces 2017; 159:477-483. [DOI: 10.1016/j.colsurfb.2017.07.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 07/17/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022]
|
20
|
Wu RX, Yin Y, He XT, Li X, Chen FM. Engineering a Cell Home for Stem Cell Homing and Accommodation. ACTA ACUST UNITED AC 2017; 1:e1700004. [PMID: 32646164 DOI: 10.1002/adbi.201700004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/27/2017] [Indexed: 12/14/2022]
Abstract
Distilling complexity to advance regenerative medicine from laboratory animals to humans, in situ regeneration will continue to evolve using biomaterial strategies to drive endogenous cells within the human body for therapeutic purposes; this approach avoids the need for delivering ex vivo-expanded cellular materials. Ensuring the recruitment of a significant number of reparative cells from an endogenous source to the site of interest is the first step toward achieving success. Subsequently, making the "cell home" cell-friendly by recapitulating the natural extracellular matrix (ECM) in terms of its chemistry, structure, dynamics, and function, and targeting specific aspects of the native stem cell niche (e.g., cell-ECM and cell-cell interactions) to program and steer the fates of those recruited stem cells play equally crucial roles in yielding a therapeutically regenerative solution. This review addresses the key aspects of material-guided cell homing and the engineering of novel biomaterials with desirable ECM composition, surface topography, biochemistry, and mechanical properties that can present both biochemical and physical cues required for in situ tissue regeneration. This growing body of knowledge will likely become a design basis for the development of regenerative biomaterials for, but not limited to, future in situ tissue engineering and regeneration.
Collapse
Affiliation(s)
- Rui-Xin Wu
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Xiao-Tao He
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Xuan Li
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| |
Collapse
|
21
|
Fan C, Wang DA. Macroporous Hydrogel Scaffolds for Three-Dimensional Cell Culture and Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:451-461. [PMID: 28067115 DOI: 10.1089/ten.teb.2016.0465] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Hydrogels have been promising candidate scaffolds for cell delivery and tissue engineering due to their tissue-like physical properties and capability for homogeneous cell loading. However, the encapsulated cells are generally entrapped and constrained in the submicron- or nanosized gel networks, seriously limiting cell growth and tissue formation. Meanwhile, the spatially confined settlement inhibits attachment and spreading of anchorage-dependent cells, leading to their apoptosis. In recent years, macroporous hydrogels have attracted increasing attention in use as cell delivery vehicles and tissue engineering scaffolds. The introduction of macropores within gel scaffolds not only improves their permeability for better nutrient transport but also creates space/interface for cell adhesion, proliferation, and extracellular matrix deposition. Herein, we will first review the development of macroporous gel scaffolds and outline the impact of macropores on cell behaviors. In the first part, the advantages and challenges of hydrogels as three-dimensional (3D) cell culture scaffolds will be described. In the second part, the fabrication of various macroporous hydrogels will be presented. Third, the enhancement of cell activities within macroporous gel scaffolds will be discussed. Finally, several crucial factors that are envisaged to propel the improvement of macroporous gel scaffolds are proposed for 3D cell culture and tissue engineering.
Collapse
Affiliation(s)
- Changjiang Fan
- 1 Institute for Translational Medicine, College of Medicine, Qingdao University , Qingdao, People's Republic of China
| | - Dong-An Wang
- 2 School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore, Singapore
| |
Collapse
|
22
|
Cheng C, Li S, Thomas A, Kotov NA, Haag R. Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chem Rev 2017; 117:1826-1914. [PMID: 28075573 DOI: 10.1021/acs.chemrev.6b00520] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Functional graphene nanomaterials (FGNs) are fast emerging materials with extremely unique physical and chemical properties and physiological ability to interfere and/or interact with bioorganisms; as a result, FGNs present manifold possibilities for diverse biological applications. Beyond their use in drug/gene delivery, phototherapy, and bioimaging, recent studies have revealed that FGNs can significantly promote interfacial biointeractions, in particular, with proteins, mammalian cells/stem cells, and microbials. FGNs can adsorb and concentrate nutrition factors including proteins from physiological media. This accelerates the formation of extracellular matrix, which eventually promotes cell colonization by providing a more beneficial microenvironment for cell adhesion and growth. Furthermore, FGNs can also interact with cocultured cells by physical or chemical stimulation, which significantly mediate their cellular signaling and biological performance. In this review, we elucidate FGNs-bioorganism interactions and summarize recent advancements on designing FGN-based two-dimensional and three-dimensional architectures as multifunctional biological platforms. We have also discussed the representative biological applications regarding these FGN-based bioactive architectures. Furthermore, the future perspectives and emerging challenges will also be highlighted. Due to the lack of comprehensive reviews in this emerging field, this review may catch great interest and inspire many new opportunities across a broad range of disciplines.
Collapse
Affiliation(s)
- Chong Cheng
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Shuang Li
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Arne Thomas
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|