1
|
Molecularly-Imprinted SERS: A Potential Method for Bioanalysis. Sci Pharm 2022. [DOI: 10.3390/scipharm90030054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The most challenging step in developing bioanalytical methods is finding the best sample preparation method. The matrix interference effect of biological sample become a reason of that. Molecularly imprinted SERS become a potential analytical method to be developed to answer this challenge. In this article, we review recent progress in MIP SERS application particularly in bioanalysis. Begin with the explanation about molecular imprinting technique and component, SERS principle, the combination of MIP SERS, and follow by various application of MIP SERS for analysis. Finally, the conclusion and future perspective were also discussed.
Collapse
|
2
|
García Y, Vera M, Giraldo JD, Garrido-Miranda K, Jiménez VA, Urbano BF, Pereira ED. Microcystins Detection Methods: A Focus on Recent Advances Using Molecularly Imprinted Polymers. Anal Chem 2021; 94:464-478. [PMID: 34874146 DOI: 10.1021/acs.analchem.1c04090] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yadiris García
- Departamento de Química Analítica e Inorgánica Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Myleidi Vera
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Juan D Giraldo
- Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Los Pinos s/n Balneario Pelluco, 5480000 Puerto Montt, Chile
| | - Karla Garrido-Miranda
- Center of Waste Management and Bioenergy, Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de La Frontera, P.O. Box 54-D, 4811230 Temuco, Chile
| | - Verónica A Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Autopista Concepción-Talcahuano, 4260000 Talcahuano, Chile
| | - Bruno F Urbano
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Eduardo D Pereira
- Departamento de Química Analítica e Inorgánica Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| |
Collapse
|
3
|
Teixeira SPB, Reis RL, Peppas NA, Gomes ME, Domingues RMA. Epitope-imprinted polymers: Design principles of synthetic binding partners for natural biomacromolecules. SCIENCE ADVANCES 2021; 7:eabi9884. [PMID: 34714673 PMCID: PMC8555893 DOI: 10.1126/sciadv.abi9884] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/07/2021] [Indexed: 05/27/2023]
Abstract
Molecular imprinting (MI) has been explored as an increasingly viable tool for molecular recognition in various fields. However, imprinting of biologically relevant molecules like proteins is severely hampered by several problems. Inspired by natural antibodies, the use of epitopes as imprinting templates has been explored to circumvent those limitations, offering lower costs and greater versatility. Here, we review the latest innovations in this technology, as well as different applications where MI polymers (MIPs) have been used to target biomolecules of interest. We discuss the several steps in MI, from the choice of epitope and functional monomers to the different production methods and possible applications. We also critically explore how MIP performance can be assessed by various parameters. Last, we present perspectives on future breakthroughs and advances, offering insights into how MI techniques can be expanded to new fields such as tissue engineering.
Collapse
Affiliation(s)
- Simão P. B. Teixeira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nicholas A. Peppas
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712-1801, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, University of Texas at Austin, Austin, TX 78712-1801, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712-1801, USA
- Department of Pediatrics, Dell Medical School, University of Texas at Austin, Austin, TX 78712-1801, USA
- Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, Austin, TX 78712-1801, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, Austin, TX 78712-1801, USA
| | - Manuela E. Gomes
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui M. A. Domingues
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
4
|
Paredes-Ramos M, Sabín-López A, Peña-García J, Pérez-Sánchez H, López-Vilariño JM, Sastre de Vicente ME. Computational aided acetaminophen - phthalic acid molecularly imprinted polymer design for analytical determination of known and new developed recreational drugs. J Mol Graph Model 2020; 100:107627. [PMID: 32674027 DOI: 10.1016/j.jmgm.2020.107627] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 12/22/2022]
Abstract
In recent times, abuse drug consumption rates have been increasing. In addition, authorities have detected a trend in the development of new substances expressly created to avoid legislation. These novel psychoactive substances (NPS) are non-registered formulations, closely chemically related to outlawed ones to maintain the same psychotropic effects while circumventing legal restrictions. This issue arises enormous social, sanitary, and road safety problems since there is no way to detect nor quantify these non-registered substances. The aim of this work is the development of a high selective material able to pre-concentrate and detect NPS. On that account, molecularly imprinted polymers (MIPs) designed with an imprinted cavity that matches the cathinones structural shape were proposed to detect both conventional and new cathinone derived recreational drugs. The increasing number of illicit drug modifications that is being reported requires developing a receptor valid for not only known molecules but also for incoming ones; thus, a virtual procedure must be carried out to take a step forward towards future modifications. Accordingly, a computational MIP design is proposed as the most appropriated method to effectively design this receptor. By means of molecular dynamics and molecular docking, several combinations are studied regarding their pre-polymerization complex stability but also their rebinding capacity against the proposed analytes. Hence, a phthalic acid - acetaminophen MIP is selected as the most well-suited receptor, valid for current and forthcoming cathinone recreational drugs.
Collapse
Affiliation(s)
- M Paredes-Ramos
- Laboratory of Chemistry, Technological Research Center (CIT), Universidade da Coruña (UDC), Campus de Esteiro s/n, 15403, Ferrol - A Coruña, Spain; METMED Research Group, Physical Chemistry Department, Universidade da Coruña (UDC), Campus da Zapateira s/n, 15071, A Coruña, Spain.
| | - A Sabín-López
- Laboratory of Chemistry, Technological Research Center (CIT), Universidade da Coruña (UDC), Campus de Esteiro s/n, 15403, Ferrol - A Coruña, Spain; METMED Research Group, Physical Chemistry Department, Universidade da Coruña (UDC), Campus da Zapateira s/n, 15071, A Coruña, Spain
| | - J Peña-García
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica San Antonio de Murcia (UCAM), Campus de Los Jerónimos s/n, 30107, Murcia, Spain
| | - H Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica San Antonio de Murcia (UCAM), Campus de Los Jerónimos s/n, 30107, Murcia, Spain
| | - J M López-Vilariño
- Laboratory of Chemistry, Technological Research Center (CIT), Universidade da Coruña (UDC), Campus de Esteiro s/n, 15403, Ferrol - A Coruña, Spain; Hijos de Rivera S.A.U., C/ José María Rivera Corral n°6, 15008, A Coruña, Spain
| | - M E Sastre de Vicente
- METMED Research Group, Physical Chemistry Department, Universidade da Coruña (UDC), Campus da Zapateira s/n, 15071, A Coruña, Spain
| |
Collapse
|
5
|
Moro G, Barich H, Driesen K, Felipe Montiel N, Neven L, Domingues Mendonça C, Thiruvottriyur Shanmugam S, Daems E, De Wael K. Unlocking the full power of electrochemical fingerprinting for on-site sensing applications. Anal Bioanal Chem 2020; 412:5955-5968. [DOI: 10.1007/s00216-020-02584-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
|
6
|
Bottari F, Moro G, Sleegers N, Florea A, Cowen T, Piletsky S, Nuijs ALN, De Wael K. Electropolymerized o‐Phenylenediamine on Graphite Promoting the Electrochemical Detection of Nafcillin. ELECTROANAL 2019. [DOI: 10.1002/elan.201900397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fabio Bottari
- AXES research group, Department of ChemistryUniversity of Antwerp Groenenborgerlaan 171-2020 Antwerp Belgium
| | - Giulia Moro
- AXES research group, Department of ChemistryUniversity of Antwerp Groenenborgerlaan 171-2020 Antwerp Belgium
- LSE Research group, Department of Molecular Science and NanosystemsCa' Foscari University of Venice Via Torino 155 30172 Mestre Italy
| | - Nick Sleegers
- AXES research group, Department of ChemistryUniversity of Antwerp Groenenborgerlaan 171-2020 Antwerp Belgium
| | - Anca Florea
- AXES research group, Department of ChemistryUniversity of Antwerp Groenenborgerlaan 171-2020 Antwerp Belgium
| | - Todd Cowen
- Department of ChemistryUniversity of Leicester LE1 7RH Leicester UK
| | - Sergey Piletsky
- Department of ChemistryUniversity of Leicester LE1 7RH Leicester UK
| | - Alexander L. N. Nuijs
- Department of Pharmaceutical SciencesToxicological Centre Universiteitsplein 1 Antwerp 2610 Belgium
| | - Karolien De Wael
- AXES research group, Department of ChemistryUniversity of Antwerp Groenenborgerlaan 171-2020 Antwerp Belgium
| |
Collapse
|
7
|
Florea A, Cowen T, Piletsky S, De Wael K. Electrochemical sensing of cocaine in real samples based on electrodeposited biomimetic affinity ligands. Analyst 2019; 144:4639-4646. [PMID: 31250860 DOI: 10.1039/c9an00618d] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A selective electrochemical sensor for direct detection of cocaine was developed based on molecularly imprinted polymers electropolymerized onto graphene-modified electrodes. Palladium nanoparticles were integrated in the sensing layer for the benefit of enhancing the communication between the imprinted sites and the electrode and improving their homogeneous distribution. The molecularly imprinted polymer was synthesized by cyclic voltammetry using p-aminobenzoic acid as a high affinity monomer selected by computational modeling, and cocaine as a template molecule. Experimental parameters related to the electrochemical deposition of palladium nanoparticles, pH, composition of the electropolymerization mixture, extraction and rebinding conditions were studied and optimized. Under optimized conditions, the oxidation peak current varied linearly with cocaine concentration in the range of 100-500 μM, with a detection limit of 50 μM (RSD 0.71%, n = 3). The molecularly imprinted sensor was able to detect cocaine in saliva and river water with good recoveries after sample pretreatment and was successfully applied for screening real street samples for cocaine.
Collapse
Affiliation(s)
- Anca Florea
- University of Antwerp, Department of Chemistry, Groenenborgerlaan 171, B-2020, Belgium.
| | - Todd Cowen
- University of Leicester, Department of Chemistry, LE1 7RH, UK
| | - Sergey Piletsky
- University of Leicester, Department of Chemistry, LE1 7RH, UK
| | - Karolien De Wael
- University of Antwerp, Department of Chemistry, Groenenborgerlaan 171, B-2020, Belgium.
| |
Collapse
|
8
|
Busato M, Distefano R, Bates F, Karim K, Bossi AM, López Vilariño JM, Piletsky S, Bombieri N, Giorgetti A. MIRATE: MIps RATional dEsign Science Gateway. J Integr Bioinform 2018; 15:/j/jib.ahead-of-print/jib-2017-0075/jib-2017-0075.xml. [PMID: 29897885 PMCID: PMC6348745 DOI: 10.1515/jib-2017-0075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 04/09/2018] [Indexed: 11/15/2022] Open
Abstract
Molecularly imprinted polymers (MIPs) are high affinity robust synthetic receptors, which can be optimally synthesized and manufactured more economically than their biological equivalents (i.e. antibody). In MIPs production, rational design based on molecular modeling is a commonly employed technique. This mostly aids in (i) virtual screening of functional monomers (FMs), (ii) optimization of monomer-template ratio, and (iii) selectivity analysis. We present MIRATE, an integrated science gateway for the intelligent design of MIPs. By combining and adapting multiple state-of-the-art bioinformatics tools into automated and innovative pipelines, MIRATE guides the user through the entire process of MIPs' design. The platform allows the user to fully customize each stage involved in the MIPs' design, with the main goal to support the synthesis in the wet-laboratory. Availability: MIRATE is freely accessible with no login requirement at http://mirate.di.univr.it/. All major browsers are supported.
Collapse
Affiliation(s)
- Mirko Busato
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
- Mirko Busato and Rosario Distefano contributed equally to this work
| | - Rosario Distefano
- Department Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
- Mirko Busato and Rosario Distefano contributed equally to this work
| | - Ferdia Bates
- Institute of Technological Investigations, University of Coruña (UDC), Campus Esteiro, Ferrol 15402, Spain
| | - Kal Karim
- Leicester Biotechnology Group, Department of Chemistry, University of Leicester, LE1 7RH, Leicester, UK
| | - Alessandra Maria Bossi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - José Manuel López Vilariño
- Institute of Technological Investigations, University of Coruña (UDC), Campus Esteiro, Ferrol 15402, Spain
| | - Sergey Piletsky
- Leicester Biotechnology Group, Department of Chemistry, University of Leicester, LE1 7RH, Leicester, UK
| | - Nicola Bombieri
- Department Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Alejandro Giorgetti
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
9
|
Terracina JJ, Sharfstein ST, Bergkvist M. In silico
characterization of enantioselective molecularly imprinted binding sites. J Mol Recognit 2017; 31. [DOI: 10.1002/jmr.2612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/19/2016] [Accepted: 01/03/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Jacob J. Terracina
- SUNY Polytechnic Institute Colleges of Nanoscale Science and Engineering; Albany NY USA
| | - Susan T. Sharfstein
- SUNY Polytechnic Institute Colleges of Nanoscale Science and Engineering; Albany NY USA
| | - Magnus Bergkvist
- SUNY Polytechnic Institute Colleges of Nanoscale Science and Engineering; Albany NY USA
| |
Collapse
|