1
|
Tanaka T, Sano K, Kawakami R, Tanaka S, Munekane M, Yamasaki T, Mukai T. Electrostatically self-assembled gold nanorods with sulfated hyaluronic acid for targeted photothermal therapy for CD44-positive tumors. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 62:102781. [PMID: 39163902 DOI: 10.1016/j.nano.2024.102781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/27/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024]
Abstract
Gold nanorods (GNR) produce heat upon irradiation with near-infrared light, enabling a tumor-targeted photothermal therapy. In this study, we prepared GNR coated with sulfated hyaluronic acid (sHA) with a binding affinity for CD44 via electrostatic interactions to deliver GNR to tumors efficiently and stably, and evaluated their usefulness for photothermal therapy. Cationic GNR modified with trimethylammonium groups electrostatically interacted with native HA or sHA with varying degrees of sulfation to form complexes. While GNR/HA was unstable in saline, GNR/sHA maintained the absorbance peak in the near-infrared region, particularly for GNR/sHA with higher degrees of sulfation. GNR/sHA exhibited an intense photothermal effect upon irradiation with near-infrared light. Furthermore, in vitro and in vivo studies revealed that GNR coated with sHA containing approximately 1.2 sulfated groups per HA unit could accumulate in CD44-positive tumors via an HA-specific pathway. These findings indicate the effectiveness of GNR/sHA as a tumor-targeted photothermal therapeutic agent.
Collapse
Affiliation(s)
- Toshie Tanaka
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Kohei Sano
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Rin Kawakami
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Shiho Tanaka
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Masayuki Munekane
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Toshihide Yamasaki
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Takahiro Mukai
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe, Japan.
| |
Collapse
|
2
|
Zhang D, Li Z, Yang L, Ma H, Chen H, Zeng X. Architecturally designed sequential-release hydrogels. Biomaterials 2023; 303:122388. [PMID: 37980822 DOI: 10.1016/j.biomaterials.2023.122388] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/23/2023] [Accepted: 11/04/2023] [Indexed: 11/21/2023]
Abstract
Drug synergy has made significant strides in clinical applications in recent decades. However, achieving a platform that enables "single administration, multi-stage release" by emulating the natural physiological processes of the human body poses a formidable challenge in the field of molecular pharmaceutics. Hydrogels, as the novel generation of drug delivery systems, have gained widespread utilization in drug platforms owing to their exceptional biocompatibility and modifiability. Sequential drug delivery hydrogels (SDDHs), which amalgamate the advantages of hydrogel and sequential release platforms, offer a promising solution for effectively navigating the intricate human environment and accomplishing drug sequential release. Inspired by architectural design, this review establishes connections between three pivotal factors in SDDHs construction, namely mechanisms, carrier spatial structure, and stimuli-responsiveness, and three aspects of architectural design, specifically building materials, house structures, and intelligent interactive furniture, aiming at providing insights into recent developments in SDDHs. Furthermore, the dual-drug collocation and cutting-edge hydrogel preparation technologies as well as the prevailing challenges in the field were elucidated.
Collapse
Affiliation(s)
- Dan Zhang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zimu Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Li Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Hualin Ma
- Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China.
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
3
|
Fan Y, Liu Y, Wu Y, Dai F, Yuan M, Wang F, Bai Y, Deng H. Natural polysaccharides based self-assembled nanoparticles for biomedical applications - A review. Int J Biol Macromol 2021; 192:1240-1255. [PMID: 34678381 DOI: 10.1016/j.ijbiomac.2021.10.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022]
Abstract
In recent years, nanoparticles (NPs) derived from the self-assembly of natural polysaccharides have shown great potential in the biomedical field. Here, we described several self-assembly modes of natural polysaccharides in detail, summarized the natural polysaccharides mostly used for self-assembly, and provided insights into the current applications and achievements of these self-assembled NPs. As one of the most widespread substances in nature, most natural polysaccharides exhibit advantages of biodegradability, low immunogenicity, low toxicity, and degradable properties. Therefore, they have been fully explored, and the application of chitosan, hyaluronic acid, alginate, starch, and their derivatives has been extensively studied, especially in the fields of biomedical. Polysaccharides based NPs were proved to improve the solubility of insoluble drugs, enhance tissue target ability and realize the controlled and sustained release of drugs. When modified by hydrophobic groups, the amphiphilic polysaccharides can self-assemble into NPs. Other driven forces of self-assembly include electrostatic interaction and hydrogen bonds. Up to the present, polysaccharides-based nanoparticles have been widely applied for tumor treatment, antibacterial application, gene therapy, photodynamic therapy and transporting insulin.
Collapse
Affiliation(s)
- Yaqi Fan
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Yeqiang Liu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Yang Wu
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Mengqin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Feiyan Wang
- Shanghai Skin Disease Clinical College of Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, China
| | - Yun Bai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| | - Hongbing Deng
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
4
|
Claus C, Fritz R, Schilling E, Reibetanz U. The Metabolic Response of Various Cell Lines to Microtubule-Driven Uptake of Lipid- and Polymer-Coated Layer-by-Layer Microcarriers. Pharmaceutics 2021; 13:1441. [PMID: 34575517 PMCID: PMC8465159 DOI: 10.3390/pharmaceutics13091441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/27/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Lipid structures, such as liposomes or micelles, are of high interest as an approach to support the transport and delivery of active agents as a drug delivery system. However, there are many open questions regarding their uptake and impact on cellular metabolism. In this study, lipid structures were assembled as a supported lipid bilayer on top of biopolymer-coated microcarriers based on the Layer-by-Layer assembly strategy. The functionalized microcarriers were then applied to various human and animal cell lines in addition to primary human macrophages (MΦ). Here, their influence on cellular metabolism and their intracellular localization were detected by extracellular flux analysis and immunofluorescence analysis, respectively. The impact of microcarriers on metabolic parameters was in most cell types rather low. However, lipid bilayer-supported microcarriers induced a decrease in oxygen consumption rate (OCR, indicative for mitochondrial respiration) and extracellular acidification rate (ECAR, indicative for glycolysis) in Vero cells. Additionally, in Vero cells lipid bilayer microcarriers showed a more pronounced association with microtubule filaments than polymer-coated microcarrier. Furthermore, they localized to a perinuclear region and induced nuclei with some deformations at a higher rate than unfunctionalized carriers. This association was reduced through the application of the microtubule polymerization inhibitor nocodazole. Thus, the effect of respective lipid structures as a drug delivery system on cells has to be considered in the context of the respective target cell, but in general can be regarded as rather low.
Collapse
Affiliation(s)
- Claudia Claus
- Institute of Medical Microbiology and Virology, Faculty of Medicine, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Robert Fritz
- Institute for Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany;
| | - Erik Schilling
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany;
| | - Uta Reibetanz
- Institute for Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany;
| |
Collapse
|
5
|
Yao X, Neusaenger AL, Yu L. Amorphous Drug-Polymer Salts. Pharmaceutics 2021; 13:pharmaceutics13081271. [PMID: 34452231 PMCID: PMC8401805 DOI: 10.3390/pharmaceutics13081271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
Amorphous formulations provide a general approach to improving the solubility and bioavailability of drugs. Amorphous medicines for global health should resist crystallization under the stressful tropical conditions (high temperature and humidity) and often require high drug loading. We discuss the recent progress in employing drug–polymer salts to meet these goals. Through local salt formation, an ultra-thin polyelectrolyte coating can form on the surface of amorphous drugs, immobilizing interfacial molecules and inhibiting fast crystal growth at the surface. The coated particles show improved wetting and dissolution. By forming an amorphous drug–polymer salt throughout the bulk, stability can be vastly enhanced against crystallization under tropical conditions without sacrificing the dissolution rate. Examples of these approaches are given, along with suggestions for future work.
Collapse
|
6
|
Aguilera-Garrido A, del Castillo-Santaella T, Yang Y, Galisteo-González F, Gálvez-Ruiz MJ, Molina-Bolívar JA, Holgado-Terriza JA, Cabrerizo-Vílchez MÁ, Maldonado-Valderrama J. Applications of serum albumins in delivery systems: Differences in interfacial behaviour and interacting abilities with polysaccharides. Adv Colloid Interface Sci 2021; 290:102365. [PMID: 33667972 DOI: 10.1016/j.cis.2021.102365] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022]
Abstract
One of the major applications of Serum Albumins is their use as delivery systems for lipophilic compounds in biomedicine. Their biomedical application is based on the similarity with Human Serum Albumin (HSA), as a fully biocompatible protein. In general, Bovine Serum Albumin (BSA) is treated as comparable to its human homologue and used as a model protein for fundamental studies since it is available in high amounts and well understood. This protein can act as a carrier for lipophilic compounds or as protective shell in an emulsion-based vehicle. Polysaccharides are generally included in these formulations in order to increase the stability and/or applicability of the carrier. In this review, the main biomedical applications of Albumins as drug delivery systems are first presented. Secondly, the differences between BSA and HSA are highlighted, exploring the similarities and differences between these proteins and their interaction with polysaccharides, both in solution and adsorbed at interfaces. Finally, the use of Albumins as emulsifiers for emulsion-based delivery systems, concretely as Liquid Lipid Nanocapsules (LLNs), is revised and discussed in terms of the differences encountered in the molecular structure and in the interfacial properties. The specific case of Hyaluronic Acid is considered as a promising additive with important applications in biomedicine. The literature works are thoroughly discussed highlighting similarities and differences between BSA and HSA and their interaction with polysaccharides encountered at different structural levels, hence providing routes to control the optimal design of delivery systems.
Collapse
|
7
|
Sudareva NN, Elokhovskii VY, Saprykina NN. The Polymers Forming the Covers of Calcium Carbonate Cores. Influence of Their Rheological Characteristics on the Structure and Function of Oral Delivery Systems. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s1070427220060130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Zhang H, Zhou T, Shen J, Zhang P, Chen X, Chen Y, Yu Y. A Biocompatible Multilayer Film from an Asymmetric Picolinium-Containing Polycation with Fast Visible-Light/NIR-Degradability. Macromol Rapid Commun 2019; 40:e1900441. [PMID: 31553508 DOI: 10.1002/marc.201900441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/12/2019] [Indexed: 11/10/2022]
Abstract
Finely tuning the photodegradation behavior of the layer-by-layer (LbL) film from the view of controlling the chemical structure of the film-building polymer is still a challenge in related fields. To meet this requirement, a photodegradable polymer (P1) is rationally designed for assembling a visible-light-degradable multilayer film with polystyrene sulfonate (PSS). Compared with similar photopolymers (P2 and P3), this asymmetric picolinium-containing polymer can significantly enhance the degradation rate of as-prepared LbL films; under the same degradation condition, the degradation rate of (P1/PSS)10 is 3 and 6.6 times that of (P2/PSS)10 and (P3/PSS)10, respectively. Moreover, near-infrared light (NIR) is available for triggering the degradation of this film with the assistance of upconversion nanoparticles of YbTm@Lu. The cell cytotoxicity and cell proliferation experiments reveal that P1 is nontoxic and favorable for cell proliferation at concentrations of up to 500 μg mL-1 . As for (PSS/P1)10 films, the ratio of cell number of these two samples ((PSS/P1)10 modified: photodegraded) increases dramatically and reaches about 1.67:1 after 72 h incubation. On the basis of these results, it is anticipated that P1 and this LbL film is an exceptional candidate for visible-light/NIR degradable materials in materials and biological science, medicine, and optics.
Collapse
Affiliation(s)
- Hanzhi Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Tongtong Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Jiwei Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Ping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Xin Chen
- School of Chemical Engineering and Technology, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an, 710049, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, China
| | - You Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| |
Collapse
|
9
|
Dendrimer-grafted bioreducible polycation/DNA multilayered films with low cytotoxicity and high transfection ability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:737-745. [PMID: 30813078 DOI: 10.1016/j.msec.2018.12.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 11/27/2018] [Accepted: 12/27/2018] [Indexed: 11/21/2022]
Abstract
Controlled release of incorporated foreign DNA from multilayered films plays an important role in surface-mediated gene delivery. Herein, multilayered polyelectrolyte complex thin films, composed of dendrimer-grafted bio-reducible cationic poly(disulfide amine) and plasmid DNA, were fabricated via layer-by-layer (LBL) assembly for in vitro localized gene delivery. The UV absorbance and thickness of the LBL films were found to have linear correlation with the numbers of poly(disulfide amine)/DNA bilayers. Although LBL films were stable in PBS buffer, their degradation could be triggered by reducing agents (i.e. glutathione, GSH). The degradation rate of the films is directly proportional to the GSH concentration, which in turn affected the corresponding gene expression. All poly(disulfide amine)/DNA films exhibited lower cytotoxicity and higher transfection activity in comparison with PEI/DNA multilayered films. Moreover, LBL films showed the highest transfection efficiency in the presence of 2.5 mM GSH when cultured with 293T cells, with ~36% GFP-positive 293T cells after 5-days of co-culture. These DNA-containing reducible films could potentially be useful in gene therapy and tissue engineering by controlling the release of incorporated DNA.
Collapse
|
10
|
Urbaniak T, Machová D, Janoušková O, Musiał W. Microparticles of Lamivudine-Poly-ε-Caprolactone Conjugate for Drug Delivery via Internalization by Macrophages. Molecules 2019; 24:E723. [PMID: 30781578 PMCID: PMC6413034 DOI: 10.3390/molecules24040723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 11/16/2022] Open
Abstract
The past decade may be considered as revolutionary in the research field focused on the physiological function of macrophages. Unknown subtypes of these cells involved in pathological mechanisms were described recently, and they are considered as potential drug delivery targets. The innate ability to internalize foreign bodies exhibited by macrophages can be employed as a therapeutic strategy. The efficiency of this uptake depends on the size, shape and surface physiochemical properties of the phagocyted objects. Here, we propose a method of preparation and preliminary evaluation of drug-polymer conjugate-based microspheres for macrophage targeted drug delivery. The aim of the study was to identify crucial uptake-enhancing parameters for solid, surface modified particles. A model drug molecule-lamivudine-was conjugated with poly-ε-caprolactone via ring opening polymerization. The conjugate was utilized in a solvent evaporation method technique to form solid particles. Interactions between particles and a model rat alveolar cell line were evaluated by flow cytometry. The polymerization product was characterized by a molecular weight of 3.8 kDa. The surface of the obtained solid drug-loaded cores of a hydrodynamic diameter equal to 2.4 µm was modified with biocompatible polyelectrolytes via a layer-by-layer assembly method. Differences in the internalization efficiency of four particle batches by the model RAW 264.7 cell line suggest that particle diameter and surface hydrophobicity are the most influential parameters in terms of phagocytic uptake.
Collapse
Affiliation(s)
- Tomasz Urbaniak
- Department of Physical Chemistry, Pharmaceutical Faculty, Wroclaw Medical University, Borowska 211, Wroclaw 50-556, Poland.
| | - Daniela Machová
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic v.v.i., Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic v.v.i., Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Witold Musiał
- Department of Physical Chemistry, Pharmaceutical Faculty, Wroclaw Medical University, Borowska 211, Wroclaw 50-556, Poland.
| |
Collapse
|
11
|
Santos AC, Veiga FJ, Sequeira JAD, Fortuna A, Falcão A, Pereira I, Pattekari P, Fontes-Ribeiro C, Ribeiro AJ. First-time oral administration of resveratrol-loaded layer-by-layer nanoparticles to rats – a pharmacokinetics study. Analyst 2019; 144:2062-2079. [DOI: 10.1039/c8an01998c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
trans-Resveratrol (RSV) is a plant-derived polyphenol endowed with a broad spectrum of promising therapeutic activities.
Collapse
Affiliation(s)
- Ana Cláudia Santos
- Department of Pharmaceutical Technology
- Faculty of Pharmacy
- University of Coimbra
- 3000-548 Coimbra
- Portugal
| | - Francisco J. Veiga
- Department of Pharmaceutical Technology
- Faculty of Pharmacy
- University of Coimbra
- 3000-548 Coimbra
- Portugal
| | - Joana A. D. Sequeira
- Department of Pharmaceutical Technology
- Faculty of Pharmacy
- University of Coimbra
- 3000-548 Coimbra
- Portugal
| | - Ana Fortuna
- Department of Pharmacology
- Faculty of Pharmacy
- University of Coimbra
- 3000-548 Coimbra
- Portugal
| | - Amílcar Falcão
- Department of Pharmacology
- Faculty of Pharmacy
- University of Coimbra
- 3000-548 Coimbra
- Portugal
| | - Irina Pereira
- Department of Pharmaceutical Technology
- Faculty of Pharmacy
- University of Coimbra
- 3000-548 Coimbra
- Portugal
| | - Pravin Pattekari
- Institute for Micromanufacturing
- Louisiana Tech University
- Ruston 71272
- USA
- Children's GMP LLC
| | - Carlos Fontes-Ribeiro
- Department of Pharmacology and Experimental Therapeutics
- Faculty of Medicine
- 3000-548 Coimbra
- Portugal
| | - António J. Ribeiro
- Department of Pharmaceutical Technology
- Faculty of Pharmacy
- University of Coimbra
- 3000-548 Coimbra
- Portugal
| |
Collapse
|
12
|
Yang DP, Oo MNNL, Deen GR, Li Z, Loh XJ. Nano-Star-Shaped Polymers for Drug Delivery Applications. Macromol Rapid Commun 2017; 38. [PMID: 28895248 DOI: 10.1002/marc.201700410] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 06/28/2017] [Indexed: 12/19/2022]
Abstract
With the advancement of polymer engineering, complex star-shaped polymer architectures can be synthesized with ease, bringing about a host of unique properties and applications. The polymer arms can be functionalized with different chemical groups to fine-tune the response behavior or be endowed with targeting ligands or stimuli responsive moieties to control its physicochemical behavior and self-organization in solution. Rheological properties of these solutions can be modulated, which also facilitates the control of the diffusion of the drug from these star-based nanocarriers. However, these star-shaped polymers designed for drug delivery are still in a very early stage of development. Due to the sheer diversity of macromolecules that can take on the star architectures and the various combinations of functional groups that can be cross-linked together, there remain many structure-property relationships which have yet to be fully established. This review aims to provide an introductory perspective on the basic synthetic methods of star-shaped polymers, the properties which can be controlled by the unique architecture, and also recent advances in drug delivery applications related to these star candidates.
Collapse
Affiliation(s)
- Da-Peng Yang
- College of Chemical Engineering & Materials Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Ma Nwe Nwe Linn Oo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive Singapore, Singapore, 637459, Singapore
| | - Gulam Roshan Deen
- Soft Materials Laboratory, Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, 637459, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore.,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| |
Collapse
|