1
|
Zhu H, Sun H, Dai J, Hao J, Zhou B. Chitosan-based hydrogels in cancer therapy: Drug and gene delivery, stimuli-responsive carriers, phototherapy and immunotherapy. Int J Biol Macromol 2024; 282:137047. [PMID: 39489261 DOI: 10.1016/j.ijbiomac.2024.137047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Nanotechnology has transformed the oncology sector by particularly targeting cancer cells and enhancing the efficacy of conventional therapies, not only improving efficacy of conventional therapeutics, but also reducing systemic toxicity. Environmentally friendly materials are the top choice for treating cancer. Chitosan, sourced from chitin, is widely used with its derivatives for the extensive synthesis or modification of nanostructures. Chitosan has been deployed to develop hydrogels, as 3D polymeric networks capable of water absorption with wide biomedical application. The chitosan hydrogels are biocompatible and biodegradable structures that can deliver drugs, genes or a combination of them in cancer therapy. Increased tumor ablation, reducing off-targeting feature and protection of genes against degradation are benefits of using chitosan hydrogels in cancer therapy. The efficacy of cancer immunotherapy can be improved by chitosan hydrogels to prevent emergence of immune evasion. In addition, chitosan hydrogels facilitate photothermal and photodynamic therapy for tumor suppression. Chitosan hydrogels can synergistically integrate chemotherapy, immunotherapy, and phototherapy in cancer treatment. Additionally, chitosan hydrogels that respond to stimuli, specifically thermo-sensitive hydrogels, have been developed for inhibiting tumors.
Collapse
Affiliation(s)
- Hailin Zhu
- Department of Pathology, Ganzhou Cancer Hospital, Ganzhou City, Jiangxi Province, China
| | - Hao Sun
- Faculty of Science, Autonomous University of Madrid, Spainish National Research Council-Consejo Superior de Investigaciones Científicas, (UAM-CSIC), 28049 Madrid, Spain
| | - Jingyuan Dai
- School of Computer Science and Information Systems, Northwest Missouri State University, MO, USA
| | - Junfeng Hao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China; Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, China.
| | - Boxuan Zhou
- Department of General Surgery, Breast Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Guo Y, Chen Y, Wu Y, Zhu Y, Luo S, Shen J, Luo Y. Injectable pH-responsive polypeptide hydrogels for local delivery of doxorubicin. NANOSCALE ADVANCES 2024:d4na00719k. [PMID: 39502105 PMCID: PMC11533052 DOI: 10.1039/d4na00719k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/19/2024] [Indexed: 11/08/2024]
Abstract
Cancer, as a global health threat, is often treated with chemotherapy, but its effect is limited, especially the drugs such as doxorubicin (DOX) are limited by their non-specificity and side effects. This study focuses on developing a new drug delivery system to overcome these challenges. Based on the self-assembling peptide hemopressin (HP), we designed and screened FOK peptide, which serves as a pH-responsive carrier with excellent pH sensitivity and mechanical stability. At a concentration of 20 mg mL-1, FOK can spontaneously form a stable hydrogel, efficiently encapsulating DOX with an encapsulation rate exceeding 95%. This system can gradually release the drug in the tumor-specific mildly acidic environment, achieving precise delivery and sustained release of the drug. Rheological analysis revealed the superior mechanical and self-healing properties of FOK hydrogel, suitable for injection delivery with long-lasting stability. Mouse experiments showed that DOX/FOK hydrogel significantly inhibited tumor growth while greatly reducing toxicity. In conclusion, FOK hydrogel, as a delivery vehicle for DOX, not only optimizes the precise delivery and sustained release mechanism of DOX, but also reduces treatment side effects, opening up new avenues for the application of peptide hydrogels in cancer therapy and providing a scientific basis for designing efficient drug delivery systems.
Collapse
Affiliation(s)
- Yijun Guo
- Department of Pharmacy, Nantong First People's Hospital Nantong Jiangsu 226006 China
| | - Yong Chen
- Department of Pharmacy, Nantong First People's Hospital Nantong Jiangsu 226006 China
| | - Yiqun Wu
- Department of Pharmaceutics, School of Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University Nanjing Jiangsu 211198 China
| | - Ying Zhu
- Department of Pharmaceutics, School of Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University Nanjing Jiangsu 211198 China
| | - Shiyao Luo
- Department of Pharmaceutics, School of Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University Nanjing Jiangsu 211198 China
| | - Juan Shen
- Department of Pharmaceutics, School of Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University Nanjing Jiangsu 211198 China
| | - Yongjun Luo
- Department of Pharmaceutics, School of Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University Nanjing Jiangsu 211198 China
| |
Collapse
|
3
|
Kwantwi LB, Tandoh T. Focal adhesion kinase-mediated interaction between tumor and immune cells in the tumor microenvironment: implications for cancer-associated therapies and tumor progression. Clin Transl Oncol 2024:10.1007/s12094-024-03723-x. [PMID: 39269597 DOI: 10.1007/s12094-024-03723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Focal adhesion kinase (FAK) expression has been linked to tumor growth, immunosuppression, metastasis, angiogenesis, and therapeutic resistance through kinase-dependent and kinase scaffolding functions in the nucleus and cytoplasm. Hence, targeting FAK alone or with other agents has gained attention as a potential therapeutic strategy. Moreover, mounting evidence shows that FAK activity can influence the tumor immune microenvironment crosstalk to support tumor progression. Recently, tumor immune microenvironment interaction orchestrators have shown to be promising therapeutic agents for cancer immunotherapies. Therefore, this review highlights how FAK regulates the tumor immune microenvironment interplay to promote tumor immune evasive mechanisms and their potential for combination therapies with standard cancer treatments.
Collapse
Affiliation(s)
- Louis Boafo Kwantwi
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.
| | - Theophilus Tandoh
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope, Duarte, CA, USA
| |
Collapse
|
4
|
Xu W, Huang W, Cai X, Dang Z, Hao L, Wang L. Dexamethasone Long-Term Controlled Release from Injectable Dual-Network Hydrogels with Porous Microspheres Immunomodulation Promotes Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40581-40601. [PMID: 39074361 PMCID: PMC11311136 DOI: 10.1021/acsami.4c06661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Long-lasting, controlled-release, and minimally invasive injectable platforms that provide a stable blood concentration to promote bone regeneration are less well developed. Using hexagonal mesoporous silica (HMS) loaded with dexamethasone (DEX) and poly(lactic-co-glycolic acid) (PLGA), we prepared porous DEX/HMS/PLGA microspheres (PDHP). In contrast to HMS/PLGA microspheres (HP), porous HMS/PLGA microspheres (PHP), DEX/PLGA microspheres (DP), and DEX/HMS/PLGA microspheres (DHP), PDHP showed notable immuno-coordinated osteogenic capabilities and were best at promoting bone mesenchymal stem cell proliferation and osteogenic differentiation. PDHP were combined with methacrylated silk (SilMA) and sodium alginate (SA) to form an injectable photocurable dual-network hydrogel platform that could continuously release the drug for more than 4 months. By adjusting the content of the microspheres in the hydrogel, a zero-order release hydrogel platform was obtained in vitro for 48 days. When the microsphere content was 1%, the hydrogel platform exhibited the best biocompatibility and osteogenic effects. The expression levels of the osteogenic gene alkaline phosphatases, BMP-2 and OPN were 10 to 15 times higher in the 1% group than in the 0% group, respectively. In addition, the 1% microsphere hydrogel strongly stimulated macrophage polarization to the M2 phenotype, establishing an immunological milieu that supports bone regrowth. The aforementioned outcomes were also observed in vivo. The most successful method for correcting cranial bone abnormalities in SD rats was to use a hydrogel called SilMA/SA containing 1% drug-loaded porous microspheres (PDHP/SS). The angiogenic and osteogenic effects of this treatment were also noticeably greater in the PDHP/SS group than in the control and blank groups. In addition, PDHP/SS polarized M2 macrophages and suppressed M1 macrophages in vivo, which reduced the local immune-inflammatory response, promoted angiogenesis, and cooperatively aided in situ bone healing. This work highlights the potential application of an advanced hydrogel platform for long-term, on-demand, controlled release for bone tissue engineering.
Collapse
Affiliation(s)
- Weikang Xu
- Institute
of Biological and Medical Engineering, Guangdong
Academy of Sciences, No. 10 Shiliugang Road, Jianghai Avenue Central, Haizhu District, Guangzhou 510316, China
- National
Engineering Research Centre for Healthcare Devices, Guangdong Provincial
Key Laboratory of Medical Electronic Instruments and Materials, Guangdong Institute of Medical Instruments, No. 1307 Guangzhou Avenue Central, Tianhe District, Guangzhou 510500, China
- Guangdong
Chinese Medicine Intelligent Diagnosis and Treatment Engineering Technology
Research Centre, No.
10 Shiliugang Road, Jianghai Avenue Central, Haizhu
District, Guangzhou 510316, China
| | - Weihua Huang
- Affiliated
Qingyuan Hospital, Guangzhou Medical University,
Qingyuan People’s Hospital, No. 35, Yinquan North Road, Qingcheng District, Qingyuan 511518, China
- National
Engineering Research Centre for Healthcare Devices, Guangdong Provincial
Key Laboratory of Medical Electronic Instruments and Materials, Guangdong Institute of Medical Instruments, No. 1307 Guangzhou Avenue Central, Tianhe District, Guangzhou 510500, China
- Department
of Orthopaedic Surgery, the Second Affiliated Hospital of Guangzhou
Medical University, the Second Clinical
Medicine School of Guangzhou Medical University, No. 250 Changgang East Road, Haizhu
District, Guangzhou 510260, China
| | - Xiayu Cai
- Institute
of Biological and Medical Engineering, Guangdong
Academy of Sciences, No. 10 Shiliugang Road, Jianghai Avenue Central, Haizhu District, Guangzhou 510316, China
- National
Engineering Research Centre for Healthcare Devices, Guangdong Provincial
Key Laboratory of Medical Electronic Instruments and Materials, Guangdong Institute of Medical Instruments, No. 1307 Guangzhou Avenue Central, Tianhe District, Guangzhou 510500, China
| | - Zhaohui Dang
- Institute
of Biological and Medical Engineering, Guangdong
Academy of Sciences, No. 10 Shiliugang Road, Jianghai Avenue Central, Haizhu District, Guangzhou 510316, China
- National
Engineering Research Centre for Healthcare Devices, Guangdong Provincial
Key Laboratory of Medical Electronic Instruments and Materials, Guangdong Institute of Medical Instruments, No. 1307 Guangzhou Avenue Central, Tianhe District, Guangzhou 510500, China
- National
Engineering Research Centre for Human Tissue Restoration and Function
Reconstruction, South China University of
Technology, No. 381 Wushan Road, Guangzhou 510275, China
| | - Lijing Hao
- National
Engineering Research Centre for Human Tissue Restoration and Function
Reconstruction, South China University of
Technology, No. 381 Wushan Road, Guangzhou 510275, China
| | - Liyan Wang
- Department
of Stomatology, Foshan Women’s and Children’s Hospital, No. 11 Renmin Xi Road, Chancheng
District, Foshan 528000, China
| |
Collapse
|
5
|
Xu N, Wang J, Liu L, Gong C. Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. CHINESE CHEM LETT 2024; 35:109225. [DOI: 10.1016/j.cclet.2023.109225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Jose AD, Foo KL, Hu G, Ngar L, Ryda B, Jaiswal J, Wu Z, Agarwal P, Thakur SS. Design and evaluation of curcumin-loaded poloxamer hydrogels as injectable depot formulations. Eur J Pharm Biopharm 2024; 201:114372. [PMID: 38897552 DOI: 10.1016/j.ejpb.2024.114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Poloxamer hydrogels are of interest as injectable depot delivery systems. However, their use for delivering hydrophobic drugs, such as curcumin, is limited due to poor loading capacity. Here, we evaluated the influence of incorporating hydrophobic medium chain triglycerides (MCT) or amphiphilic polyethylene glycol 400 (PEG400) on the physicochemical properties, drug loading, and in vitro compatibility of a curcumin-loaded poloxamer hydrogel. Poloxamer 407 and 188 hydrogel formulations (16:6 w/w) were prepared and MCT and PEG400 (saturated with curcumin) were added to these systems, either alone or in combination, up to a 10 % w/w additive solvent load. Formulation viscoelasticity, gelation behaviour, injectability, morphology and release profiles were assessed. The cytocompatibility of the formulations was also assessed on dermal fibroblasts (HDFn). Both additives increased curcumin loading into the formulation. Addition of MCT to the hydrogel significantly increased its gelation speed, while PEG400 had a less profound impact. Both additive solvents increased the force required to inject the formulation. PEG400 containing systems were single phase, whereas MCT addition created emulsion systems. All formulations released ∼20-30 % of their loaded curcumin in a sustained fashion over 24 h. The modified hydrogel systems showed good biocompatibility on cells when administering up to ∼100-150 µM curcumin into the culture. This study addresses a key limitation in loading hydrophobic drugs into hydrogels and provides a strategy to enhance drug loading and performance of hydrogels by integrating additives such as MCT and PEG400 into the systems.
Collapse
Affiliation(s)
- Ashok David Jose
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kea Leigh Foo
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Grace Hu
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Linda Ngar
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Bovinae Ryda
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jagdish Jaiswal
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Priyanka Agarwal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Sachin Sunil Thakur
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
7
|
Zhou XY, Wang CK, Shen ZF, Wang YF, Li YH, Hu YN, Zhang P, Zhang Q. Recent research progress on tumour-specific responsive hydrogels. J Mater Chem B 2024. [PMID: 38949411 DOI: 10.1039/d4tb00656a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Most existing hydrogels, even recently developed injectable hydrogels that undergo a reversible sol-gel phase transition in response to external stimuli, are designed to gel immediately before or after implantation/injection to prevent the free diffusion of materials and drugs; however, the property of immediate gelation leads to a very weak tumour-targeting ability, limiting their application in anticancer therapy. Therefore, the development of tumour-specific responsive hydrogels for anticancer therapy is imperative because tumour-specific responses improve their tumour-targeting efficacy, increase therapeutic effects, and decrease toxicity and side effects. In this review, we introduce the following three types of tumour-responsive hydrogels: (1) hydrogels that gel specifically at the tumour site; (2) hydrogels that decompose specifically at the tumour site; and (3) hydrogels that react specifically with tumours. For each type, their compositions, the mechanisms of tumour-specific responsiveness and their applications in anticancer treatment are comprehensively discussed.
Collapse
Affiliation(s)
- Xuan-Yi Zhou
- The Second School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chen-Kai Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ze-Fan Shen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi-Fan Wang
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yu-Hang Li
- The Third Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yu-Ning Hu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Institute of Urology, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qi Zhang
- The Second School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Institute of Urology, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Liu J, Du C, Chen H, Huang W, Lei Y. Nano-Micron Combined Hydrogel Microspheres: Novel Answer for Minimal Invasive Biomedical Applications. Macromol Rapid Commun 2024; 45:e2300670. [PMID: 38400695 DOI: 10.1002/marc.202300670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/05/2024] [Indexed: 02/25/2024]
Abstract
Hydrogels, key in biomedical research for their hydrophilicity and versatility, have evolved with hydrogel microspheres (HMs) of micron-scale dimensions, enhancing their role in minimally invasive therapeutic delivery, tissue repair, and regeneration. The recent emergence of nanomaterials has ushered in a revolutionary transformation in the biomedical field, which demonstrates tremendous potential in targeted therapies, biological imaging, and disease diagnostics. Consequently, the integration of advanced nanotechnology promises to trigger a new revolution in the realm of hydrogels. HMs loaded with nanomaterials combine the advantages of both hydrogels and nanomaterials, which enables multifaceted functionalities such as efficient drug delivery, sustained release, targeted therapy, biological lubrication, biochemical detection, medical imaging, biosensing monitoring, and micro-robotics. Here, this review comprehensively expounds upon commonly used nanomaterials and their classifications. Then, it provides comprehensive insights into the raw materials and preparation methods of HMs. Besides, the common strategies employed to achieve nano-micron combinations are summarized, and the latest applications of these advanced nano-micron combined HMs in the biomedical field are elucidated. Finally, valuable insights into the future design and development of nano-micron combined HMs are provided.
Collapse
Affiliation(s)
- Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hong Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
9
|
Cheng Y, Zhang H, Wei H, Yu CY. Injectable hydrogels as emerging drug-delivery platforms for tumor therapy. Biomater Sci 2024; 12:1151-1170. [PMID: 38319379 DOI: 10.1039/d3bm01840g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Tumor therapy continues to be a prominent field within biomedical research. The development of various drug carriers has been propelled by concerns surrounding the side effects and targeting efficacy of various chemotherapeutic drugs and other therapeutic agents. These carriers strive to enhance drug concentration at tumor sites, minimize systemic side effects, and improve therapeutic outcomes. Among the reported delivery systems, injectable hydrogels have emerged as an emerging candidate for the in vivo delivery of chemotherapeutic drugs due to their minimal invasive drug delivery properties. This review systematically summarizes the composition and preparation methodologies of injectable hydrogels and further highlights the delivery mechanisms of diverse drugs using these hydrogels for tumor therapy, along with an in-depth discussion on the optimized therapeutic efficiency of drugs encapsulated within the hydrogels. The work concludes by providing a dynamic forward-looking perspective on the potential challenges and possible solutions of the in situ injectable hydrogels for non-surgical and real-time diagnostic applications.
Collapse
Affiliation(s)
- Yao Cheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| |
Collapse
|
10
|
Yin X, Fan T, Zheng N, Yang J, Ji T, Yan L, Ai F, Hu J. Glucose oxidase and ruthenium nanorods-embedded self-healing polyvinyl alcohol/polyethylene imine hydrogel for simultaneous photothermal/photodynamic/starvation therapy and skin reconstruction. Colloids Surf B Biointerfaces 2024; 234:113738. [PMID: 38199189 DOI: 10.1016/j.colsurfb.2023.113738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/16/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Tumor recurrence and wound healing represent significant burdens for tumor patients after the surgical removal of melanomas. Wound dressings with wound healing and anticancer therapeutic abilities could help to solve these issues. Thus, a hybrid hydrogel made of polyvinyl alcohol (PVA) and polyethylene imine (PEI) was prepared by cross-linking imine bond and boronic acid bond. This hydrogel was loaded with ruthenium nanorods (Ru NRs) and glucose oxidase (GOx) and named as nanocomposite hydrogel (Ru/GOx@Hydrogel), exhibiting remarkable photothermal/photodynamic/starvation antitumor therapy and wound repair abilities. Ru NRs are bifunctional phototherapeutic agents that simultaneously exhibit intrinsic photothermal and photodynamic functions. Three-dimensional composite hydrogel loaded with GOx can also consume glucose in the presence of O2 during tumor starvation therapy. Near-infrared (NIR) light-triggered hyperthermia can not only promote the consumption of glucose, but also facilitate the ablation of residual cancer cells. The antitumor effect of the Ru/GOx@Hydrogel resulted in significant improvements, compared to those observed with either phototherapy or starvation therapy alone. Additionally, the postoperative wound was substantially healed after treatment with Ru/GOx@Hydrogel and NIR irradiation. Therefore, the Ru/GOx@Hydrogel can be used as a multi-stimulus-responsive nanoplatform that could facilitate on-demand controlled drug release, and be used as a promising postoperative adjuvant in combination therapy.
Collapse
Affiliation(s)
- Xiuzhao Yin
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, PR China; College of Applied Technology, Shenzhen University, Shenzhen 518060, PR China
| | - Taojian Fan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, PR China; College of Applied Technology, Shenzhen University, Shenzhen 518060, PR China
| | - Nannan Zheng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, PR China; College of Applied Technology, Shenzhen University, Shenzhen 518060, PR China
| | - Jing Yang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, PR China
| | - Tao Ji
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, PR China
| | - Li Yan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, PR China; Shenzhen Bay Laboratory, Shenzhen 518132, PR China
| | - Fujin Ai
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, PR China; Shenzhen Bay Laboratory, Shenzhen 518132, PR China.
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, PR China; College of Applied Technology, Shenzhen University, Shenzhen 518060, PR China; Shenzhen Bay Laboratory, Shenzhen 518132, PR China
| |
Collapse
|
11
|
Wu H, Zhang X, Wang Z, Chen X, Li Y, Fang J, Zheng S, Zhang L, Li C, Hao L. Preparation, properties and in vitro osteogensis of self-reinforcing injectable hydrogel. Eur J Pharm Sci 2024; 192:106617. [PMID: 37865283 DOI: 10.1016/j.ejps.2023.106617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/22/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
As an attractive biomaterial for bone reconstruction, injectable biomaterials have many prominent characteristics such as good biocompatibility and bone-filling ability. However, there are weak as load-bearing scaffolds. In this study, polyvinyl alcohol (PVA) and bioactive glass (BAG) were interpenetrated into sodium alginate (SA) network to obtain self-enhanced injectable hydrogel. The optimum ratio of PVA/SA/BAG hydrogel was determined based on injectability, gelation time and chemical characterization. Results showed that the selected ratio had the shortest gelation time of 3.5min, and the hydrogel had a rough surface and good coagulation property. The hydrogel was capable of carrying 1kg of weight by mineralization for 14 d The compressive strength, compressive modulus, and fracture energy of the hydrogel reached 0.12MPa, 0.376MPa and 17.750kJ m-2, respectively. Meanwhile, the hydrogel had high moisture content and dissolution rate, and it was sensitive to temperature and ionic strength. Hydroxyapatite was generated on the hydrogel surface, and the hydrogel pores increased, and the pore size enlarged. The biocompatibility of PVA/SA/BAG hydrogel was analyzed using hemolysis and cytotoxicity assays. Results revealed its good biocompatibility with low hemolysis rate and no cytotoxicity to MC3T3-E1 cells. The hydrogel was also found to promote the differentiation of MC3T3-E1 cells with significantly increased in ALP activity and expression of relevant differentiation factors. In vitro mineralization assay showed an increase in calcium nodules and calcification area, indicating the ability of hydrogel to promote mineralization MC3T3-E1 cells. These findings indicated that PVA/SA/BAG hydrogel had potential uses in the field of irregular bone-defect repair due to its injectability, cytocompatibility, and tailorable functionality.
Collapse
Affiliation(s)
- Hongyan Wu
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Xunming Zhang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Zhaoguo Wang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Xi Chen
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Yi Li
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Jiayuan Fang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Shuo Zheng
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Libo Zhang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Changhong Li
- College of Life Sciences, Baicheng Normal University, Baicheng, Jilin, China.
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
12
|
Zhang Z, He C, Chen X. Designing Hydrogels for Immunomodulation in Cancer Therapy and Regenerative Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308894. [PMID: 37909463 DOI: 10.1002/adma.202308894] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/26/2023] [Indexed: 11/03/2023]
Abstract
The immune system not only acts as a defense against pathogen and cancer cells, but also plays an important role in homeostasis and tissue regeneration. Targeting immune systems is a promising strategy for efficient cancer treatment and regenerative medicine. Current systemic immunomodulation therapies are usually associated with low persistence time, poor targeting to action sites, and severe side effects. Due to their extracellular matrix-mimetic nature, tunable properties and diverse bioactivities, hydrogels are intriguing platforms to locally deliver immunomodulatory agents and cells, as well as provide an immunomodulatory microenvironment to recruit, activate, and expand host immune cells. In this review, the design considerations, including polymer backbones, crosslinking mechanisms, physicochemical nature, and immunomodulation-related components, of the hydrogel platforms, are focused on. The immunomodulatory effects and therapeutic outcomes in cancer therapy and tissue regeneration of different hydrogel systems are emphasized, including hydrogel depots for delivery of immunomodulatory agents, hydrogel scaffolds for cell delivery, and immunomodulatory hydrogels depending on the intrinsic properties of materials. Finally, the remained challenges in current systems and future development of immunomodulatory hydrogels are discussed.
Collapse
Affiliation(s)
- Zhen Zhang
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
13
|
Liu J, Du C, Huang W, Lei Y. Injectable smart stimuli-responsive hydrogels: pioneering advancements in biomedical applications. Biomater Sci 2023; 12:8-56. [PMID: 37969066 DOI: 10.1039/d3bm01352a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Hydrogels have established their significance as prominent biomaterials within the realm of biomedical research. However, injectable hydrogels have garnered greater attention compared with their conventional counterparts due to their excellent minimally invasive nature and adaptive behavior post-injection. With the rapid advancement of emerging chemistry and deepened understanding of biological processes, contemporary injectable hydrogels have been endowed with an "intelligent" capacity to respond to various endogenous/exogenous stimuli (such as temperature, pH, light and magnetic field). This innovation has spearheaded revolutionary transformations across fields such as tissue engineering repair, controlled drug delivery, disease-responsive therapies, and beyond. In this review, we comprehensively expound upon the raw materials (including natural and synthetic materials) and injectable principles of these advanced hydrogels, concurrently providing a detailed discussion of the prevalent strategies for conferring stimulus responsiveness. Finally, we elucidate the latest applications of these injectable "smart" stimuli-responsive hydrogels in the biomedical domain, offering insights into their prospects.
Collapse
Affiliation(s)
- Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
14
|
Lima-Sousa R, Alves CG, Melo BL, Costa FJP, Nave M, Moreira AF, Mendonça AG, Correia IJ, de Melo-Diogo D. Injectable hydrogels for the delivery of nanomaterials for cancer combinatorial photothermal therapy. Biomater Sci 2023; 11:6082-6108. [PMID: 37539702 DOI: 10.1039/d3bm00845b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Progress in the nanotechnology field has led to the development of a new class of materials capable of producing a temperature increase triggered by near infrared light. These photothermal nanostructures have been extensively explored in the ablation of cancer cells. Nevertheless, the available data in the literature have exposed that systemically administered nanomaterials have a poor tumor-homing capacity, hindering their full therapeutic potential. This paradigm shift has propelled the development of new injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy. These hydrogels can be assembled at the tumor site after injection (in situ forming) or can undergo a gel-sol-gel transition during injection (shear-thinning/self-healing). Besides incorporating photothermal nanostructures, these injectable hydrogels can also incorporate or be combined with other agents, paving the way for an improved therapeutic outcome. This review analyses the application of injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy as well as their combination with photodynamic-, chemo-, immuno- and radio-therapies.
Collapse
Affiliation(s)
- Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Francisco J P Costa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Micaela Nave
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - André F Moreira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - António G Mendonça
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
- Departamento de Química, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
15
|
Zhao D, Rong Y, Li D, He C, Chen X. Thermo-induced physically crosslinked polypeptide-based block copolymer hydrogels for biomedical applications. Regen Biomater 2023; 10:rbad039. [PMID: 37265604 PMCID: PMC10229375 DOI: 10.1093/rb/rbad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 06/03/2023] Open
Abstract
Stimuli-responsive synthetic polypeptide-containing block copolymers have received considerable attention in recent years. Especially, unique thermo-induced sol-gel phase transitions were observed for elaborately-designed amphiphilic diblock copolypeptides and a range of poly(ethylene glycol) (PEG)-polypeptide block copolymers. The thermo-induced gelation mechanisms involve the evolution of secondary conformation, enhanced intramolecular interactions, as well as reduced hydration and increased chain entanglement of PEG blocks. The physical parameters, including polymer concentrations, sol-gel transition temperatures and storage moduli, were investigated. The polypeptide hydrogels exhibited good biocompatibility in vitro and in vivo, and displayed biodegradation periods ranging from 1 to 5 weeks. The unique thermo-induced sol-gel phase transitions offer the feasibility of minimal-invasive injection of the precursor aqueous solutions into body, followed by in situ hydrogel formation driven by physiological temperature. These advantages make polypeptide hydrogels interesting candidates for diverse biomedical applications, especially as injectable scaffolds for 3D cell culture and tissue regeneration as well as depots for local drug delivery. This review focuses on recent advances in the design and preparation of injectable, thermo-induced physically crosslinked polypeptide hydrogels. The influence of composition, secondary structure and chirality of polypeptide segments on the physical properties and biodegradation of the hydrogels are emphasized. Moreover, the studies on biomedical applications of the hydrogels are intensively discussed. Finally, the major challenges in the further development of polypeptide hydrogels for practical applications are proposed.
Collapse
Affiliation(s)
- Dan Zhao
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- College of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yan Rong
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Dong Li
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- College of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | | | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- College of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
16
|
Gan S, Wu Y, Zhang X, Zheng Z, Zhang M, Long L, Liao J, Chen W. Recent Advances in Hydrogel-Based Phototherapy for Tumor Treatment. Gels 2023; 9:gels9040286. [PMID: 37102898 PMCID: PMC10137920 DOI: 10.3390/gels9040286] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Phototherapeutic agent-based phototherapies activated by light have proven to be safe modalities for the treatment of various malignant tumor indications. The two main modalities of phototherapies include photothermal therapy, which causes localized thermal damage to target lesions, and photodynamic therapy, which causes localized chemical damage by generated reactive oxygen species (ROS). Conventional phototherapies suffer a major shortcoming in their clinical application due to their phototoxicity, which primarily arises from the uncontrolled distribution of phototherapeutic agents in vivo. For successful antitumor phototherapy, it is essential to ensure the generation of heat or ROS specifically occurs at the tumor site. To minimize the reverse side effects of phototherapy while improving its therapeutic performance, extensive research has focused on developing hydrogel-based phototherapy for tumor treatment. The utilization of hydrogels as drug carriers allows for the sustained delivery of phototherapeutic agents to tumor sites, thereby limiting their adverse effects. Herein, we summarize the recent advancements in the design of hydrogels for antitumor phototherapy, offer a comprehensive overview of the latest advances in hydrogel-based phototherapy and its combination with other therapeutic modalities for tumor treatment, and discuss the current clinical status of hydrogel-based antitumor phototherapy.
Collapse
Affiliation(s)
- Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Min Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Long
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Huang J, Yu P, Liao M, Dong X, Xu J, Ming J, Bin D, Wang Y, Zhang F, Xia Y. A self-charging salt water battery for antitumor therapy. SCIENCE ADVANCES 2023; 9:eadf3992. [PMID: 37000876 PMCID: PMC10065443 DOI: 10.1126/sciadv.adf3992] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Implantable devices on the tumor tissue as a local treatment are able to work in situ, which minimizes systemic toxicities and adverse effects. Here, we demonstrated an implantable self-charging battery that can regulate tumor microenvironment persistently by the well-designed electrode redox reaction. The battery consists of biocompatible polyimide electrode and zinc electrode, which can consume oxygen sustainably during battery discharge/self-charge cycle, thus modulating hypoxia level in tumor microenvironment. The oxygen reduction in battery leads to the formation of reactive oxygen species, showing 100% prevention on tumor formation. Sustainable consumption of oxygen causes adequate intratumoral hypoxic conditions over the course of 14 days, which is helpful for the hypoxia-activated prodrugs (HAPs) to kill tumor cells. The synergistic effect of the battery/HAPs can deliver more than 90% antitumor rate. Using redox reactions in electrochemical battery provides a potential approach for the tumor inhibition and regulation of tumor microenvironment.
Collapse
Affiliation(s)
- Jianhang Huang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Peng Yu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Mochou Liao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Xiaoli Dong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Jie Xu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Jiang Ming
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Duan Bin
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Fan Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Yongyao Xia
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
18
|
Injectable hydroethanolic physical gels based on Codonopsis pilosula polysaccharide for sustained anticancer drug delivery. Int J Biol Macromol 2023; 230:123178. [PMID: 36623621 DOI: 10.1016/j.ijbiomac.2023.123178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
The development of biocompatible carriers based on hydroethanolic physical gels for effectively encapsulating and delivering hydrophobic drug molecules is of particular interest. In this paper, we reported a novel hydroethanolic physical gel based on Codonopsis pilosula polysaccharide (CPP) prepared from the roots of C. pilosula. The gelation behaviors of the graded CPP fractions in a water-ethanol solvent system were evaluated, and the physicochemical and mechanical properties of the CPP-based gel (CPP-G) were characterized. The results indicated that CPP-G had consisted of a random physically crosslinked network formed by hydrophobic association of CPP chains and exhibited good mechanical strength, higher shear-thinning sensitivity and rapid, highly efficient self-recovering characteristics, ensuring superior performance in constructing injectable and self-recovering drug-loaded gels. Hydrophobic paclitaxel (PTX) and hydrophilic doxorubicin (DOX) were used as representative drugs to investigate the encapsulation and in vitro release behaviors of CPP-G, which exhibited long-term sustained release properties. Additionally, the evaluation of drug activity in drug-loaded gels further revealed the synergistic effect of CPP-G with the selected drugs on tumor inhibition against 4T1 and MCF-7 breast cancer cell lines. This work evaluated the feasibility of using the natural polysaccharide CPP to construct hydroethanolic physical gels and the applicability of the injectable drug-loaded gels for hydrophobic drug delivery.
Collapse
|
19
|
Xie Y, Liu M, Cai C, Ye C, Guo T, Yang K, Xiao H, Tang X, Liu H. Recent progress of hydrogel-based local drug delivery systems for postoperative radiotherapy. Front Oncol 2023; 13:1027254. [PMID: 36860309 PMCID: PMC9969147 DOI: 10.3389/fonc.2023.1027254] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Surgical resection and postoperative radiotherapy remained the most common therapeutic modalities for malignant tumors. However, tumor recurrence after receiving such combination is difficult to be avoided because of high invasiveness and radiation resistance of cancer cells during long-term therapy. Hydrogels, as novel local drug delivery systems, presented excellent biocompatibility, high drug loading capacity and sustained drug release property. Compared with conventional drug formulations, hydrogels are able to be administered intraoperatively and directly release the entrapped therapeutic agents to the unresectable tumor sites. Therefore, hydrogel-based local drug delivery systems have their unique advantages especially in sensitizing postoperative radiotherapy. In this context, classification and biological properties of hydrogels were firstly introduced. Then, recent progress and application of hydrogels for postoperative radiotherapy were summarized. Finally, the prospects and challenges of hydrogels in postoperative radiotherapy were discussed.
Collapse
Affiliation(s)
- Yandong Xie
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China,Department of Neurosurgery, The Suqian Clinical College of Xuzhou Medical University, Suqian, China
| | - Mingxi Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Chang Cai
- Department of Neurosurgery, The Suqian Clinical College of Xuzhou Medical University, Suqian, China
| | - Chengkun Ye
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tangjun Guo
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kun Yang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Hong Xiao
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China,*Correspondence: Hongyi Liu, ; Xianglong Tang, ; Hong Xiao,
| | - Xianglong Tang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China,Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China,*Correspondence: Hongyi Liu, ; Xianglong Tang, ; Hong Xiao,
| | - Hongyi Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China,*Correspondence: Hongyi Liu, ; Xianglong Tang, ; Hong Xiao,
| |
Collapse
|
20
|
Liu C, Liao Y, Liu L, Xie L, Liu J, Zhang Y, Li Y. Application of injectable hydrogels in cancer immunotherapy. Front Bioeng Biotechnol 2023; 11:1121887. [PMID: 36815890 PMCID: PMC9935944 DOI: 10.3389/fbioe.2023.1121887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Immunotherapy is a revolutionary and promising approach to cancer treatment. However, traditional cancer immunotherapy often has the disadvantages of limited immune response rate, poor targeting, and low treatment index due to systemic administration. Hydrogels are drug carriers with many advantages. They can be loaded and transported with immunotherapeutic agents, chemical anticancer drugs, radiopharmaceuticals, photothermal agents, photosensitizers, and other therapeutic agents to achieve controlled release of drugs, extend the retention time of drugs, and thus successfully trigger anti-tumor effects and maintain long-term therapeutic effects after administration. This paper reviews recent advances in injectable hydrogel-based cancer immunotherapy, including immunotherapy alone, immunotherapy with combination chemotherapy, radiotherapy, phototherapy, and DNA hydrogel-based immunotherapy. Finally, we review the potential and limitations of injectable hydrogels in cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Junbo Liu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yumao Zhang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yuzhen Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
21
|
Abdelghafour MM, Deák Á, Kiss T, Budai-Szűcs M, Katona G, Ambrus R, Lőrinczi B, Keller-Pintér A, Szatmári I, Szabó D, Rovó L, Janovák L. Self-Assembling Injectable Hydrogel for Controlled Drug Delivery of Antimuscular Atrophy Drug Tilorone. Pharmaceutics 2022; 14:2723. [PMID: 36559217 PMCID: PMC9782908 DOI: 10.3390/pharmaceutics14122723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
A two-component injectable hydrogel was suitably prepared for the encapsulation and prolonged release of tilorone which is an antimuscular atrophy drug. The rapid (7-45 s, depending on the polymer concentration) in situ solidifications of the hydrogel were evoked by the evolving Schiff-base bonds between the aldehyde groups of modified PVA (4-formyl benzoate PVA, PVA-CHO, 5.9 mol% functionalization degree) and the amino groups of 3-mercaptopropionate chitosan (CHIT-SH). The successful modification of the initial polymers was confirmed by both FTIR and NMR measurements; moreover, a new peak appeared in the FTIR spectrum of the 10% w/v PVA-CHO/CHIT-SH hydrogel at 1647 cm-1, indicating the formation of a Schiff base (-CH=N-) and confirming the interaction between the NH2 groups of CHIT-SH and the CHO groups of PVA-CHO for the formation of the dynamic hydrogel. The reaction between the NH2 and CHO groups of the modified biopolymers resulted in a significant increase in the hydrogel's viscosity which was more than one thousand times greater (9800 mPa·s) than that of the used polymer solutions, which have a viscosity of only 4.6 and 5.8 mPa·s, respectively. Furthermore, the initial chitosan was modified with mercaptopropionic acid (thiol content = 201.85 ± 12 µmol/g) to increase the mucoadhesive properties of the hydrogel. The thiolated chitosan showed a significant increase (~600 mN/mm) in adhesion to the pig intestinal membrane compared to the initial one (~300 mN/mm). The in vitro release of tilorone from the hydrogel was controlled with the crosslinking density/concentration of the hydrogel; the 10% w/v PVA-CHO/CHIT-SH hydrogel had the slowest releasing (21.7 h-1/2) rate, while the 2% w/v PVA-CHO/CHIT-SH hydrogel had the fastest releasing rate (34.6 h-1/2). Due to the characteristics of these hydrogels, their future uses include tissue regeneration scaffolds, wound dressings for skin injuries, and injectable or in situ forming drug delivery systems. Eventually, we hope that the developed hydrogel will be useful in the local treatment of muscle atrophy, such as laryngotracheal atrophy.
Collapse
Affiliation(s)
- Mohamed M. Abdelghafour
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ágota Deák
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
| | - Tamás Kiss
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös str. 6., H-6720 Szeged, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös str. 6., H-6720 Szeged, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös str. 6., H-6720 Szeged, Hungary
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös str. 6., H-6720 Szeged, Hungary
| | - Bálint Lőrinczi
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary
| | - Anikó Keller-Pintér
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary
| | - Diána Szabó
- Department of Oto-Rhino-Laryngology and Head & Neck Surgery, University of Szeged, Tisza Lajos krt. 111, H-6724 Szeged, Hungary
| | - László Rovó
- Department of Oto-Rhino-Laryngology and Head & Neck Surgery, University of Szeged, Tisza Lajos krt. 111, H-6724 Szeged, Hungary
| | - László Janovák
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
| |
Collapse
|
22
|
Yu S, Sun H, Li Y, Wei S, Xu J, Liu J. Hydrogels as promising platforms for engineered living bacteria-mediated therapeutic systems. Mater Today Bio 2022; 16:100435. [PMID: 36164505 PMCID: PMC9508596 DOI: 10.1016/j.mtbio.2022.100435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
The idea of using engineered bacteria as prospective living therapeutic agents for the treatment of different diseases has been raised. Nevertheless, the development of safe and effective treatment strategies remains essential to the success of living bacteria-mediated therapy. Hydrogels have presented great promise for the delivery of living bacterial therapeutics due to their tunable physicochemical properties, good bioactivities, and excellent protection of labile payloads. In this review, we summarize the hydrogel design strategies for living bacteria-mediated therapy and review the recent advances in hydrogel-based living bacterial agent delivery for the treatment of typical diseases, including those for digestive health, skin fungal infections, wound healing, vaccines, and cancer, and discuss the current challenges and future perspectives of these strategies in the field. It is believed that the importance of hydrogel-based living bacteria-mediated therapy is expected to further increase with the development of both synthetic biology and biomaterials science in the future.
Collapse
Affiliation(s)
- Shuangjiang Yu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Hongcheng Sun
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Yongguang Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Shu Wei
- Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jiayun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| |
Collapse
|
23
|
Ma P, Jiang L, Luo X, Chen J, Wang Q, Chen Y, Ye E, Loh XJ, Wu C, Wu YL, Li Z. Hybrid Polydimethylsiloxane (PDMS) Incorporated Thermogelling System for Effective Liver Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14122623. [PMID: 36559118 PMCID: PMC9781567 DOI: 10.3390/pharmaceutics14122623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
For the delivery of anticancer drugs, an injectable in situ hydrogel with thermal responsiveness and prolonged drug release capabilities shows considerable potential. Here, we present a series of thermosensitive in situ hydrogels that serve as drug delivery systems for the treatment of liver cancer. These hydrogels were created by utilizing the polydimethylsiloxane (PDMS) oligomer, polyethylene glycol (PEG) and polypropylene glycol (PPG)'s chemical cross-linking capabilities. Doxorubicin (DOX) was encapsulated in a hydrogel with a hydrophobic core and hydrophilic shell to enhance DOX solubility. Studies into the behavior of in situ produced hydrogels at the microscopic and macroscopic levels revealed that the copolymer solution exhibits a progressive shift from sol to gel as the temperature rises. The hydrogels' chemical composition, thermal properties, rheological characteristics, gelation period, and DOX release behavior were all reported. Subcutaneous injection in mice was used to confirm the injectability. Through the in vitro release of DOX in a PBS solution that mimics the tumor microenvironment, the hydrogel's sustained drug release behavior was confirmed. Additionally, using human hepatocellular hepatoma, the anticancer efficacy of thermogel (DEP-2@DOX) was assessed (HepG2). The carrier polymer material DEP-2 was tested for cytotoxicity using HepG2 cells and its excellent cytocompatibility was confirmed. In conclusion, these thermally responsive injectable hydrogels are prominent potential candidates as drug delivery vehicles for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Panqin Ma
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Lu Jiang
- Department of Biomedical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xi Luo
- BE/Phase I Clinical Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Jiayun Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Qi Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Ying Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Enyi Ye
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Xian Jun Loh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (C.W.); (Y.-L.W.); (Z.L.)
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (C.W.); (Y.-L.W.); (Z.L.)
| | - Zibiao Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
- Correspondence: (C.W.); (Y.-L.W.); (Z.L.)
| |
Collapse
|
24
|
Han S, Wu J. Three-dimensional (3D) scaffolds as powerful weapons for tumor immunotherapy. Bioact Mater 2022; 17:300-319. [PMID: 35386452 PMCID: PMC8965033 DOI: 10.1016/j.bioactmat.2022.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Though increasing understanding and remarkable clinical successes have been made, enormous challenges remain to be solved in the field of cancer immunotherapy. In this context, biomaterial-based immunomodulatory strategies are being developed to boost antitumor immunity. For the local immunotherapy, macroscale biomaterial scaffolds with 3D network structures show great superiority in the following aspects: facilitating the encapsulation, localized delivery, and controlled release of immunotherapeutic agents and even immunocytes for more efficient immunomodulation. The concentrating immunomodulation in situ could minimize systemic toxicities, but still exert abscopal effects to harness the power of overall anticancer immune response for eradicating malignancy. To promote such promising immunotherapies, the design requirements of macroscale 3D scaffolds should comprehensively consider their physicochemical and biological properties, such as porosity, stiffness, surface modification, cargo release kinetics, biocompatibility, biodegradability, and delivery modes. To date, increasing studies have focused on the relationships between these parameters and the biosystems which will guide/assist the 3D biomaterial scaffolds to achieve the desired immunotherapeutic outcomes. In this review, by highlighting some recent achievements, we summarized the latest advances in the development of various 3D scaffolds as niches for cancer immunotherapy. We also discussed opportunities, challenges, current trends, and future perspectives in 3D macroscale biomaterial scaffold-assisted local treatment strategies. More importantly, this review put more efforts to illustrate how the 3D biomaterial systems affect to modulate antitumor immune activities, where we discussed how significant the roles and behaviours of 3D macroscale scaffolds towards in situ cancer immunotherapy in order to direct the design of 3D immunotherapeutic.
Collapse
Affiliation(s)
- Shuyan Han
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518057, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518057, China
| |
Collapse
|
25
|
Kim J, Choi Y, Kim DH, Yoon HY, Kim K. Injectable Hydrogel-Based Combination Cancer Immunotherapy for Overcoming Localized Therapeutic Efficacy. Pharmaceutics 2022; 14:1908. [PMID: 36145656 PMCID: PMC9502377 DOI: 10.3390/pharmaceutics14091908] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 02/05/2023] Open
Abstract
Various immunotherapeutic agents that can elicit antitumor immune responses have recently been developed with the potential for improved efficacy in treating cancer. However, insufficient delivery efficiency at the tumor site, along with severe side effects after systemic administration of these anticancer agents, have hindered their therapeutic application in cancer immunotherapy. Hydrogels that can be directly injected into tumor sites have been developed to help modulate or elicit antitumor responses. Based on the biocompatibility, degradability, and controllable mechanochemical properties of these injectable hydrogels, various types of immunotherapeutic agents, such as hydrophobic anticancer drugs, cytokines, antigens, and adjuvants, have been easily and effectively encapsulated, resulting in the successful elicitation of antitumor immune responses and the retention of long-term immunotherapeutic efficacy following administration. This review summarizes recent advances in combination immunotherapy involving injectable hydrogel-based chemoimmunotherapy, photoimmunotherapy, and radioimmunotherapy. Finally, we briefly discuss the current limitations and future perspectives on injectable hydrogels for the effective combination immunotherapy of tumors.
Collapse
Affiliation(s)
- Jeongrae Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seonbuk-gu, Seoul 02841, Korea
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 14 Gil 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Korea
| | - Yongwhan Choi
- Noxpharm Co. 924B, 14 Gil 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seonbuk-gu, Seoul 02841, Korea
| | - Hong Yeol Yoon
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 14 Gil 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Korea
| | - Kwangmeyung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seonbuk-gu, Seoul 02841, Korea
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 14 Gil 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Korea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
26
|
Zhang M, Liu X, Mao Y, He Y, Xu J, Zheng F, Tan W, Rong S, Chen Y, Jia X, Li H. Oxygen-Generating Hydrogels Overcome Tumor Hypoxia to Enhance Photodynamic/Gas Synergistic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27551-27563. [PMID: 35686947 DOI: 10.1021/acsami.2c02949] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hypoxic environment is a bottleneck of photodynamic therapy (PDT) in tumor treatment, as oxygen is the critical substrate for photosensitivity reaction. Herein, a sustained oxygen supply system based on cerium nanoparticles and hydrogel (GHCAC) was explored for enhanced synergistic PDT and gas therapy. Ceria nanoparticles were prepared as a drug carrier by self-assembly mediated by hyaluronic acid (HA), a targeting for CD44 on cervical cancer cells, followed by photosensitizer and l-arginine (l-Arg) loading. Then, the GHCAC system was developed by incorporating a prepared nanocarrier (HCePA) and O2-evolving agent calcium peroxide (CaO2) into the hydrogel (Gel) developed by a poloxamer. Gel in the system could moderately infiltrate H2O to react with CaO2 and generate sustained oxygen using the catalase-like activity of HCePA. The system could efficiently alleviate hypoxia in tumor environments for up to 7 days, meeting the "once injection, repeat irradiation" strategy and enhanced PDT efficacy. Besides, the generated singlet oxygen (1O2) in the PDT process could also oxidize l-Arg into high concentrations of nitric oxide for synergistic gas therapy. The developed oxygen supplied and drug delivery Gel system is a new strategy for synergistic PDT/gas therapy to overcome cervical cancer.
Collapse
Affiliation(s)
- Mi Zhang
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210001, China
| | - Xiaoguang Liu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210001, China
| | - Yinghua Mao
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210002, China
| | - Yuhang He
- Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210001, China
| | - Feng Zheng
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210002, China
| | - Weilong Tan
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210002, China
| | - Shu Rong
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210002, China
| | - Yonghong Chen
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210002, China
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210001, China
| | - Hong Li
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210002, China
| |
Collapse
|
27
|
Fan M, Li M, Wang X, Liao Y, Wang H, Rao J, Yang Y, Wang Q. Injectable Thermosensitive Iodine-Loaded Starch-g-poly(N-isopropylacrylamide) Hydrogel for Cancer Photothermal Therapy and Anti-Infection. Macromol Rapid Commun 2022; 43:e2200203. [PMID: 35477942 DOI: 10.1002/marc.202200203] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/23/2022] [Indexed: 11/10/2022]
Abstract
Although photothermal therapy (PTT) can effectively eliminate tumors, the normal tissues near tumors are inevitably damaged by heat and infected by bacteria, which greatly limits the therapeutic effect. In this work, an injectable thermosensitive hydrogel based on iodine-loaded starch-g-poly(N-isopropylacrylamide) (PNSI) is developed to overcome this problem. FTIR, 1 H NMR and UV-Vis spectra confirm the graft copolymerization of poly(N-isopropylacrylamide) with starch and the formation of "iodine-starch" complex. TEM images show PNSI polymer self-assembles into regular spherical nanogel with a size of ∼50 nm. The concentrated nanogel dispersion is a sol at room temperature and transforms to hydrogel at body temperature. Under NIR laser irradiation for 10 mins, the ΔT of the nanogel dispersion approachs about 20°C with excellent thermal stability and high cytotoxicity due to the photothermal effect of the "iodine-starch" complex. After intratumor injection, this injectable hydrogel efficiently inhibites the tumor growth using 808 nm laser irradiation. Furthermore, it can also suppress S. aureus infection in the wound post PTT due to the release of iodine, which promotes wound healing. Therefore, this injectable thermosensitive "iodine-starch" composite hydrogel with advantages of good biocompatible and easy preparation possesses potential application for tumor photothermal therapy and anti-bacterial infection. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Man Fan
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengyao Li
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiao Wang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yonggui Liao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hong Wang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jingyi Rao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yajiang Yang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qin Wang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
28
|
Almawash S, Osman SK, Mustafa G, El Hamd MA. Current and Future Prospective of Injectable Hydrogels-Design Challenges and Limitations. Pharmaceuticals (Basel) 2022; 15:371. [PMID: 35337169 PMCID: PMC8948902 DOI: 10.3390/ph15030371] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
Injectable hydrogels (IHs) are smart biomaterials and are the most widely investigated and versatile technologies, which can be either implanted or inserted into living bodies with minimal invasion. Their unique features, tunable structure and stimuli-responsive biodegradation properties make these IHs promising in many biomedical applications, including tissue engineering, regenerative medicines, implants, drug/protein/gene delivery, cancer treatment, aesthetic corrections and spinal fusions. In this review, we comprehensively analyze the current development of several important types of IHs, including all those that have received FDA approval, are under clinical trials or are available commercially on the market. We also analyze the structural chemistry, synthesis, bonding, chemical/physical crosslinking and responsive release in association with current prospective research. Finally, we also review IHs' associated future prospects, hurdles, limitations and challenges in their development, fabrication, synthesis, in situ applications and regulatory affairs.
Collapse
Affiliation(s)
- Saud Almawash
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; (G.M.); (M.A.E.H.)
| | - Shaaban K. Osman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt;
| | - Gulam Mustafa
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; (G.M.); (M.A.E.H.)
| | - Mohamed A. El Hamd
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; (G.M.); (M.A.E.H.)
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| |
Collapse
|
29
|
Liu Y, Ran Y, Ge Y, Raza F, Li S, Zafar H, Wu Y, Paiva-Santos AC, Yu C, Sun M, Zhu Y, Li F. pH-Sensitive Peptide Hydrogels as a Combination Drug Delivery System for Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14030652. [PMID: 35336026 PMCID: PMC8948763 DOI: 10.3390/pharmaceutics14030652] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 01/09/2023] Open
Abstract
Conventional antitumor chemotherapeutics generally have shortcomings in terms of dissolubility, selectivity and drug action time, and it has been difficult to achieve high antitumor efficacy with single-drug therapy. At present, combination therapy with two or more drugs is widely used in the treatment of cancer, but a shortcoming is that the drugs do not reach the target at the same time, resulting in a reduction in efficacy. Therefore, it is necessary to design a carrier that can release two drugs at the same site. We designed an injectable pH-responsive OE peptide hydrogel as a carrier material for the antitumor drugs gemcitabine (GEM) and paclitaxel (PTX) that can release drugs at the tumor site simultaneously to achieve the antitumor effect. After determining the optimal gelation concentration of the OE polypeptide, we conducted an in vitro release study to prove its pH sensitivity. The release of PTX from the OE hydrogel in the medium at pH 5.8 and pH 7.4 was 96.90% and 38.98% in 7 days. The release of GEM from the OE hydrogel in media with pH of 5.8 and 7.4 was 99.99% and 99.63% in 3 days. Transmission electron microscopy (TEM) and circular dichroism (CD) experiments were used to observe the microstructure of the peptides. The circular dichroism of OE showed a single negative peak shape when under neutral conditions, indicating a β-folded structure, while under acidic conditions, it presented characteristics of a random coil. Rheological experiments were used to investigate the mechanical strength of this peptide hydrogel. Furthermore, the treatment effect of the drug-loaded peptide hydrogel was demonstrated through in vitro and in vivo experiments. The results show that the peptide hydrogels have different structures at different pH values and are highly sensitive to pH. They can reach the tumor site by injection and are induced by the tumor microenvironment to release antitumor drugs slowly and continuously. This biologically functional material has a promising future in drug delivery for combination drugs.
Collapse
Affiliation(s)
- Yuanfen Liu
- Department of Pharmacy, Jiangsu Health Vocational College, Nanjing 211800, China;
| | - Yingchun Ran
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Department of Emergency, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China;
| | - Yu Ge
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (Y.G.); (Y.W.); (C.Y.); (M.S.)
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China;
- Correspondence: (F.R.); (Y.Z.); (F.L.)
| | - Shasha Li
- College of Pharmacy, Xinjiang Medical University, Ürümqi 830000, China;
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China;
| | - Yiqun Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (Y.G.); (Y.W.); (C.Y.); (M.S.)
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Chenyang Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (Y.G.); (Y.W.); (C.Y.); (M.S.)
| | - Meng Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (Y.G.); (Y.W.); (C.Y.); (M.S.)
| | - Ying Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (Y.G.); (Y.W.); (C.Y.); (M.S.)
- Correspondence: (F.R.); (Y.Z.); (F.L.)
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (Y.G.); (Y.W.); (C.Y.); (M.S.)
- Correspondence: (F.R.); (Y.Z.); (F.L.)
| |
Collapse
|
30
|
Liu Y, Geng Y, Yue B, Lo PC, Huang J, Jin H. Injectable Hydrogel as a Unique Platform for Antitumor Therapy Targeting Immunosuppressive Tumor Microenvironment. Front Immunol 2022; 12:832942. [PMID: 35111169 PMCID: PMC8801935 DOI: 10.3389/fimmu.2021.832942] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer immunotherapy can boost the immune response of patients to eliminate tumor cells and suppress tumor metastasis and recurrence. However, immunotherapy resistance and the occurrence of severe immune-related adverse effects are clinical challenges that remain to be addressed. The tumor microenvironment plays a crucial role in the therapeutic efficacy of cancer immunotherapy. Injectable hydrogels have emerged as powerful drug delivery platforms offering good biocompatibility and biodegradability, minimal invasion, convenient synthesis, versatility, high drug-loading capacity, controlled drug release, and low toxicity. In this review, we summarize the application of injectable hydrogels as a unique platform for targeting the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Yushuai Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Geng
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Beilei Yue
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR China
| | - Jing Huang
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
31
|
Coentro JQ, Di Nubila A, May U, Prince S, Zwaagstra J, Järvinen TAH, Zeugolis D. Dual drug delivery collagen vehicles for modulation of skin fibrosis in vitro. Biomed Mater 2022; 17. [PMID: 35176732 DOI: 10.1088/1748-605x/ac5673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/17/2022] [Indexed: 11/11/2022]
Abstract
Single molecule drug delivery systems have failed to yield functional therapeutic outcomes, triggering investigations into multi-molecular drug delivery vehicles. In the context of skin fibrosis, although multi-drug systems have been assessed, no system has assessed molecular combinations that directly and specifically reduce cell proliferation, collagen synthesis and transforming growth factor β1 (TGFβ1) expression. Herein, a core-shell collagen type I hydrogel system was developed for the dual delivery of a TGFβ trap, a soluble recombinant protein that inhibits TGFβ signalling, and Trichostatin A (TSA), a small molecule inhibitor of histone deacetylases. The antifibrotic potential of the dual delivery system was assessed in an in vitro skin fibrosis model induced by macromolecular crowding (MMC) and TGFβ1. SDS-PAGE and HPLC analyses revealed that ~ 50 % of the TGFβ trap and ~ 30 % of the TSA were released from the core and shell compartments, respectively, of the hydrogel system after 10 days (longest time point assessed) in culture. As a direct consequence of this slow release, the core (TGFβ trap) / shell (TSA) hydrogel system induced significantly (p < 0.05) lower than the control group (MMC and TGFβ1) collagen type I deposition (assessed via SDS-PAGE and immunocytochemistry), α smooth muscle actin (αSMA) expression (assessed via immunocytochemistry) and cellular proliferation (assessed via DNA quantification) and viability (assessed via calcein AM and ethidium homodimer-I staining) after 10 days in culture. On the other hand, direct TSA-TGFβ supplementation induced the lowest (p < 0.05) collagen type I deposition, αSMA expression and cellular proliferation and viability after 10 days in culture. Our results illustrate the potential of core-shell collagen hydrogel systems for sustained delivery of antifibrotic molecules.
Collapse
Affiliation(s)
- João Q Coentro
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Biomedical Sciences Building, Galway, Galway, IRELAND
| | - Alessia Di Nubila
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Biomedical Sciences Building, Galway, Galway, IRELAND
| | - Ulrike May
- Faculty of Medicine & Health Technology, Tampere University, Kalevantie 4, Tampere, 33014, FINLAND
| | - Stuart Prince
- Faculty of Medicine & Health Technology, Tampere University, Kalevantie 4, Tampere, 33014, FINLAND
| | - John Zwaagstra
- Human Health Therapeutics Research Centre, National Research Council Canada, Human Health Therapeutics Research Centre, Montreal, Quebec, K1A 0R6, CANADA
| | - Tero A H Järvinen
- Faculty of Medicine & Health Technology, Tampere University, Faculty of Medicine & Health Technology, Tampere, 33014, FINLAND
| | - Dimitrios Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, University College Dublin, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, Dublin, 4, IRELAND
| |
Collapse
|
32
|
Mohammadi M, Karimi M, Malaekeh-Nikouei B, Torkashvand M, Alibolandi M. Hybrid in situ- forming injectable hydrogels for local cancer therapy. Int J Pharm 2022; 616:121534. [PMID: 35124117 DOI: 10.1016/j.ijpharm.2022.121534] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/16/2022] [Accepted: 01/28/2022] [Indexed: 01/17/2023]
Abstract
Injectable in situ forming hydrogels are amongst the efficient local drug delivery systems for cancer therapy. Providing a 3D hydrogel network within the target tissue capable of sustained release of the chemotherapeutics made them attractive candidates for increasing the therapeutic index. Remarkable swelling properties, mechanical strength, biocompatibility, wide composition variety and tunable polymeric moieties have led to preparation of injectable hydrogels which also could be used as cavity adaptive chemotherapeutic-loaded implants to prevent post -surgical cancer recurrence. Implementation of various polymers, nanoparticles, peptide and proteins and different crosslinking chemistry facilitated the fabrication of hybrid hydrogels with favorable characteristics such as stimuli sensitive platforms or multifunctional systems. In the current review, we focused on design and fabrication strategies of injectable in situ forming hydrogels and summarized recent hybrid hydrogels used for local cancer therapy.
Collapse
Affiliation(s)
- Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Malihe Karimi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bizhan Malaekeh-Nikouei
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Torkashvand
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
33
|
Liao Y, Xie L, Ye J, Chen T, Huang T, Shi L, Yuan M. Sprayable Hydrogel for Biomedical Applications. Biomater Sci 2022; 10:2759-2771. [PMID: 35445676 DOI: 10.1039/d2bm00338d] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymeric hydrogels have extraordinary potential to be utilized for biomedical applications. Recently, sprayable hydrogels have received increasing attention for their biocompatibility, degradability, tunable mechanical properties and rapid spray-filming abilities. In...
Collapse
Affiliation(s)
- Yingying Liao
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Luoyijun Xie
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Jiahui Ye
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Tong Chen
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Tong Huang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Leilei Shi
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
34
|
Locally Injectable Hydrogels for Tumor Immunotherapy. Gels 2021; 7:gels7040224. [PMID: 34842684 PMCID: PMC8628785 DOI: 10.3390/gels7040224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
Hydrogel-based local delivery systems provide a good delivery platform for cancer immunotherapy. Injectable hydrogels can directly deliver antitumor drugs to the tumor site to reduce systemic toxicity and achieve low-dose amplification immunotherapy. Therefore, it may overcome the problems of low drug utilization rate and the systemic side effects in cancer immunotherapy through systemic immune drugs, and it provides simple operation and little invasion at the same time. This study aimed to review the research progress of injectable hydrogels in tumor immunotherapy in recent years. Moreover, the local delivery of multiple drugs using injectable hydrogels in tumors is introduced to achieve single immunotherapy, combined chemo-immunotherapy, combined radio-immunotherapy, and photo-immunotherapy. Finally, the application of hydrogels in tumor immunotherapy is summarized, and the challenges and prospects for injectable hydrogels in tumor immunotherapy are proposed.
Collapse
|
35
|
Gavilán H, Avugadda SK, Fernández-Cabada T, Soni N, Cassani M, Mai BT, Chantrell R, Pellegrino T. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem Soc Rev 2021; 50:11614-11667. [PMID: 34661212 DOI: 10.1039/d1cs00427a] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Magnetic hyperthermia (MHT) is a therapeutic modality for the treatment of solid tumors that has now accumulated more than 30 years of experience. In the ongoing MHT clinical trials for the treatment of brain and prostate tumors, iron oxide nanoparticles are employed as intra-tumoral MHT agents under a patient-safe 100 kHz alternating magnetic field (AMF) applicator. Although iron oxide nanoparticles are currently approved by FDA for imaging purposes and for the treatment of anemia, magnetic nanoparticles (MNPs) designed for the efficient treatment of MHT must respond to specific physical-chemical properties in terms of magneto-energy conversion, heat dose production, surface chemistry and aggregation state. Accordingly, in the past few decades, these requirements have boosted the development of a new generation of MNPs specifically aimed for MHT. In this review, we present an overview on MNPs and their assemblies produced via different synthetic routes, focusing on which MNP features have allowed unprecedented heating efficiency levels to be achieved in MHT and highlighting nanoplatforms that prevent magnetic heat loss in the intracellular environment. Moreover, we review the advances on MNP-based nanoplatforms that embrace the concept of multimodal therapy, which aims to combine MHT with chemotherapy, radiotherapy, immunotherapy, photodynamic or phototherapy. Next, for a better control of the therapeutic temperature at the tumor, we focus on the studies that have optimized MNPs to maintain gold-standard MHT performance and are also tackling MNP imaging with the aim to quantitatively assess the amount of nanoparticles accumulated at the tumor site and regulate the MHT field conditions. To conclude, future perspectives with guidance on how to advance MHT therapy will be provided.
Collapse
Affiliation(s)
- Helena Gavilán
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | | | | | - Nisarg Soni
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Marco Cassani
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Binh T Mai
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Roy Chantrell
- Department of Physics, University of York, York YO10 5DD, UK
| | | |
Collapse
|
36
|
Shi Y, Li D, He C, Chen X. Design of an Injectable Polypeptide Hydrogel Depot Containing the Immune Checkpoint Blocker Anti-PD-L1 and Doxorubicin to Enhance Antitumor Combination Therapy. Macromol Biosci 2021; 21:e2100049. [PMID: 33871152 DOI: 10.1002/mabi.202100049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/29/2021] [Indexed: 12/11/2022]
Abstract
Combination therapy can be used to enhance the therapeutic response and decrease side effects during cancer treatment. In this study, a system is developed to locally deliver the immune checkpoint blockade antibody targeting programmed death-ligand 1 (anti-PD-L1 or aPD-L1) and doxorubicin (Dox), by an injectable, biocompatible polypeptide hydrogel as a drug depot. The localized and sustained release of Dox after the intratumoral injection of the co-loaded hydrogel induces immunogenic tumor cell death, thus promoting an antitumor immunological response. The tumor inhibitory effect is significantly enhanced by the simultaneous release of aPD-L1 at the tumor site thanks to its action on the inhibition of the PD-1/PD-L1 pathway and restoration of the tumor-killing effect of cytotoxic T cells. Treatment of the B16F10 melanoma model with the aPD-L1 and Dox co-loaded hydrogel leads to a remarkable inhibition of tumor progression and prolongation of animal survival.
Collapse
Affiliation(s)
- Yingge Shi
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Dong Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chaoliang He
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
37
|
Ma H, He C, Chen X. Injectable Hydrogels as Local Depots at Tumor Sites for Antitumor Immunotherapy and Immune-Based Combination Therapy. Macromol Biosci 2021; 21:e2100039. [PMID: 33818918 DOI: 10.1002/mabi.202100039] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Indexed: 12/17/2022]
Abstract
Despite the encouraging clinical responses of several human cancers to immunotherapy, the efficacy of this treatment remains limited by variable objective response rates and severe systemic immune-related adverse events. To overcome these issues, injectable hydrogels have been developed as local depots that permit the sustained release of single or multiple immunotherapy agents, including traditional immunomodulatory factors, immune checkpoint blocking antibodies, and exogenous immune cells. The antitumor efficacy of immunotherapy can also be enhanced by its combination with other therapeutic approaches, including chemotherapy, radiotherapy, and phototherapy. Despite local treatment strategies, potent systemic antitumor immune responses with low systemic toxicity can be obtained, leading to significant local and abscopal tumor-killing, reduced tumor metastasis, and the prevention of tumor recurrence. This review highlights recent progress in injectable hydrogel-based local depots for tumor immunotherapy and immune-based combination therapy. Moreover, the proposed mechanisms responsible for these antitumor effects are discussed.
Collapse
Affiliation(s)
- Hongyu Ma
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
38
|
Danewalia S, Singh K. Bioactive glasses and glass-ceramics for hyperthermia treatment of cancer: state-of-art, challenges, and future perspectives. Mater Today Bio 2021; 10:100100. [PMID: 33778466 PMCID: PMC7985406 DOI: 10.1016/j.mtbio.2021.100100] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 01/04/2023] Open
Abstract
Bioactive glasses and glass-ceramics are well-proven potential biomaterials for bone-tissue engineering applications because of their compositional flexibility. Many research groups have been focused to explore the utility of bioactive glass-ceramics beyond bone engineering to hyperthermia treatment of cancer. Hyperthermia refers to raising the temperature of tumor close to 44°C at which malignant cells perish with negligible harm to normal cells. Hyperthermia can be employed by many means such as by ultrasonic waves, electromagnetic waves, infrared radiations, alternating magnetic fields, etc. Magnetic bioactive glass-ceramics are advantageous over other potential candidates for thermoseeds such as nanofluids, superparamagnetic nanoparticles because they can bond not only to the natural bone but also with soft tissues in few cases, which helps regenerating the affected part due to its bioactive nature. Strict restrictions on clinical settings ( H × f < 5 × 10 9 ) force the research activities to be more focused on material characteristics to raise the implant temperature to required ranges. Lots of efforts have been made in past years to tackle these challenges and design best-suited glass-ceramics for hyperthermia treatment. This review aims to provide essential information on the concept of hyperthermia treatment of cancer and recent developments in the field of bioactive glass-ceramics for cancer treatment. The advantages and disadvantages of magnetic glass-ceramics over other potential thermoseed materials are highlighted. In this field, the major challenges are to develop magnetic glasses, which have fast and bulk crystallization with optimized magnetic phases with lower Curie and Neel temperatures.
Collapse
Affiliation(s)
- S.S. Danewalia
- Division of Research and Development, Lovely Professional University, Phagwara, 144411, India
| | - K. Singh
- School of Physics & Materials Science, Thapar Institute of Engineering and Technology, Patiala, 147004, India
| |
Collapse
|
39
|
Lee SY, Yang M, Seo JH, Jeong DI, Hwang C, Kim HJ, Lee J, Lee K, Park J, Cho HJ. Serially pH-Modulated Hydrogels Based on Boronate Ester and Polydopamine Linkages for Local Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2189-2203. [PMID: 33416318 DOI: 10.1021/acsami.0c16199] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Elaborately and serially pH-modulated hydrogels possessing optimized viscoelastic natures for short gelation time and single syringe injection were designed for peritumoral injection of an anticancer agent. Boronate ester bonds between phenylboronic acid (PBA) (installed in HA-PBA (HP)) and dopamine (included in HA-dopamine (HD)) along with self-polymerization of dopamine (via interactions between HD conjugates) were introduced as the main cross-linking strategies of a hyaluronic acid (HA) hydrogel. Considering pKa values (8.0-9.5) of PBA and dopamine, the pH of each polymer dispersion was controlled elaborately for injection through a single syringe, and the final pH was tuned nearby the physiological pH (pH 7.8). The shear-thinning behavior, self-healing property, and single syringe injectability of a designed hydrogel cross-linked nearby physiological pH may provide its convenient application to peritumoral injection and prolonged retention in local cancer therapy. Erlotinib (ERT) was encapsulated in a microsphere (MS), and it was further embedded in an HP/HD-based hydrogel for sustained and locoregional delivery. A rheologically tuned hydrogel containing an ERT MS exhibited superior tumor-suppressive efficiencies compared to the other groups in A549 tumor-bearing mice. A designed injectable hydrogel through a single syringe system may be efficiently applied to local cancer therapy with lower toxicities to healthy organs.
Collapse
Affiliation(s)
- Song Yi Lee
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Mingyu Yang
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Ji-Hye Seo
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Da In Jeong
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - ChaeRim Hwang
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Han-Jun Kim
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, California 90095, United States
- Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Junmin Lee
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, California 90095, United States
- Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - KangJu Lee
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, California 90095, United States
- Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - JiHye Park
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
40
|
Rossi SM, Murray T, McDonough L, Kelly H. Loco-regional drug delivery in oncology: current clinical applications and future translational opportunities. Expert Opin Drug Deliv 2020; 18:607-623. [PMID: 33253052 DOI: 10.1080/17425247.2021.1856074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Drug-based treatment regimens for cancer are often associated with off-target toxic side effects and low penetration of the drug at the tumor site leading to patient morbidity and limited efficacy. Loco-regional drug delivery has the potential to increase efficacy while concomitantly reducing toxicity.Areas covered: Clinical applications using loco-regional delivery include intra-arterial drug delivery in retinoblastoma, direct intra-tumoral (IT) injection of ethanol for ablation in hepatocellular carcinoma (HCC) and the use of HIPEC in peritoneal carcinomas. In recent years, there has been a significant increase in both approved products and clinical trials, with a particular emphasis on drug delivery platforms such as drug-eluting beads for HCC and hydrogel platforms for intravesical delivery in bladder cancer.Expert opinion: Development of loco-regional drug-delivery systems has been slow, limited by weak clinical data for early applications and challenges relating to dosing, delivery and retention of drugs at the site of action. However, there is increasing focus on the potential of loco-regional drug delivery when combined with bespoke drug-delivery platforms. With the growth in immunotherapies, the use of IT delivery to drive priming of the anti-tumor response has opened up a new field of opportunity for loco-regional drug delivery.
Collapse
Affiliation(s)
- Seona M Rossi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Timothy Murray
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liam McDonough
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Helena Kelly
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| |
Collapse
|
41
|
Goonoo N, Boodhun A, Ziman M, Gray E, Bhaw-Luximon A. Repurposing nano-enabled polymeric scaffolds for tumor-wound management and 3D tumor engineering. Regen Med 2020; 15:2229-2247. [PMID: 33284640 DOI: 10.2217/rme-2020-0072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The main challenges of cancer drugs are toxicity, effect on wound healing/patient outcome and in vivo instability. Polymeric scaffolds have been used separately for tissue regeneration in wound healing and as anticancer drug releasing devices. Bringing these two together in bifunctional scaffolds can provide a tool for postoperative local tumor management by promoting healthy tissue regrowth and to deliver anticancer drugs. Another addition to the versatility of polymeric scaffold is its recently discovered ability to act as 3D cell culture models for in vitro isolation and amplification of cancer cells for personalized drug screening and to recapitulate the tumor microenvironment. This review focuses on the repurposing of 3D polymeric scaffolds for local tumor-wound management and development of in vitro cell culture models.
Collapse
Affiliation(s)
- Nowsheen Goonoo
- Biomaterials Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research, MSIRI Building, University of Mauritius, 80837 Réduit, Mauritius
| | - Ajmal Boodhun
- Biomaterials Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research, MSIRI Building, University of Mauritius, 80837 Réduit, Mauritius
| | - Melanie Ziman
- School of Medical & Health Sciences, Edith Cowan University, Perth, WA 6027, Australia
| | - Elin Gray
- School of Medical & Health Sciences, Edith Cowan University, Perth, WA 6027, Australia
| | - Archana Bhaw-Luximon
- Biomaterials Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research, MSIRI Building, University of Mauritius, 80837 Réduit, Mauritius
| |
Collapse
|
42
|
Gao Y, Gao D, Shen J, Wang Q. A Review of Mesoporous Silica Nanoparticle Delivery Systems in Chemo-Based Combination Cancer Therapies. Front Chem 2020; 8:598722. [PMID: 33330389 PMCID: PMC7732422 DOI: 10.3389/fchem.2020.598722] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/20/2020] [Indexed: 01/11/2023] Open
Abstract
Chemotherapy is an important anti-tumor treatment in clinic to date, however, the effectiveness of traditional chemotherapy is limited by its poor selectivity, high systemic toxicity, and multidrug resistance. In recent years, mesoporous silica nanoparticles (MSNs) have become exciting drug delivery systems (DDS) due to their unique advantages, such as easy large-scale production, adjustable uniform pore size, large surface area and pore volumes. While mesoporous silica-based DDS can improve chemotherapy to a certain extent, when used in combination with other cancer therapies MSN based chemotherapy exhibits a synergistic effect, greatly improving therapeutic outcomes. In this review, we discuss the applications of MSN DDS for a diverse range of chemotherapeutic combination anti-tumor therapies, including phototherapy, gene therapy, immunotherapy and other less common modalities. Furthermore, we focus on the characteristics of each nanomaterial and the synergistic advantages of the combination therapies. Lastly, we examine the challenges and future prospects of MSN based chemotherapeutic combination therapies.
Collapse
Affiliation(s)
- Ying Gao
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, China
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Dongruo Gao
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jie Shen
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Qiwen Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
43
|
Hao Y, Liu Y, Wu Y, Tao N, Lou D, Li J, Sun X, Liu YN. A robust hybrid nanozyme@hydrogel platform as a biomimetic cascade bioreactor for combination antitumor therapy. Biomater Sci 2020; 8:1830-1839. [PMID: 32057056 DOI: 10.1039/c9bm01837a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of highly effective and minimally invasive approaches for cancer treatment is the ultimate goal. Herein, an injectable hybrid hydrogel as a biomimetic cascade bioreactor is designed for combination antitumor therapy by providing spatiotemporally-controlled and long-term delivery of therapeutic agents. This hybrid nanozyme@hydrogel (hPB@gellan) is doped with Prussian blue (PB) nanoparticles via the in situ nanoprecipitation method in the polysaccharide gellan matrix. The obtained PB nanoparticles have a small size of 10 nm and play dual roles as a photothermal agent with a photothermal conversion efficiency of 59.6% and as a nanozyme to decompose hydrogen peroxide into oxygen. By incorporating glucose oxidase (GOD) into the hybrid hydrogel, a cascade bioreactor is formed for PB-promoted glucose consumption. Owing to its shear-thinning and self-recovery properties, the hybrid hydrogel is locally administered into tumors, and shows long-term resistance against body clearance and metabolism. The in vivo antitumor results demonstrate that the tumors in the group of combined photothermal and starvation therapy (GOD/hPB@gellan + NIR) are greatly eliminated with a tumor suppression rate of 99.7% 22 days after the treatment. The outstanding antitumor performance is attributed to the main attack by NIR-triggered hyperthermia and the holding attack by GOD-mediated starvation from the catalytic bioreactor of the hybrid hydrogel. Taking into consideration the advantages of biosafety, simple synthetic approaches and facile manipulation in treatment, the hybrid hydrogel has great potential for clinical translation.
Collapse
Affiliation(s)
- Yijun Hao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Yandi Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Yingjiao Wu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Na Tao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Dongyang Lou
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Juan Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Xiaoyi Sun
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
44
|
Zheng A, Wu D, Fan M, Wang H, Liao Y, Wang Q, Yang Y. Injectable zwitterionic thermosensitive hydrogels with low-protein adsorption and combined effect of photothermal-chemotherapy. J Mater Chem B 2020; 8:10637-10649. [PMID: 33147312 DOI: 10.1039/d0tb01763a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Injectable hydrogels have been developed as biomedical materials in various fields but the biofouling on their surface limits applications in vivo. In this work, a zwitterionic structure was introduced into an injectable hydrogel based on thermosensitive nanogels to overcome the foreign body reaction. The hydrodynamic diameter of the resultant poly(N-isopropylacrylamide-co-sulfobetaine methacrylate) (PNS) nanogels was ca. 105 nm. The aqueous dispersion with a high content of PNS nanogels showed a flowable sol state at room temperature, and turned into a hydrogel in situ at ∼36 °C due to the thermosensitivity of the PNS nanogels. In particular, the resulting hydrogel exhibited lower biofouling both in vitro and in vivo in comparison with similar hydrogels without a zwitterionic structure. Polydopamine nanoparticles (PDA NPs) as a photothermal agent and an anti-tumour drug could be easily co-loaded in the injectable hydrogel. Under near-infrared (NIR) irradiation for 10 min, the temperature of the PNS system containing PDA NPs could reach ca. 38 °C. The drug release from the in situ-forming hydrogel could be accelerated by NIR laser irradiation, and showed a sustainable release behavior and adjustability. The results of intratumoral injection of the as-prepared injectable hydrogel containing PDA NPs and an anti-tumour drug showed significant anticancer effects combining photothermal therapy and local chemotherapy. This constructed injectable zwitterionic thermosensitive hydrogel is easy to use with the advantage of low-fouling and may become a promising platform for various biomedical applications.
Collapse
Affiliation(s)
- Anbi Zheng
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Chen M, Tan Y, Dong Z, Lu J, Han X, Jin Q, Zhu W, Shen J, Cheng L, Liu Z, Chen Q. Injectable Anti-inflammatory Nanofiber Hydrogel to Achieve Systemic Immunotherapy Post Local Administration. NANO LETTERS 2020; 20:6763-6773. [PMID: 32787149 DOI: 10.1021/acs.nanolett.0c02684] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite the great promise achieved by immune checkpoint blockade (ICB) therapy in harnessing the immune system to combat different tumors, limitations such as low objective response rates and adverse effects remain to be resolved. Here, an anti-inflammatory nanofiber hydrogel self-assembled by steroid drugs is developed for local delivery of antiprogrammed cell death protein ligand 1 (αPDL1). Interestingly, on the one hand this carrier-free system based on steroid drugs can reprogram the pro-tumoral immunosuppressive tumor microenvironment (TME) to antitumoral TME; on the other hand, it would serve as a reservoir for sustained release of αPDL1 so as to synergistically boost the immune system. By local injection of such αPDL1-loaded hydrogel, effective therapeutic effects were observed in inhibiting both local tumors and abscopal tumors without any treatment. This work presents a unique hydrogel-based delivery system using clinically approved drugs, showing promise in improving the objective response rate of ICB therapy and minimizing its systemic toxicity.
Collapse
Affiliation(s)
- Muchao Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Yanjun Tan
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Ziliang Dong
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Jiaqi Lu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Xiao Han
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Qiutong Jin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Wenjun Zhu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Jingjing Shen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Liang Cheng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| |
Collapse
|
46
|
Selenium and dopamine-crosslinked hyaluronic acid hydrogel for chemophotothermal cancer therapy. J Control Release 2020; 324:750-764. [DOI: 10.1016/j.jconrel.2020.04.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 01/01/2023]
|
47
|
Schneible JD, Young AT, Daniele MA, Menegatti S. Chitosan Hydrogels for Synergistic Delivery of Chemotherapeutics to Triple Negative Breast Cancer Cells and Spheroids. Pharm Res 2020; 37:142. [PMID: 32661774 PMCID: PMC7983306 DOI: 10.1007/s11095-020-02864-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE This study aimed to develop a hydrogel system for treating aggressive triple negative breast cancer (TNBC) via kinetically-controlled delivery of the synergistic drug pair doxorubicin (DOX) and gemcitabine (GEM). A 2D assay was adopted to evaluate therapeutic efficacy by determining combination index (CI), and a 3D assay using cancer spheroids was implemented to assess the potential for translation in vivo. METHODS The release of DOX and GEM from an acetylated-chitosan (ACS, degree of acetylation χAc = 40 ± 5%) was characterized to identify a combined drug loading that affords release kinetics and dose that are therapeutically synergistic. The selected DOX/GEM-ACS formulation was evaluated in vitro with 2-D and 3-D models of TNBC to determine the combination index (CI) and the tumor volume reduction, respectively. RESULTS Therapeutically desired release dosages and kinetics of GEM and DOX were achieved. When evaluated with a 2-D model of TNBC, the hydrogel afforded a CI of 0.14, indicating a stronger synergism than concurrent administration of DOX and GEM (CI = 0.23). Finally, the therapeutic hydrogel accomplished a notable volume reduction of the cancer spheroids (up to 30%), whereas the corresponding dosages of free drugs only reduced growth rate. CONCLUSIONS The ACS hydrogel delivery system accomplishes drug release kinetics and molar ratio that affords strong therapeutically synergism. These results, in combination with the choice of ACS as affordable and highly abundant source material, provide a strong pre-clinical demonstration of the potential of the proposed system for complementing surgical resection of aggressive solid tumors.
Collapse
Affiliation(s)
- John D Schneible
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA
| | - Ashlyn T Young
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, North Carolina, USA
| | - M A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, North Carolina, USA.
- Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Drive, Raleigh, North Carolina, USA.
| | - S Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
- Biomanufacturing Training and Education Center, North Carolina State University, 850 Oval Dr, Raleigh, North Carolina, USA.
| |
Collapse
|
48
|
Tao N, Liu Y, Wu Y, Li X, Li J, Sun X, Chen S, Liu YN. Minimally Invasive Antitumor Therapy Using Biodegradable Nanocomposite Micellar Hydrogel with Functionalities of NIR-II Photothermal Ablation and Vascular Disruption. ACS APPLIED BIO MATERIALS 2020; 3:4531-4542. [DOI: 10.1021/acsabm.0c00465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Na Tao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Yandi Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Yingjiao Wu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Xilong Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Juan Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Xiaoyi Sun
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, P.R. China
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| |
Collapse
|
49
|
Strasser P, Teasdale I. Main-Chain Phosphorus-Containing Polymers for Therapeutic Applications. Molecules 2020; 25:E1716. [PMID: 32276516 PMCID: PMC7181247 DOI: 10.3390/molecules25071716] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
Polymers in which phosphorus is an integral part of the main chain, including polyphosphazenes and polyphosphoesters, have been widely investigated in recent years for their potential in a number of therapeutic applications. Phosphorus, as the central feature of these polymers, endears the chemical functionalization, and in some cases (bio)degradability, to facilitate their use in such therapeutic formulations. Recent advances in the synthetic polymer chemistry have allowed for controlled synthesis methods in order to prepare the complex macromolecular structures required, alongside the control and reproducibility desired for such medical applications. While the main polymer families described herein, polyphosphazenes and polyphosphoesters and their analogues, as well as phosphorus-based dendrimers, have hitherto predominantly been investigated in isolation from one another, this review aims to highlight and bring together some of this research. In doing so, the focus is placed on the essential, and often mutual, design features and structure-property relationships that allow the preparation of such functional materials. The first part of the review details the relevant features of phosphorus-containing polymers in respect to their use in therapeutic applications, while the second part highlights some recent and innovative applications, offering insights into the most state-of-the-art research on phosphorus-based polymers in a therapeutic context.
Collapse
Affiliation(s)
- Paul Strasser
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| |
Collapse
|
50
|
Lv Q, Yu S, Quan F, He C, Chen X. Thermosensitive Polypeptide Hydrogels Co‐Loaded with Two Anti‐Tumor Agents to Reduce Multi‐Drug Resistance and Enhance Local Tumor Treatment. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qiang Lv
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
| | - Shuangjiang Yu
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 P. R. China
| | - Fenli Quan
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|