1
|
Ye Z, Sun L, Xiang Q, Hao Y, Liu H, He Q, Yang X, Liao W. Advancements of Biomacromolecular Hydrogel Applications in Food Nutrition and Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23689-23708. [PMID: 39410660 DOI: 10.1021/acs.jafc.4c05903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Hydrogels exhibit remarkable degradability, biocompatibility and functionality, which position them as highly promising materials for applications within the food and pharmaceutical industries. Although many relevant studies on hydrogels have been reported in the chemical industry, materials, and other fields, there have been few reviews on their potential applications in food nutrition and human health. This study aims to address this gap by reviewing the functional properties of hydrogels and assessing their value in terms of food nutrition and human health. The use of hydrogels in preserving bioactive ingredients, food packaging and food distribution is delved into specifically in this review. Hydrogels can serve as cutting-edge materials for food packaging and delivery, ensuring the preservation of nutritional activity within food products, facilitating targeted delivery of bioactive compounds and regulating the digestion and absorption processes in the human body, thereby promoting human health. Moreover, hydrogels find applications in in vitro cell and tissue culture, human tissue repair, as well as chronic disease prevention and treatment. These broad applications have attracted great attention in the fields of human food nutrition and health. Ultimately, this paper serves as a valuable reference for further utilization and exploration of hydrogels in these respective fields.
Collapse
Affiliation(s)
- Zichong Ye
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Linye Sun
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Qianru Xiang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Yuting Hao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Hongji Liu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Qi He
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, P. R. China
| | - Xingfen Yang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, P. R. China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| |
Collapse
|
2
|
Santos F, Marto-Costa C, Branco AC, Oliveira AS, Galhano Dos Santos R, Salema-Oom M, Diaz RL, Williams S, Colaço R, Figueiredo-Pina C, Serro AP. Tribomechanical Properties of PVA/Nomex ® Composite Hydrogels for Articular Cartilage Repair. Gels 2024; 10:514. [PMID: 39195043 DOI: 10.3390/gels10080514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Due to the increasing prevalence of articular cartilage diseases and limitations faced by current therapeutic methodologies, there is an unmet need for new materials to replace damaged cartilage. In this work, poly(vinyl alcohol) (PVA) hydrogels were reinforced with different amounts of Nomex® (known for its high mechanical toughness, flexibility, and resilience) and sterilized by gamma irradiation. Samples were studied concerning morphology, chemical structure, thermal behavior, water content, wettability, mechanical properties, and rheological and tribological behavior. Overall, it was found that the incorporation of aramid nanostructures improved the hydrogel's mechanical performance, likely due to the reinforcement's intrinsic strength and hydrogen bonding to PVA chains. Additionally, the sterilization of the materials also led to superior mechanical properties, possibly related to the increased crosslinking density through the hydrogen bonding caused by the irradiation. The water content, wettability, and tribological performance of PVA hydrogels were not compromised by either the reinforcement or the sterilization process. The best-performing composite, containing 1.5% wt. of Nomex®, did not induce cytotoxicity in human chondrocytes. Plugs of this hydrogel were inserted in porcine femoral heads and tested in an anatomical hip simulator. No significant changes were observed in the hydrogel or cartilage, demonstrating the material's potential to be used in cartilage replacement.
Collapse
Affiliation(s)
- Francisco Santos
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Carolina Marto-Costa
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Monte da Caparica, 2829-511 Almada, Portugal
| | - Ana Catarina Branco
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Monte da Caparica, 2829-511 Almada, Portugal
- Escola Superior de Tecnologia de Setúbal, Instituto Politécnico de Setúbal, 2910-761 Setúbal, Portugal
| | - Andreia Sofia Oliveira
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Monte da Caparica, 2829-511 Almada, Portugal
- Instituto de Engenharia Mecânica (IDMEC), Department of Mechanical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Rui Galhano Dos Santos
- CERENA-Centre for Natural Resources and the Environment, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Madalena Salema-Oom
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Monte da Caparica, 2829-511 Almada, Portugal
| | - Roberto Leonardo Diaz
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Woodhouse, Leeds LS2 9JT, UK
| | - Sophie Williams
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Woodhouse, Leeds LS2 9JT, UK
| | - Rogério Colaço
- Instituto de Engenharia Mecânica (IDMEC), Department of Mechanical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Célio Figueiredo-Pina
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Monte da Caparica, 2829-511 Almada, Portugal
- Escola Superior de Tecnologia de Setúbal, Instituto Politécnico de Setúbal, 2910-761 Setúbal, Portugal
- CeFEMA-Center of Physiscs and Engineering of Advanced Materials, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Ana Paula Serro
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Monte da Caparica, 2829-511 Almada, Portugal
| |
Collapse
|
3
|
Randhawa A, Dutta SD, Ganguly K, Patil TV, Lim KT. Manufacturing 3D Biomimetic Tissue: A Strategy Involving the Integration of Electrospun Nanofibers with a 3D-Printed Framework for Enhanced Tissue Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309269. [PMID: 38308170 DOI: 10.1002/smll.202309269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Indexed: 02/04/2024]
Abstract
3D printing and electrospinning are versatile techniques employed to produce 3D structures, such as scaffolds and ultrathin fibers, facilitating the creation of a cellular microenvironment in vitro. These two approaches operate on distinct working principles and utilize different polymeric materials to generate the desired structure. This review provides an extensive overview of these techniques and their potential roles in biomedical applications. Despite their potential role in fabricating complex structures, each technique has its own limitations. Electrospun fibers may have ambiguous geometry, while 3D-printed constructs may exhibit poor resolution with limited mechanical complexity. Consequently, the integration of electrospinning and 3D-printing methods may be explored to maximize the benefits and overcome the individual limitations of these techniques. This review highlights recent advancements in combined techniques for generating structures with controlled porosities on the micro-nano scale, leading to improved mechanical structural integrity. Collectively, these techniques also allow the fabrication of nature-inspired structures, contributing to a paradigm shift in research and technology. Finally, the review concludes by examining the advantages, disadvantages, and future outlooks of existing technologies in addressing challenges and exploring potential opportunities.
Collapse
Affiliation(s)
- Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| |
Collapse
|
4
|
Zhang J, Liu L, Shen R, Lou X. Construction of organ of Corti organoid to study the effects of berberine sulfate on damaged auditory cells. J Biomed Mater Res B Appl Biomater 2024; 112:e35439. [PMID: 38923766 DOI: 10.1002/jbm.b.35439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/07/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
Sensorineural hearing loss (SNHL) is mainly caused by injury or loss of hair cells (HCs) and associated spiral ganglion neurons (SGNs) in the inner ear. At present, there is still no effective treatment for SNHL in clinic. Recently, advances in organoid bring a promising prospect for research and treatment of SNHL. Meanwhile, three-dimensional (3D) printing provides a tremendous opportunity to construct versatile organoids for tissue engineering and regenerative medicine. In this study, gelatin (Gel), sodium alginate (SA), and polyvinyl alcohol (PVA) were used to fabricate biomimetic scaffold through 3D printing. The organ of Corti derived from neonatal mice inner ear was seeded on the PVA/Gel/SA scaffold to construct organ of Corti organoid. Then, the organ of Corti organoid was used to study the potential protective effects of berberine sulfate on neomycin-juried auditory HCs and SGNs. The results showed that the PVA/Gel/SA biomimetic 3D scaffolds had good cytocompatibilities and mechanical properties. The constructed organoid could maintain organ of Corti activity well in vitro. In addition, the injury intervention results showed that berberine sulfate could significantly inhibit neomycin-induced HC and SGN damage. This study suggests that the fabricated organoid is highly biomimetic to the organ of Corti, which may provide an effective model for drug development, cell and gene therapy for SNHL.
Collapse
Affiliation(s)
- Junming Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, People's Republic of China
| | - Li Liu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, People's Republic of China
| | - Rong Shen
- Department of Geriatrics, Yueyang Hosptial of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiangxin Lou
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Zhang H, Zhou Z, Zhang F, Wan C. Hydrogel-Based 3D Bioprinting Technology for Articular Cartilage Regenerative Engineering. Gels 2024; 10:430. [PMID: 39057453 PMCID: PMC11276275 DOI: 10.3390/gels10070430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/09/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Articular cartilage is an avascular tissue with very limited capacity of self-regeneration. Trauma or injury-related defects, inflammation, or aging in articular cartilage can induce progressive degenerative joint diseases such as osteoarthritis. There are significant clinical demands for the development of effective therapeutic approaches to promote articular cartilage repair or regeneration. The current treatment modalities used for the repair of cartilage lesions mainly include cell-based therapy, small molecules, surgical approaches, and tissue engineering. However, these approaches remain unsatisfactory. With the advent of three-dimensional (3D) bioprinting technology, tissue engineering provides an opportunity to repair articular cartilage defects or degeneration through the construction of organized, living structures composed of biomaterials, chondrogenic cells, and bioactive factors. The bioprinted cartilage-like structures can mimic native articular cartilage, as opposed to traditional approaches, by allowing excellent control of chondrogenic cell distribution and the modulation of biomechanical and biochemical properties with high precision. This review focuses on various hydrogels, including natural and synthetic hydrogels, and their current developments as bioinks in 3D bioprinting for cartilage tissue engineering. In addition, the challenges and prospects of these hydrogels in cartilage tissue engineering applications are also discussed.
Collapse
Affiliation(s)
- Hongji Zhang
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.Z.); (Z.Z.); (F.Z.)
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine (Shenzhen Base), Ministry of Education, School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Zheyuan Zhou
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.Z.); (Z.Z.); (F.Z.)
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine (Shenzhen Base), Ministry of Education, School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Fengjie Zhang
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.Z.); (Z.Z.); (F.Z.)
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine (Shenzhen Base), Ministry of Education, School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Chao Wan
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.Z.); (Z.Z.); (F.Z.)
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine (Shenzhen Base), Ministry of Education, School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
6
|
Lei Z, Liang H, Sun W, Chen Y, Huang Z, Yu B. A biodegradable PVA coating constructed on the surface of the implant for preventing bacterial colonization and biofilm formation. J Orthop Surg Res 2024; 19:175. [PMID: 38459593 PMCID: PMC10921624 DOI: 10.1186/s13018-024-04662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/02/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Bone implant infections pose a critical challenge in orthopedic surgery, often leading to implant failure. The potential of implant coatings to deter infections by hindering biofilm formation is promising. However, a shortage of cost-effective, efficient, and clinically suitable coatings persists. Polyvinyl alcohol (PVA), a prevalent biomaterial, possesses inherent hydrophilicity, offering potential antibacterial properties. METHODS This study investigates the PVA solution's capacity to shield implants from bacterial adhesion, suppress bacterial proliferation, and thwart biofilm development. PVA solutions at concentrations of 5%, 10%, 15%, and 20% were prepared. In vitro assessments evaluated PVA's ability to impede bacterial growth and biofilm formation. The interaction between PVA and mCherry-labeled Escherichia coli (E. coli) was scrutinized, along with PVA's therapeutic effects in a rat osteomyelitis model. RESULTS The PVA solution effectively restrained bacterial proliferation and biofilm formation on titanium implants. PVA solution had no substantial impact on the activity or osteogenic potential of MC3T3-E1 cells. Post-operatively, the PVA solution markedly reduced the number of Staphylococcus aureus and E. coli colonies surrounding the implant. Imaging and histological scores exhibited significant improvements 2 weeks post-operation. Additionally, no abnormalities were detected in the internal organs of PVA-treated rats. CONCLUSIONS PVA solution emerges as an economical, uncomplicated, and effective coating material for inhibiting bacterial replication and biofilm formation on implant surfaces, even in high-contamination surgical environments.
Collapse
Affiliation(s)
- Zhonghua Lei
- Orthopedic and Traumatology Department, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Orthopedics, The Sixth Peoples Hospital of Huizhou, Huizhou, 516211, China
| | - Haifeng Liang
- Orthopedic and Traumatology Department, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Wei Sun
- Orthopedic and Traumatology Department, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yan Chen
- Ultrasound Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhi Huang
- Institute of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410083, China.
| | - Bo Yu
- Orthopedic and Traumatology Department, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
7
|
Zhong Y, Lin Q, Yu H, Shao L, Cui X, Pang Q, Zhu Y, Hou R. Construction methods and biomedical applications of PVA-based hydrogels. Front Chem 2024; 12:1376799. [PMID: 38435666 PMCID: PMC10905748 DOI: 10.3389/fchem.2024.1376799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Polyvinyl alcohol (PVA) hydrogel is favored by researchers due to its good biocompatibility, high mechanical strength, low friction coefficient, and suitable water content. The widely distributed hydroxyl side chains on the PVA molecule allow the hydrogels to be branched with various functional groups. By improving the synthesis method and changing the hydrogel structure, PVA-based hydrogels can obtain excellent cytocompatibility, flexibility, electrical conductivity, viscoelasticity, and antimicrobial properties, representing a good candidate for articular cartilage restoration, electronic skin, wound dressing, and other fields. This review introduces various preparation methods of PVA-based hydrogels and their wide applications in the biomedical field.
Collapse
Affiliation(s)
- Yi Zhong
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| | - Qi Lin
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| | - Han Yu
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| | - Lei Shao
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, China
| | - Xiang Cui
- Department of Otorhinolaryngology, Lihuili Hospital of Ningbo University, Ningbo, China
| | - Qian Pang
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| | - Yabin Zhu
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| | - Ruixia Hou
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
8
|
Ansari M, Darvishi A, Sabzevari A. A review of advanced hydrogels for cartilage tissue engineering. Front Bioeng Biotechnol 2024; 12:1340893. [PMID: 38390359 PMCID: PMC10881834 DOI: 10.3389/fbioe.2024.1340893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
With the increase in weight and age of the population, the consumption of tobacco, inappropriate foods, and the reduction of sports activities in recent years, bone and joint diseases such as osteoarthritis (OA) have become more common in the world. From the past until now, various treatment strategies (e.g., microfracture treatment, Autologous Chondrocyte Implantation (ACI), and Mosaicplasty) have been investigated and studied for the prevention and treatment of this disease. However, these methods face problems such as being invasive, not fully repairing the tissue, and damaging the surrounding tissues. Tissue engineering, including cartilage tissue engineering, is one of the minimally invasive, innovative, and effective methods for the treatment and regeneration of damaged cartilage, which has attracted the attention of scientists in the fields of medicine and biomaterials engineering in the past several years. Hydrogels of different types with diverse properties have become desirable candidates for engineering and treating cartilage tissue. They can cover most of the shortcomings of other treatment methods and cause the least secondary damage to the patient. Besides using hydrogels as an ideal strategy, new drug delivery and treatment methods, such as targeted drug delivery and treatment through mechanical signaling, have been studied as interesting strategies. In this study, we review and discuss various types of hydrogels, biomaterials used for hydrogel manufacturing, cartilage-targeting drug delivery, and mechanosignaling as modern strategies for cartilage treatment.
Collapse
Affiliation(s)
- Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Ahmad Darvishi
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Alireza Sabzevari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| |
Collapse
|
9
|
Reynolds M, Stoy LM, Sun J, Opoku Amponsah PE, Li L, Soto M, Song S. Fabrication of Sodium Trimetaphosphate-Based PEDOT:PSS Conductive Hydrogels. Gels 2024; 10:115. [PMID: 38391444 PMCID: PMC10888113 DOI: 10.3390/gels10020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Conductive hydrogels are highly attractive for biomedical applications due to their ability to mimic the electrophysiological environment of biological tissues. Although conducting polymer polythiophene-poly-(3,4-ethylenedioxythiophene) (PEDOT) and polystyrene sulfonate (PSS) alone exhibit high conductivity, the addition of other chemical compositions could further improve the electrical and mechanical properties of PEDOT:PSS, providing a more promising interface with biological tissues. Here we study the effects of incorporating crosslinking additives, such as glycerol and sodium trimetaphosphate (STMP), in developing interpenetrating PEDOT:PSS-based conductive hydrogels. The addition of glycerol at a low concentration maintained the PEDOT:PSS conductivity with enhanced wettability but decreased the mechanical stiffness. Increasing the concentration of STMP allowed sufficient physical crosslinking with PEDOT:PSS, resulting in improved hydrogel conductivity, wettability, and rheological properties without glycerol. The STMP-based PEDOT:PSS conductive hydrogels also exhibited shear-thinning behaviors, which are potentially favorable for extrusion-based 3D bioprinting applications. We demonstrate an interpenetrating conducting polymer hydrogel with tunable electrical and mechanical properties for cellular interactions and future tissue engineering applications.
Collapse
Affiliation(s)
- Madelyn Reynolds
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ 85719, USA
| | - Lindsay M Stoy
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ 85719, USA
| | - Jindi Sun
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ 85719, USA
| | | | - Lin Li
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ 85719, USA
| | - Misael Soto
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ 85719, USA
| | - Shang Song
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ 85719, USA
- Departments of Materials Science and Engineering, Neuroscience GIDP, and BIO5 Institute, University of Arizona, Tucson, AZ 85719, USA
| |
Collapse
|
10
|
Cao Z, Qin Z, Duns GJ, Huang Z, Chen Y, Wang S, Deng R, Nie L, Luo X. Repair of Infected Bone Defects with Hydrogel Materials. Polymers (Basel) 2024; 16:281. [PMID: 38276689 PMCID: PMC10820481 DOI: 10.3390/polym16020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Infected bone defects represent a common clinical condition involving bone tissue, often necessitating surgical intervention and antibiotic therapy. However, conventional treatment methods face obstacles such as antibiotic resistance and susceptibility to postoperative infections. Hydrogels show great potential for application in the field of tissue engineering due to their advantageous biocompatibility, unique mechanical properties, exceptional processability, and degradability. Recent interest has surged in employing hydrogels as a novel therapeutic intervention for infected bone repair. This article aims to comprehensively review the existing literature on the anti-microbial and osteogenic approaches utilized by hydrogels in repairing infected bones, encompassing their fabrication techniques, biocompatibility, antimicrobial efficacy, and biological activities. Additionally, the potential opportunities and obstacles in their practical implementation will be explored. Lastly, the limitations presently encountered and the prospective avenues for further investigation in the realm of hydrogel materials for the management of infected bone defects will be deliberated. This review provides a theoretical foundation and advanced design strategies for the application of hydrogel materials in the treatment of infected bone defects.
Collapse
Affiliation(s)
- Zhenmin Cao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Z.C.); (Z.Q.); (Z.H.); (Y.C.); (S.W.); (R.D.)
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China;
| | - Zuodong Qin
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Z.C.); (Z.Q.); (Z.H.); (Y.C.); (S.W.); (R.D.)
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China;
| | - Gregory J. Duns
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China;
| | - Zhao Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Z.C.); (Z.Q.); (Z.H.); (Y.C.); (S.W.); (R.D.)
| | - Yao Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Z.C.); (Z.Q.); (Z.H.); (Y.C.); (S.W.); (R.D.)
| | - Sheng Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Z.C.); (Z.Q.); (Z.H.); (Y.C.); (S.W.); (R.D.)
| | - Ruqi Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Z.C.); (Z.Q.); (Z.H.); (Y.C.); (S.W.); (R.D.)
| | - Libo Nie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Z.C.); (Z.Q.); (Z.H.); (Y.C.); (S.W.); (R.D.)
| | - Xiaofang Luo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Z.C.); (Z.Q.); (Z.H.); (Y.C.); (S.W.); (R.D.)
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China;
| |
Collapse
|
11
|
Li Z, Liang Y, Wan J, Zhu W, Wang Y, Chen Y, Lu B, Zhu J, Zhu C, Zhang X. Physically cross-linked organo-hydrogels for friction interfaces in joint replacements: design, evaluation and potential clinical applications. J Mater Chem B 2023; 11:11150-11163. [PMID: 37971358 DOI: 10.1039/d3tb01830j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
This paper investigates physically crosslinked organo-hydrogels for total hip replacement surgery. Current materials in artificial joints have limitations in mechanical performance and biocompatibility. To overcome these issues, a new approach based on hydrogen bonds between polyvinyl alcohol, poly(2-hydroxyethyl methacrylate), and glycerin is proposed to develop bioactive organo-hydrogels with improved mechanical properties and biocompatibility. This study analyzes local pathological characteristics, systemic toxicity, and mechanical properties of the gels. The results show that the gels possess excellent biocompatibility and mechanical strength, suggesting their potential as an alternative material for total hip replacement surgery. These findings contribute to improving patient outcomes in joint replacement procedures.
Collapse
Affiliation(s)
- Zheng Li
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, P. R. China
| | - Yongzhi Liang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China.
- School of Science, Harbin Institute of Technology, Shenzhen, P. R. China
| | - Jia Wan
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, P. R. China
| | - Wanbo Zhu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yingjie Wang
- Department of Orthopedics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, P. R. China.
| | - Yuan Chen
- Department of Orthopedics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, P. R. China.
| | - Baoliang Lu
- Graduate School of Bengbu Medical College, Bengbu, P. R. China
| | - Junchen Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, P. R. China.
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China.
| | - Xianzuo Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China.
| |
Collapse
|
12
|
Lin P, Fu D, Zhang T, Ma S, Zhou F. Microgel-Modified Bilayered Hydrogels Dramatically Boosting Load-Bearing and Lubrication. ACS Macro Lett 2023; 12:1450-1456. [PMID: 37842942 DOI: 10.1021/acsmacrolett.3c00398] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Hydrogel-based articular cartilage replacement materials are promising candidates for their potential to provide both high load-bearing capacity and low friction performance, similar to natural cartilage. Nevertheless, the design of these materials presents a significant challenge in reconciling the conflicting demands of the load-bearing capacity and lubrication. Despite extensive research in this area, there is still room for improvement in the creation of hydrogel-based materials that effectively meet these demands. Herein, a facile strategy is provided to realize simultaneously high load-bearing and low friction properties on the proposed hydrogel by modifying the surface of mechanically strong annealled PVA-PAAc hydrogel with a high hydration potential PAAm-co-PAMPS microgel. Consequently, a bilayer hydrogel with a porous surface and a compact substrate has been obtained. Compressive experiments confirmed that the bilayer hydrogel exhibited excellent mechanical strength with a compressive strength of 32.23 MPa at 90% strain. A high load-bearing (applied load up to 30 N), extremely low friction coefficiency (0.01-0.05) and excellent wear resistance (COF low to 0.03 after a 4 h test at 10 N using a steel ball as the contact pair) are successfully achieved. These findings provide new perspectives for the design of articular cartilage materials.
Collapse
Affiliation(s)
- Peng Lin
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Danni Fu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Tingting Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
| |
Collapse
|
13
|
Zhang M, Xu W, Li X, Ling G, Zhang P. Tunicate-mimetic antibacterial hydrogel based on metal ion crosslinking and chitosan functionalization for wound healing. Int J Biol Macromol 2023:125062. [PMID: 37247717 DOI: 10.1016/j.ijbiomac.2023.125062] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
With the increasing prevalence of drug-resistant bacterial infections and frequent occurrences of slow wound healing, the development of novel antibacterial wound dressings has become a serious challenge. Hydrogel dressings have attracted extensive attention on wound healing due to their unique three-dimensional network structures and properties. However, it is a challenge to develop natural long-acting antibacterial hydrogels with multiple functions such as excellent cell affinity, wet adhesion and mechanical properties. Inspired by the wound healing mechanism and adhesion characteristics of tunicates, a series of biomimetic antibacterial hydrogels were prepared by utilizing pyrogallol-modified chitosan (GACS) and polyvinyl alcohol (PVA) as matrix, zinc ions (Zn2+) as crosslinking and antibacterial agents, and ethyl N-lauroyl l-arginate hydrochloride (LAE) as the antibacterial active ingredient. The morphology, swelling, water retention, degradability, wet adhesion, biocompatibility, mechanical and rheological properties of PVA/GACS/Zn2+/LAE hydrogels were evaluated. And the adhesion ability conferred by the pyrogallol structures enabled the hydrogel with enhanced antibacterial effect and hemostatic ability. Moreover, the in vivo experiments on rat models with full-thickness infected wounds confirmed that PVA/GACS/Zn2+/LAE hydrogels could efficiently kill bacteria, significantly improve the wound microenvironment, greatly promote fibroblast proliferation and collagen deposition and ultimately accelerate wound healing. In a word, this study provided a feasible and simple way for the development of biomimetic antibacterial hydrogel dressings applied in infected wounds, which could not only seal wounds with various shapes and provide a moist and antibacterial environment for wounds, but also have certain mechanical strength, excellent wound adhesion, good biocompatibility and hemostatic performance.
Collapse
Affiliation(s)
- Manyue Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Wenxin Xu
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaodan Li
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
14
|
Yu X, Li X, Kan L, Pan P, Wang X, Liu W, Zhang J. Double network microcrystalline cellulose hydrogels with high mechanical strength and biocompatibility for cartilage tissue engineering scaffold. Int J Biol Macromol 2023; 238:124113. [PMID: 36963545 DOI: 10.1016/j.ijbiomac.2023.124113] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023]
Abstract
Cartilage tissue regeneration is tremendously tough, it has become a major clinical challenge for the orthopedic medical community. Because of their bionic structure, high water content, biocompatibility, and biodegradability, hydrogels derived from natural polysaccharide are excellent candidates for cartilage tissue engineering. However, these materials often face problems such as poor mechanical strength and excessive swelling, which limit their clinical application. This study used a chemical-physical multi-step cross-linking strategy to create double-network (DN) microcrystalline cellulose (MCC) hydrogels. The hydrogels' intrinsic biomimetic macroporous shape and high water content made them ideal for chondrocyte adhesion and proliferation. The performance requirements for cartilage tissue engineering scaffolds are met by DN hydrogels, which have a sufficiently high compressive strength (4.53 MPa), superior compression recovery, and fatigue resistance, compared to single-network (SN) hydrogels. According to in vitro findings, DN hydrogels could boost cell adhesion and proliferation due to their safe and non-toxic nature. Hydrogels were demonstrated to be stable over the long-term performance, to degrade slowly, and to have strong histocompatibility by in vivo implantation. To construct cartilage tissue engineering scaffold and conduct three-dimensional cell culture, DN hydrogels have significant potential.
Collapse
Affiliation(s)
- Xinding Yu
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, Liaoning, PR China; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, PR China
| | - Xi Li
- Department of Sports Medicine and Joint Surgery, The People's Hospital of Liaoning Province, The People's Hospital of China Medical University, Shenyang 110067, Liaoning, PR China
| | - Liang Kan
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China
| | - Peng Pan
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, Liaoning, PR China; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, PR China
| | - Xi Wang
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Shenyang 110002, Liaoning, PR China
| | - Wentao Liu
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, Liaoning, PR China; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, PR China.
| | - Jinsong Zhang
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, Liaoning, PR China; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
15
|
Kadhim IAU. Investigation of Physochimechal and Biological Properties of Composite Sodium Alginate for Tissue Engineering. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2023; 59:11-20. [DOI: 10.4028/p-a7ygw7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The current study involves synthesis of a composite films of sodium alginate (Alg), polyvinylalcohol and NanoGraphene oxide (GO) for tissue engineering applications. Solvent casting was used to make the polymeric composite films (Alg-Pva-Go), which may exhibit a synergic activity of the components for tissue repair. The influence of various GO concentrations on the films properties was also investigated. The scaffold has outstanding physicochemical and biological properties. The composite film's high swelling degree and contact angle reveals its high hydrophilicity, making it appropriate for tissue engineering. The antimicrobial activity on Staphylococcus aureus were studied. Furthermore, the antimicrobial test showed that the films composite was resistant to S. aureus. Seeding (AD-MSC) cells into the composite films exhibited an increase in cell adhesion and proliferation when compared to the Alginate and Polyvinylalcohol film in vitro experiments, indicating that the GO has a good influence on the films characteristics, which can utilization in tissue engineering applications.
Collapse
|
16
|
Qiu F, Fan X, Chen W, Xu C, Li Y, Xie R. Recent Progress in Hydrogel-Based Synthetic Cartilage: Focus on Lubrication and Load-Bearing Capacities. Gels 2023; 9:gels9020144. [PMID: 36826314 PMCID: PMC9957070 DOI: 10.3390/gels9020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Articular cartilage (AC), which covers the ends of bones in joints, particularly the knee joints, provides a robust interface to maintain frictionless movement during daily life due to its remarkable lubricating and load-bearing capacities. However, osteoarthritis (OA), characterized by the progressive degradation of AC, compromises the properties of AC and thus leads to frayed and rough interfaces between the bones, which subsequently accelerates the progression of OA. Hydrogels, composed of highly hydrated and interconnected polymer chains, are potential candidates for AC replacement due to their physical and chemical properties being similar to those of AC. In this review, we summarize the recent progress of hydrogel-based synthetic cartilage, or cartilage-like hydrogels, with a particular focus on their lubrication and load-bearing properties. The different formulations, current limitations, and challenges of such hydrogels are also discussed. Moreover, we discuss the future directions of hydrogel-based synthetic cartilage to repair and even regenerate the damaged AC.
Collapse
Affiliation(s)
- Fei Qiu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Biomaterials and Bio-Fabrication in Tissue Engineering of Jiangxi Province, Ganzhou 341000, China
| | - Xiaopeng Fan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Wen Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Biomaterials and Bio-Fabrication in Tissue Engineering of Jiangxi Province, Ganzhou 341000, China
| | - Chunming Xu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Biomaterials and Bio-Fabrication in Tissue Engineering of Jiangxi Province, Ganzhou 341000, China
| | - Yumei Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Biomaterials and Bio-Fabrication in Tissue Engineering of Jiangxi Province, Ganzhou 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
- Correspondence: (Y.L.); (R.X.)
| | - Renjian Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Biomaterials and Bio-Fabrication in Tissue Engineering of Jiangxi Province, Ganzhou 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
- Correspondence: (Y.L.); (R.X.)
| |
Collapse
|
17
|
Oliveira AS, Silva JC, Loureiro MV, Marques AC, Kotov NA, Colaço R, Serro AP. Super-Strong Hydrogel Composites Reinforced with PBO Nanofibers for Cartilage Replacement. Macromol Biosci 2023; 23:e2200240. [PMID: 36443994 DOI: 10.1002/mabi.202200240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/28/2022] [Indexed: 11/30/2022]
Abstract
Cartilage replacement materials exhibiting a set of demanding properties such as high water content, high mechanical stiffness, low friction, and excellent biocompatibility are quite difficult to achieve. Here, poly(p-phenylene-2,6-benzobisoxazole) (PBO) nanofibers are combined with polyvinyl alcohol (PVA) to form a super-strong structure with a performance that surpasses the vast majority of previously existing hydrogels. PVA-PBO composites with water contents in the 59-76% range exhibit tensile and compressive moduli reaching 20.3 and 4.5 MPa, respectively, and a coefficient of friction below 0.08. Further, they are biocompatible and support the viability of chondrocytes for 1 week, with significant improvements in cell adhesion, proliferation, and differentiation compared to PVA. The new composites can be safely sterilized by steam heat or gamma radiation without compromising their integrity and overall performance. In addition, they show potential to be used as local delivery platforms for anti-inflammatory drugs. These attractive features make PVA-PBO composites highly competitive engineered materials with remarkable potential for use in the design of load-bearing tissues. Complementary work has also revealed that these composites will be interesting alternatives in other industrial fields where high thermal and mechanical resistance are essential requirements, or which can take advantage of the pH responsiveness functionality.
Collapse
Affiliation(s)
- Andreia S Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal.,Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, Caparica, 2829-511, Portugal.,Instituto de Engenharia Mecânica and Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| | - João C Silva
- Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal.,Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal.,Centre for Rapid and Sustainable Product Development, Politécnico de Leiria, Rua de Portugal-Zona Industrial, Marinha Grande, 2430-028, Portugal
| | - Mónica V Loureiro
- Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| | - Ana C Marques
- Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| | - Nicholas A Kotov
- Biointerfaces Institute, Department of Chemical Engineering, and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rogério Colaço
- Instituto de Engenharia Mecânica and Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| | - Ana P Serro
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal.,Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, Caparica, 2829-511, Portugal
| |
Collapse
|
18
|
Chen Y, Song J, Wang S, Liu W. Cationic Modified PVA Hydrogels Provide Low Friction and Excellent Mechanical Properties for Potential Cartilage and Orthopedic Applications. Macromol Biosci 2023; 23:e2200275. [PMID: 36254859 DOI: 10.1002/mabi.202200275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/27/2022] [Indexed: 01/19/2023]
Abstract
Poly(vinyl alcohol) (PVA) hydrogel is a promising candidate for articular cartilage repair yet restrained by its mechanical strength and tribological property. Current work reports a newly designed PVA-based hydrogel modified by glycerol (g), bacterial cellulose (BC), and a cationic polymer poly (diallyl dimethylammonium chloride) (PDMDAAC), which is a novel cationic strengthening choice. The resultant PVA-g-BC-PDMDAAC hydrogel proves the effectiveness of this modification scheme, with a confined compressive modulus of 19.56 MPa and a friction coefficient of 0.057 at a joint-equivalent load and low sliding speed. The water content, swelling property, and creep behavior of this hydrogel are also within a cartilage-mimetic range. The properties of PVA-based hydrogels before PDMDAAC addition are likewise studied as a cross-reference. Besides, PDMDAAC-modified PVA hydrogel realizes ideal mechanical and lubrication properties with a relatively low PVA concentration (10 wt.%) and facile fabrication process, which lays a foundation for mass production and marketization in the future.
Collapse
Affiliation(s)
- Yuru Chen
- Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, China.,Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Jian Song
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, 518107, Shenzhen, China
| | - Song Wang
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, 518057, Shenzhen, China
| | - Weiqiang Liu
- Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, China.,Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China.,Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, 518057, Shenzhen, China
| |
Collapse
|
19
|
PVA/PEO/PVA-g-APEG nanofiber membranes with cytocompatibility and anti-cell adhesion for biomedical applications. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Pires T, Oliveira AS, Marques AC, Salema-Oom M, Figueiredo-Pina CG, Silva D, Serro AP. Effects of Non-Conventional Sterilisation Methods on PBO-Reinforced PVA Hydrogels for Cartilage Replacement. Gels 2022; 8:640. [PMID: 36286141 PMCID: PMC9601823 DOI: 10.3390/gels8100640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/04/2022] Open
Abstract
Articular cartilage (AC) degradation is a recurrent pathology that affects millions of people worldwide. Polyvinyl alcohol (PVA) hydrogels have been widely explored for AC replacement. However, their mechanical performance is generally inadequate, and these materials need to be reinforced. Moreover, to be used in a clinical setting, such materials must undergo effective sterilisation. In this work, a PVA hydrogel reinforced with poly(p-phenylene-2,6-benzobisoxazole) (PBO) nanofibres was submitted to three non-conventional sterilisation methods: microwave (MW), high hydrostatic pressure (HHP), and plasma (PM), in order to evaluate their impact on the properties of the material. Sterilisation was achieved in all cases. Properties such as water content and hydrophilicity were not affected. FTIR analysis indicated some changes in crystallinity and/or crosslinking in all cases. MW was revealed to be the most suitable method, since, unlike to PM and HHP, it led to a general improvement of the materials' properties: increasing the hardness, stiffness (both in tensile and compression), and shear modulus, and also leading to a decrease in the coefficient of friction against porcine cartilage. Furthermore, the samples remained non-irritant and non-cytotoxic. Moreover, this method allows terminal sterilisation in a short time (3 min) and using accessible equipment.
Collapse
Affiliation(s)
- Tomás Pires
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Andreia Sofia Oliveira
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Instituto de Engenharia Mecânica (IDMEC), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Quinta da Granja, Monte da Caparica, 2829-511 Caparica, Portugal
| | - Ana Clara Marques
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Madalena Salema-Oom
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Quinta da Granja, Monte da Caparica, 2829-511 Caparica, Portugal
| | - Célio G. Figueiredo-Pina
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Quinta da Granja, Monte da Caparica, 2829-511 Caparica, Portugal
- CDP2T, Escola Superior de Tecnologia de Setúbal, Instituto Politécnico de Setúbal, 2910-761 Setúbal, Portugal
- CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Diana Silva
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Ana Paula Serro
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Quinta da Granja, Monte da Caparica, 2829-511 Caparica, Portugal
| |
Collapse
|
21
|
Pan L, Li C, Wang Z, Yang L, Zhang L. Preparation of an antibacterial dressing for simultaneous delivery of polyhexamethylene biguanide and platelet-rich plasma, and evaluation of the dressing's ability to promote infected skin repair. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Yan L, Zhou T, Ni R, Jia Z, Jiang Y, Guo T, Wang K, Chen X, Han L, Lu X. Adhesive Gelatin-Catechol Complex Reinforced Poly(Acrylic Acid) Hydrogel with Enhanced Toughness and Cell Affinity for Cartilage Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:4366-4377. [PMID: 36044775 DOI: 10.1021/acsabm.2c00533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The repair of cartilage damage caused by trauma, wear, or degenerative deformation remains a major challenge in modern medicine. Therefore, it is essential to develop a mechanically compatible and bioactive scaffold for cartilage tissue regeneration. In this study, a mussel-inspired, tough, adhesive polydopamine/gelatin-poly(acrylic acid) (PDA/Gel-PAA) composite hydrogel was developed for cartilage regeneration. The hydrogel achieved a high compressive strength of up to 0.67 MPa and a toughness of 420 J/m2 because of the unique chemical-physical cross-linking structure by introducing the PDA/Gel complex into the PAA network. PAA chains with rich carboxyl groups mimic the negatively charged glycosaminoglycans (GAGs) in the natural cartilage extracellular matrix (ECM), leading to strong water retention in the hydrogel. The incorporation of the PDA/Gel complex with catechol groups on PDA and arginine-glycine-aspartic acid (RGD) sequences on gelatin chains provided abundant adhesive motifs to improve the cell affinity and tissue adhesiveness of PAA, thereby facilitating the adhesion and proliferation of bone marrow stromal cells (BMSCs). In addition, transforming growth factor-β3 (TGFβ3) was stably immobilized and released from the PDA/Gel-PAA hydrogel. Thus, adhesive hydrogels can provide a suitable microenvironment to promote cell migration in the defect area and induce chronogenesis for cartilage regeneration.
Collapse
Affiliation(s)
- Liwei Yan
- School of Materials Science and Engineering, Key Lab of Advanced Technologies of Materials, Ministry of Education, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Ting Zhou
- School of Materials Science and Engineering, Key Lab of Advanced Technologies of Materials, Ministry of Education, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Ruicheng Ni
- School of Materials Science and Engineering, Key Lab of Advanced Technologies of Materials, Ministry of Education, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Zhanrong Jia
- School of Materials Science and Engineering, Key Lab of Advanced Technologies of Materials, Ministry of Education, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Yanan Jiang
- School of Materials Science and Engineering, Key Lab of Advanced Technologies of Materials, Ministry of Education, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Tailin Guo
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Xian Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, China
| | - Lu Han
- School of Medicine and Pharmaceutics, Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Ocean University of China, Qingdao 266003, Shandong, China
| | - Xiong Lu
- School of Materials Science and Engineering, Key Lab of Advanced Technologies of Materials, Ministry of Education, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| |
Collapse
|
23
|
Recent Developments and Current Applications of Organic Nanomaterials in Cartilage Repair. Bioengineering (Basel) 2022; 9:bioengineering9080390. [PMID: 36004915 PMCID: PMC9405275 DOI: 10.3390/bioengineering9080390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Regeneration of cartilage is difficult due to the unique microstructure, unique multizone organization, and avascular nature of cartilage tissue. The development of nanomaterials and nanofabrication technologies holds great promise for the repair and regeneration of injured or degenerated cartilage tissue. Nanomaterials have structural components smaller than 100 nm in at least one dimension and exhibit unique properties due to their nanoscale structure and high specific surface area. The unique properties of nanomaterials include, but are not limited to, increased chemical reactivity, mechanical strength, degradability, and biocompatibility. As an emerging nanomaterial, organic nanocomposites can mimic natural cartilage in terms of microstructure, physicochemical, mechanical, and biological properties. The integration of organic nanomaterials is expected to develop scaffolds that better mimic the extracellular matrix (ECM) environment of cartilage to enhance scaffold-cell interactions and improve the functionality of engineered tissue constructs. Next-generation hydrogel technology and bioprinting can be used not only for healing cartilage injury areas but also for extensive osteoarthritic degenerative changes within the joint. Although more challenges need to be solved before they can be translated into full-fledged commercial products, nano-organic composites remain very promising candidates for the future development of cartilage tissue engineering.
Collapse
|
24
|
Recent advances in superlubricity of liposomes for biomedical applications. Colloids Surf B Biointerfaces 2022; 218:112764. [PMID: 35973238 DOI: 10.1016/j.colsurfb.2022.112764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/18/2022] [Accepted: 08/07/2022] [Indexed: 11/23/2022]
Abstract
Achieving superlubricity, a state of lubrication where friction nearly vanishes, has become one of the most promising approaches to combat friction-induced energy dissipation and medical device failure. Phospholipids are amphiphilic molecules comprising highly hydrophilic phosphatidylcholine head groups as well as hydrophobic hydrocarbon chains, When solubilized, phospholipids can readily self-assemble to form different structures such as bilayers and vesicles (liposomes). Recently, liposomes have been identified as excellent lubricants, especially in the boundary lubrication regime the most common lubrication status in the field of biotribology. In this review, we summarize recent progress in employing liposomes as key players for employing superlubricity in biomedical applications. The relationship between lipids and liposomes, manufacturing approaches, lubrication regimes, and regulation mechanisms of liposomes are discussed. Finally, we indicate possible future directions for the use of liposome-mediated superlubricity in biomedical applications.
Collapse
|
25
|
Niu W, Liu X. Stretchable Ionic Conductors for Soft Electronics. Macromol Rapid Commun 2022; 43:e2200512. [PMID: 35880907 DOI: 10.1002/marc.202200512] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/15/2022] [Indexed: 11/08/2022]
Abstract
With the rapid development of soft electronics in the era of Internet of Everything (IoE), electrical conductors with stretchability, the indispensable components of soft electronics, have gained new opportunities and also faced increasing challenges. According to the principles of electrical conductivity, stretchable electrical conductors can be divided into electronic conductors and ionic conductors. Different from the stretchable electronic conductors derived from stretchable polymeric matrices integrated with electronically conductive fillers, stretchable ionic conductors are constructed by embedding mobile ions into the crosslinked polymer networks. Therefore, stretchable ionic conductors have received extensive attention and in-depth research in the past decade, thanks to their intrinsic stretchability and electrical conductivity. This review systematically summarizes the achievements on the different categories of stretchable ionic conductors (e.g., hydrogels, ionogels, and liquid-free ion-conductive elastomers), in terms of their design, fabrication, properties, and applications. The advantages and limitations of the different types of stretchable ionic conductors are discussed. Outlooks are also provided to envision the remaining challenges for the further development and practical applications of stretchable ionic conductors. It is expected to arouse inspirations for the design and fabrication of new and high-performance stretchable ionic conductors and advanced soft electronics for the IoE era. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wenwen Niu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaokong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
26
|
Budharaju H, Zennifer A, Sethuraman S, Paul A, Sundaramurthi D. Designer DNA biomolecules as a defined biomaterial for 3D bioprinting applications. MATERIALS HORIZONS 2022; 9:1141-1166. [PMID: 35006214 DOI: 10.1039/d1mh01632f] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
DNA has excellent features such as the presence of functional and targeted molecular recognition motifs, tailorability, multifunctionality, high-precision molecular self-assembly, hydrophilicity, and outstanding biocompatibility. Due to these remarkable features, DNA has emerged as a leading next-generation biomaterial of choice to make hydrogels by self-assembly. In recent times, novel routes for the chemical synthesis of DNA, advances in tailorable designs, and affordable production ways have made DNA as a building block material for various applications. These advanced features have made researchers continuously explore the interesting properties of pure and hybrid DNA for 3D bioprinting and other biomedical applications. This review article highlights the topical advancements in the use of DNA as an ideal bioink for the bioprinting of cell-laden three-dimensional tissue constructs for regenerative medicine applications. Various bioprinting techniques and emerging design approaches such as self-assembly, nucleotide sequence, enzymes, and production cost to use DNA as a bioink for bioprinting applications are described. In addition, various types and properties of DNA hydrogels such as stimuli responsiveness and mechanical properties are discussed. Further, recent progress in the applications of DNA in 3D bioprinting are emphasized. Finally, the current challenges and future perspectives of DNA hydrogels in 3D bioprinting and other biomedical applications are discussed.
Collapse
Affiliation(s)
- Harshavardhan Budharaju
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| | - Allen Zennifer
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
27
|
Yang M, Xiang D, Chen Y, Cui Y, Wang S, Liu W. An Artificial PVA-BC Composite That Mimics the Biomechanical Properties and Structure of a Natural Intervertebral Disc. MATERIALS 2022; 15:ma15041481. [PMID: 35208022 PMCID: PMC8875496 DOI: 10.3390/ma15041481] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023]
Abstract
Disc herniation is one of the most ubiquitous healthcare problems in modern cities—severe patients eventually require surgical intervention. However, the existing operations—spinal fusion and artificial disc replacement—alter the biomechanics of the spine, leaving much room for improvement. The appropriateness of polyvinyl alcohol (PVA) for biomedical applications has been recognised due to its high water content, excellent biocompatibility, and versatile mechanical properties. In this study, a newly-designed PVA–bacterial cellulose (PVA-BC) composite was assembled to mimic both the biomechanics and annular structure of natural intervertebral discs (IVDs). PVA-BC composites of various concentrations were fabricated and tested under unconfined compression and compressive creep in order to acquire the values of the normalised compressive stiffness and whole normalised deformation. The normalised compressive stiffness increased considerably with an increasing PVA concentration, spanning from 1.82 (±0.18) to 3.50 (±0.14) MPa, and the whole normalised deformation decreased from 0.25 to 0.13. Formulations of 40% PVA provided the most accurate mimicry of natural human IVDs in normalised whole deformation, and demonstrated higher dimensional stability. The biocompatible results further confirmed that the materials had excellent biocompatibility. The novel bionic structure and formulations of the PVA-BC materials mimicked the biomechanics and structure of natural IVDs, and ensured dimensional stability under prolonged compression, reducing the risk of impingement on the surrounding tissue. The PVA-BC composite is a promising material for third-generation artificial IVDs with integrated construction.
Collapse
Affiliation(s)
- Mengying Yang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (M.Y.); (Y.C.); (Y.C.)
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Dingding Xiang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
- Correspondence: (D.X.); (S.W.); (W.L.)
| | - Yuru Chen
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (M.Y.); (Y.C.); (Y.C.)
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Yangyang Cui
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (M.Y.); (Y.C.); (Y.C.)
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Song Wang
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
- Correspondence: (D.X.); (S.W.); (W.L.)
| | - Weiqiang Liu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (M.Y.); (Y.C.); (Y.C.)
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
- Correspondence: (D.X.); (S.W.); (W.L.)
| |
Collapse
|
28
|
Robust conductive organohydrogel strain sensors with wide range linear sensing, UV filtering, anti-freezing and water-retention properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|