1
|
Day JH, Santina CMD, Maretich P, Auld AL, Schnieder KK, Shin T, Boyden ES, Boyer LA. HiExM: high-throughput expansion microscopy enables scalable super-resolution imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.07.527509. [PMID: 36798312 PMCID: PMC9934540 DOI: 10.1101/2023.02.07.527509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Expansion microscopy (ExM) enables nanoscale imaging using a standard confocal microscope through the physical, isotropic expansion of fixed immunolabeled specimens. ExM is widely employed to image proteins, nucleic acids, and lipid membranes in single cells; however, current methods limit the number of samples that can be processed simultaneously. We developed High-throughput Expansion Microscopy (HiExM), a robust platform that enables expansion microscopy of cells cultured in a standard 96-well plate. Our method enables ~4.2x expansion of cells within individual wells, across multiple wells, and between plates. We also demonstrate that HiExM can be combined with high-throughput confocal imaging platforms to greatly improve the ease and scalability of image acquisition. As an example, we analyzed the effects of doxorubicin, a known cardiotoxic agent, on human cardiomyocytes (CMs) as measured by Hoechst signal across the nucleus. We show a dose dependent effect on nuclear DNA that is not observed in unexpanded CMs, suggesting that HiExM improves the detection of cellular phenotypes in response to drug treatment. Our method broadens the application of ExM as a tool for scalable super-resolution imaging in biological research applications.
Collapse
Affiliation(s)
- John H. Day
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Catherine Marin Della Santina
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Pema Maretich
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Alexander L. Auld
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Kirsten K. Schnieder
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Tay Shin
- Department of Media Arts and Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Edward S. Boyden
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
- Department of Media Arts and Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
- McGovern Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
- K Lisa Yang Center for Bionics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USAa
- Center for Neurobiological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
- Koch Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Laurie A. Boyer
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
- Koch Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| |
Collapse
|
2
|
Fang X, Wei K, Yang R. Untethered Soft Pneumatic Actuators with Embedded Multiple Sensing Capabilities. Soft Robot 2024; 11:382-391. [PMID: 37948534 DOI: 10.1089/soro.2023.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
Pneumatic soft robot attracts extensive attention because of its own characteristics. It has great application potential in medical and other fields. Although the recent improvement of the soft robot shows great potentials for delicate manipulations, the development of completely untethered pneumatic intelligent soft robots remains challenging. This article introduces a novel type of untethered soft pneumatic actuator with embedded multiple sensing capabilities. The untethered drive of the soft pneumatic actuator is achieved by near-infrared-induced liquid-gas phase transition. In addition, a soft conductive resin was developed to make flexible sensors. Embedded flexible sensors enable bending and temperature sensing of soft actuators. With Digital Light Processing three-dimensional printing, the rapid fabrication of soft actuators and flexible sensors was realized. This article demonstrates the potential of the proposed untethered soft actuators with embedded multiple sensing capabilities as an important contribution to the research of completely untethered intelligent soft robots.
Collapse
Affiliation(s)
- Xingmiao Fang
- Department of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Kun Wei
- Department of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Runhuai Yang
- Department of Biomedical Engineering, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Weian W, Yunxin Y, Ziyan W, Qianzhou J, Lvhua G. Gallic acid: design of a pyrogallol-containing hydrogel and its biomedical applications. Biomater Sci 2024; 12:1405-1424. [PMID: 38372381 DOI: 10.1039/d3bm01925j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Polyphenol hydrogels have garnered widespread attention due to their excellent adhesion, antioxidant, and antibacterial properties. Gallic acid (GA) is a typical derivative of pyrogallol that is used as a hydrogel crosslinker or bioactive additive and can be used to make multifunctional hydrogels with properties superior to those of widely studied catechol hydrogels. Furthermore, compared to polymeric tannic acid, gallic acid is more suitable for chemical modification, thus broadening its range of applications. This review focuses on multifunctional hydrogels containing GA, aiming to inspire researchers in future biomaterial design. We first revealed the interaction mechanisms between GA molecules and between GA and polymers, analyzed the characteristics GA imparts to hydrogels and compared GA hydrogels with hydrogels containing catechol. Subsequently, in this paper, various methods of integrating GA into hydrogels and the applications of GA in biomedicine are discussed, finally assessing the current limitations and future development potential of GA. In summary, GA, a natural small molecule polyphenol with excellent functionality and diverse interaction modes, has great potential in the field of biomedical hydrogels.
Collapse
Affiliation(s)
- Wu Weian
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| | - Ye Yunxin
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| | - Wang Ziyan
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| | - Jiang Qianzhou
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| | - Guo Lvhua
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| |
Collapse
|
4
|
Liu Y, Shi Y, Zhang M, Han F, Liao W, Duan X. Natural polyphenols for drug delivery and tissue engineering construction: A review. Eur J Med Chem 2024; 266:116141. [PMID: 38237341 DOI: 10.1016/j.ejmech.2024.116141] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
Polyphenols, natural compounds rich in phenolic structures, are gaining prominence due to their antioxidant, anti-inflammatory, antibacterial, and anticancer properties, making them valuable in biomedical applications. Through covalent and noncovalent interactions, polyphenols can bind to biomaterials, enhancing their performance and compensating for their shortcomings. Such polyphenol-based biomaterials not only increase the efficacy of polyphenols but also improve drug stability, control release kinetics, and boost the therapeutic effects of drugs. They offer the potential for targeted drug delivery, reducing off-target impacts and enhancing therapeutic outcomes. In tissue engineering, polyphenols promote cell adhesion, proliferation, and differentiation, thus aiding in the formation of functional tissues. Additionally, they offer excellent biocompatibility and mechanical strength, essential in designing scaffolds. This review explores the significant roles of polyphenols in tissue engineering and drug delivery, emphasizing their potential in advancing biomedical research and healthcare.
Collapse
Affiliation(s)
- Yu Liu
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Yuying Shi
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Mengqi Zhang
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Feng Han
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Weifang Liao
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China.
| |
Collapse
|
5
|
Zilinskaite N, Shukla RP, Baradoke A. Use of 3D Printing Techniques to Fabricate Implantable Microelectrodes for Electrochemical Detection of Biomarkers in the Early Diagnosis of Cardiovascular and Neurodegenerative Diseases. ACS MEASUREMENT SCIENCE AU 2023; 3:315-336. [PMID: 37868357 PMCID: PMC10588936 DOI: 10.1021/acsmeasuresciau.3c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
This Review provides a comprehensive overview of 3D printing techniques to fabricate implantable microelectrodes for the electrochemical detection of biomarkers in the early diagnosis of cardiovascular and neurodegenerative diseases. Early diagnosis of these diseases is crucial to improving patient outcomes and reducing healthcare systems' burden. Biomarkers serve as measurable indicators of these diseases, and implantable microelectrodes offer a promising tool for their electrochemical detection. Here, we discuss various 3D printing techniques, including stereolithography (SLA), digital light processing (DLP), fused deposition modeling (FDM), selective laser sintering (SLS), and two-photon polymerization (2PP), highlighting their advantages and limitations in microelectrode fabrication. We also explore the materials used in constructing implantable microelectrodes, emphasizing their biocompatibility and biodegradation properties. The principles of electrochemical detection and the types of sensors utilized are examined, with a focus on their applications in detecting biomarkers for cardiovascular and neurodegenerative diseases. Finally, we address the current challenges and future perspectives in the field of 3D-printed implantable microelectrodes, emphasizing their potential for improving early diagnosis and personalized treatment strategies.
Collapse
Affiliation(s)
- Nemira Zilinskaite
- Wellcome/Cancer
Research UK Gurdon Institute, Henry Wellcome Building of Cancer and
Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K.
- Faculty
of Medicine, University of Vilnius, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| | - Rajendra P. Shukla
- BIOS
Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck
Center for Complex Fluid Dynamics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ausra Baradoke
- Wellcome/Cancer
Research UK Gurdon Institute, Henry Wellcome Building of Cancer and
Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K.
- Faculty
of Medicine, University of Vilnius, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
- BIOS
Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck
Center for Complex Fluid Dynamics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Center for
Physical Sciences and Technology, Savanoriu 231, LT-02300 Vilnius, Lithuania
| |
Collapse
|
6
|
Kilian D, Poddar A, Desrochers V, Heinemann C, Halfter N, Liu S, Rother S, Gelinsky M, Hintze V, Lode A. Cellular adhesion and chondrogenic differentiation inside an alginate-based bioink in response to tailorable artificial matrices and tannic acid treatment. BIOMATERIALS ADVANCES 2023; 147:213319. [PMID: 36758282 DOI: 10.1016/j.bioadv.2023.213319] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/30/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Many established bioinks fulfill important requirements regarding fabrication standards and cytocompatibility. Current research focuses on development of functionalized bioinks with an improved support of tissue-specific cell differentiation. Many approaches primarily depend on decellularized extracellular matrices or blood components. In this study, we investigated the combination of a highly viscous alginate-methylcellulose (algMC) bioink with collagen-based artificial extracellular matrix (aECM) as a finely controllable and tailorable system composed of collagen type I (col) with and without chondroitin sulfate (CS) or sulfated hyaluronan (sHA). As an additional stabilizer, the polyphenol tannic acid (TA) was integrated into the inks. The assessment of rheological properties and printability as well as hydrogel microstructure revealed no adverse effect of the integrated components on the inks. Viability, adhesion, and proliferation of bioprinted immortalized human mesenchymal stem cells (hTERT-MSC) was improved indicating enhanced interaction with the designed microenvironment. Furthermore, chondrogenic matrix production (collagen type II and sulfated glycosaminoglycans) by primary human chondrocytes (hChon) was enhanced by aECM. Supplementing the inks with TA was required for these positive effects but caused cytotoxicity as soon as TA concentrations exceeded a certain amount. Thus, combining tailorable aECM with algMC and balanced TA addition proved to be a promising approach for promoting adhesion of immortalized stem cells and differentiation of chondrocytes in bioprinted scaffolds.
Collapse
Affiliation(s)
- David Kilian
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Aayush Poddar
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Vanessa Desrochers
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Christiane Heinemann
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Strasse 27, 01069 Dresden, Germany
| | - Norbert Halfter
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Strasse 27, 01069 Dresden, Germany
| | - Suihong Liu
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Sandra Rother
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Strasse 27, 01069 Dresden, Germany; Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Saar, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Strasse 27, 01069 Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| |
Collapse
|
7
|
Zhu L, Rong Y, Wang Y, Bao Q, An J, Huang D, Huang X. DLP printing of tough organogels for customized wearable sensors. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|