1
|
Sharifulden NSAN, Barrios Silva LV, Mandakhbayar NE, Shin SJ, Kim HW, Knowles JC, Nguyen LTB, Chau DYS. The biological and therapeutic assessment of a P(3HB-co-4HB)-bioactive glass-graphene composite biomaterial for tissue regeneration. J Biomed Mater Res B Appl Biomater 2024; 112:e35441. [PMID: 38923274 DOI: 10.1002/jbm.b.35441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/04/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
An ideal wound dressing should create a healing environment that relieves pain, protects against infections, maintains moisture, removes debris, and speeds up wound closure and repair. However, conventional options like gauze often fall short in fulfilling these requirements, especially for chronic or nonhealing wounds. Hence there is a critical need for inventive formulations that offer efficient, cost-effective, and eco-friendly alternatives. This study focuses on assessing the innovative formulation based on a microbial-derived copolymer known as poly(3-hydroxybutyrate-co-4-hydroxybutyrate), P(3HB-co-4HB) bioactive glass and graphene particles, and exploring their biological response in vitro and in vivo-to find the best combination that promotes cell adhesion and enhances wound healing. The formulation optimized at concentration of bioactive glass (1 w/w%) and graphene (0.01 w/w%) showed accelerated degradation and enhanced blood vessel formation. Meanwhile biocompatibility was evaluated using murine osteoblasts, human dermal fibroblasts, and standard cell culture assays, demonstrating no adverse effects after 7 days of culture and well-regulated inflammatory kinetics. Whole thickness skin defect using mice indicated the feasibility of the biocomposites for a faster wound closure and reduced inflammation. Overall, this biocomposite appears promising as an ideal wound dressing material and positively influencing wound healing rates.
Collapse
Affiliation(s)
- Nik S A N Sharifulden
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, London, UK
| | - Lady V Barrios Silva
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, London, UK
| | - Nandin-Erdene Mandakhbayar
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, South Korea
- Department of Biochemistry, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Seong-Jin Shin
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, South Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, South Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, South Korea
- BK21 NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan, South Korea
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, London, UK
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, South Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, South Korea
- BK21 NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan, South Korea
| | - Linh T B Nguyen
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, London, UK
| | - David Y S Chau
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, London, UK
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, South Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, South Korea
- BK21 NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan, South Korea
| |
Collapse
|
2
|
Jin A, del Valle LJ, Puiggalí J. Copolymers and Blends Based on 3-Hydroxybutyrate and 3-Hydroxyvalerate Units. Int J Mol Sci 2023; 24:17250. [PMID: 38139077 PMCID: PMC10743438 DOI: 10.3390/ijms242417250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
This review presents a comprehensive update of the biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), emphasizing its production, properties, and applications. The overall biosynthesis pathway of PHBV is explored in detail, highlighting recent advances in production techniques. The inherent physicochemical properties of PHBV, along with its degradation behavior, are discussed in detail. This review also explores various blends and composites of PHBV, demonstrating their potential for a range of applications. Finally, the versatility of PHBV-based materials in multiple sectors is examined, emphasizing their increasing importance in the field of biodegradable polymers.
Collapse
Affiliation(s)
- Anyi Jin
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (A.J.); (L.J.d.V.)
- Venvirotech Biotechnology S.L., Santa Perpètua de Mogoda, 08130 Barcelona, Spain
| | - Luis J. del Valle
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (A.J.); (L.J.d.V.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (A.J.); (L.J.d.V.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| |
Collapse
|
3
|
Ow V, Loh XJ. Recent developments of temperature‐responsive polymers for ophthalmic applications. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Valerie Ow
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) Singapore Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) Singapore Singapore
| |
Collapse
|
4
|
|
5
|
Lin Q, Lim JYC, Xue K, Chee CPT, Loh XJ. Supramolecular thermogels from branched PCL-containing polyurethanes. RSC Adv 2020; 10:39109-39120. [PMID: 35518420 PMCID: PMC9057440 DOI: 10.1039/d0ra07426h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/18/2020] [Indexed: 11/21/2022] Open
Abstract
Thermogels are temperature-responsive hydrogels which are most commonly formed by supramolecular self-assembly of polymer amphiphiles comprising of both hydrophobic and hydrophilic segments. Although polyurethane thermogels have shown great promise as biomaterials, their synthesis by step-growth polymerisation of diols and diisocyanates can also result in formation of allophanate branches, which arise from the reaction between free isocyanate groups and urethane linkages along the polymer backbone. In this paper, we investigate the effects of different synthetic conditions on the degree of allophanate branching on polyurethane amphiphiles, and explore the influences of these branches on the polymers' critical micelle concentration (CMC), thermodynamics of micellization and subsequent thermogel properties. Our findings offer new insights into the relationship between polymer structure, micelle and gel properties. These results highlight the importance of taking polymer branching into account for understanding the hierarchical self-assembly of polymer amphiphiles and the resulting thermogel properties and behaviour.
Collapse
Affiliation(s)
- Qianyu Lin
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore 21 Lower Kent Ridge Rd Singapore 119077
| | - Jason Y C Lim
- Soft Materials Department Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR) Address: 2 Fusionopolis Way Innovis Singapore 138634
| | - Kun Xue
- Soft Materials Department Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR) Address: 2 Fusionopolis Way Innovis Singapore 138634
| | - Celestine P T Chee
- Soft Materials Department Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR) Address: 2 Fusionopolis Way Innovis Singapore 138634
| | - Xian Jun Loh
- Soft Materials Department Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR) Address: 2 Fusionopolis Way Innovis Singapore 138634
| |
Collapse
|
6
|
Sosa‐Hernández JE, Villalba‐Rodríguez AM, Romero‐Castillo KD, Zavala‐Yoe R, Bilal M, Ramirez‐Mendoza RA, Parra‐Saldivar R, Iqbal HMN. Poly‐3‐hydroxybutyrate‐based constructs with novel characteristics for drug delivery and tissue engineering applications—A review. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | | | - Kenya D. Romero‐Castillo
- Tecnologico de MonterreySchool of Engineering and Sciences, Campus Monterrey Monterrey Nuevo Leon Mexico
| | - Ricardo Zavala‐Yoe
- Instituto Tecnologico de Monterrey, Campus Ciudad de Mexico Mexico City Mexico
| | - Muhammad Bilal
- School of Life Science and Food EngineeringHuaiyin Institute of Technology Huaian China
| | - Ricardo A. Ramirez‐Mendoza
- Tecnologico de MonterreySchool of Engineering and Sciences, Campus Monterrey Monterrey Nuevo Leon Mexico
| | - Roberto Parra‐Saldivar
- Tecnologico de MonterreySchool of Engineering and Sciences, Campus Monterrey Monterrey Nuevo Leon Mexico
| | - Hafiz M. N. Iqbal
- Tecnologico de MonterreySchool of Engineering and Sciences, Campus Monterrey Monterrey Nuevo Leon Mexico
| |
Collapse
|
7
|
Hoang Thi TT, Sinh LH, Huynh DP, Nguyen DH, Huynh C. Self-Assemblable Polymer Smart-Blocks for Temperature-Induced Injectable Hydrogel in Biomedical Applications. Front Chem 2020; 8:19. [PMID: 32083052 PMCID: PMC7005785 DOI: 10.3389/fchem.2020.00019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/08/2020] [Indexed: 12/29/2022] Open
Abstract
Self-assembled temperature-induced injectable hydrogels fabricated via self-assembly of polymer smart-blocks have been widely investigated as drug delivery systems and platforms for tissue regeneration. Polymer smart-blocks that can be self-assembly play an important role in fabrication of hydrogels because they can self-assemble to induce the gelation of their copolymer in aqueous solution. The self-assembly occurs in response to an external stimulus change, such as temperature, pH, glucose, ionic strength, light, magnetic field, electric field, or their combination, which results in property transformations like hydrophobicity, ionization, and conformational change. The self-assembly smart-block based copolymers exist as a solution in aqueous media at certain conditions that are suitable for mixing with bioactive molecules and/or cells. However, this solution turns into a hydrogel due to the self-assembly of the smart-blocks under exposure to an external stimulus change in vitro or injection into the living body for a controllable release of loaded bioactive molecules or serving as a biomaterial scaffold for tissue regeneration. This work reports current scenery in the development of these self-assembly smart-blocks for fabrication of temperature-induced injectable physically cross-linked hydrogels and their potential application as drug delivery systems and platforms for tissue engineering.
Collapse
Affiliation(s)
- Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Le Hoang Sinh
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Dai Phu Huynh
- Faculty of Materials Technology and Polymer Research Center, Ho Chi Minh City University of Technology, VNU HCM, Ho Chi Minh City, Vietnam
| | - Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Cong Huynh
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
8
|
Shi H, Chi H, Luo Z, Jiang L, Loh XJ, He C, Li Z. Self-Healable, Fast Responsive Poly(ω-Pentadecalactone) Thermogelling System for Effective Liver Cancer Therapy. Front Chem 2019; 7:683. [PMID: 31681733 PMCID: PMC6813430 DOI: 10.3389/fchem.2019.00683] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 10/01/2019] [Indexed: 12/30/2022] Open
Abstract
A polyurethane based thermogelling system comprising poly(ω-pentadecalactone) (PPDL), poly(ethylene glycol) (PEG), and poly(propylene glycol) (PPG), termed as PDEP, was synthesized. The incorporation of PPDL lowers critical micelle concentration (CMC) as well as critical gelation concentration (CGC) of the novel copolymers compared to commercial Pluronic® F127. The thermogels showed excellent thermal stability at high temperature up to 80°C, fast response to temperature change in a time frame of less than second, as well as remarkable self-healing properties after being broken at high strain. In vitro drug release studies using docetaxel (DTX) and cell uptake studies using doxorubicin (DOX) show high potential of the hydrogel as drug reservoir for sustainable release profile of payloads, while the in vivo anti-tumor evaluation using mice model of hepatocellular carcinoma further demonstrated the significant inhibition on the growth of tumor. Together with its excellent biocompatibility in different organs, the novel PDPE thermogelling copolymers reported in this work could potentially be utilized as in situ-forming hydrogels for liver cancer therapy.
Collapse
Affiliation(s)
- Huihui Shi
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Hong Chi
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Lu Jiang
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Chaobin He
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research), Singapore, Singapore
| |
Collapse
|
9
|
Jiang L, Luo Z, Loh XJ, Wu YL, Li Z. PHA-Based Thermogel as a Controlled Zero-Order Chemotherapeutic Delivery System for the Effective Treatment of Melanoma. ACS APPLIED BIO MATERIALS 2019; 2:3591-3600. [DOI: 10.1021/acsabm.9b00467] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Lu Jiang
- Agency for Science, Technology and Research, Institute of Materials Research and Engineering, 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Xian Jun Loh
- Agency for Science, Technology and Research, Institute of Materials Research and Engineering, 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Zibiao Li
- Agency for Science, Technology and Research, Institute of Materials Research and Engineering, 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| |
Collapse
|
10
|
Enhancement of the properties of biosourced poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by the incorporation of natural orotic acid. Int J Biol Macromol 2019; 136:764-773. [PMID: 31226382 DOI: 10.1016/j.ijbiomac.2019.06.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/03/2019] [Accepted: 06/09/2019] [Indexed: 02/06/2023]
Abstract
The aim of this study is to use natural orotic acid (OA) as a sustainable, environmentally friendly additive to improve the crystallization, rheological, thermal, mechanical, and biodegradation properties of bacterially synthesized poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB). OA was found to be an efficient nucleating agent for P34HB, and dramatically enhanced both non-isothermal and isothermal crystallization rates. The incorporation of OA increased nucleation density and decreased spherulite size, but had little effect on the crystalline structure. The rheological properties of the P34HB were greatly improved by the solid filler OA, particularly when a percolation network structure was formed in the blends. The thermal stability of P34HB was strongly enhanced, as exemplified by the ~23 °C increase in the onset thermal decomposition temperature (To) for the blend loaded with 5 wt% OA compared to that of pure P34HB. Moreover, the yield strength and elongation at break of P34HB containing 0.5 wt% OA increased by 25% and 119%, respectively. The most intriguing result was the clear enhancement in the enzymatic hydrolysis rates of the P34HB/OA blends compared to that of neat P34HB. The synergetic improvement in these properties may be of significant importance for the wider practical application of biosourced P34HB.
Collapse
|
11
|
Liow SS, Chee PL, Owh C, Zhang K, Zhou Y, Gao F, Lakshminarayanan R, Loh XJ. Cationic Poly([R]-3-hydroxybutyrate) Copolymers as Antimicrobial Agents. Macromol Biosci 2019; 19:e1800466. [PMID: 30694604 DOI: 10.1002/mabi.201800466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/29/2018] [Indexed: 12/14/2022]
Abstract
Poly([R]-3-hydroxybutyrate) (PHB), a natural biodegradable polyester, has attracted much attention as a new biomaterial because of its sustainability and good biocompatibility. In this study, it is discovered that PHB can be conveniently functionalized to obtain a number of platform chain architectures that may provide a wide range of functional copolymers. In a transesterification reaction, linear (di-hydroxylated) and star shaped (tri- and tetra-hydroxylated) PHB oligomers are synthesized, followed by copolymerization with 2-(dimethylamino)ethyl methacrylate and quaternization with benzyl bromide to afford antimicrobial properties. The antimicrobial activities of the quaternary salts against clinically relevant pathogens on the interactions with outer and cytoplasmic membranes, lethal mechanisms, multipassage resistance, and synergy effect with antibiotics are investigated. Cationic PHB copolymers show effectiveness as antimicrobial agents, with minimum inhibitory concentration values 0.24-0.65 µm (or µmol dm-3 ) (or 32-128 µg mL-1 ) against Gram-positive and Gram-negative bacteria. Modifying the copolymer architectures into star shapes results in enhanced effectiveness to disrupt the membrane integrity. Synergistic effects are attained for all the quaternized PHB derivatives when they are used together with tobramycin. Multipassage resistance does not occur in both the linear and star derivatives against Gram-negative bacteria after 20 passages.
Collapse
Affiliation(s)
- Sing Shy Liow
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634
| | - Pei Lin Chee
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634
| | - Cally Owh
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634
| | - Kangyi Zhang
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634
| | - Yubin Zhou
- School of Materials Science and Engineering, College of Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798.,Department of Physiology, and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456
| | - Feng Gao
- School of Materials Science and Engineering, College of Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798.,Key laboratory of Carbon Fiber and Functional Polymer, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | | | - Xian Jun Loh
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634
| |
Collapse
|
12
|
Xue K, Zhao X, Zhang Z, Qiu B, Tan QSW, Ong KH, Liu Z, Parikh BH, Barathi VA, Yu W, Wang X, Lingam G, Hunziker W, Su X, Loh XJ. Sustained delivery of anti-VEGFs from thermogel depots inhibits angiogenesis without the need for multiple injections. Biomater Sci 2019; 7:4603-4614. [DOI: 10.1039/c9bm01049a] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polyurethane thermogels show sustained delivery of bioactive anti-VEGFs therapeutics to the eye.
Collapse
|
13
|
Zhang X, Tan BH, Li Z. Biodegradable polyester shape memory polymers: Recent advances in design, material properties and applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:1061-1074. [DOI: 10.1016/j.msec.2017.11.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/13/2017] [Accepted: 11/17/2017] [Indexed: 01/09/2023]
|
14
|
Xue K, Wang X, Yong PW, Young DJ, Wu YL, Li Z, Loh XJ. Hydrogels as Emerging Materials for Translational Biomedicine. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800088] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Kun Xue
- Institute of Materials Research and Engineering; Agency for Science,; Technology and Research; 2 Fusionopolis Way, #08-03 Innovis Singapore 138634 Singapore
| | - Xiaoyuan Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences; Xiamen University; Xiamen 361102 China
| | - Pei Wern Yong
- Department of Materials Science and Engineering; National University of Singapore; 9 Engineering Drive 1 Singapore 117575 Singapore
| | - David James Young
- Faculty of Science; Health, Education and Engineering; University of the Sunshine Coast; Maroochydore Queensland 4558 Australia
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences; Xiamen University; Xiamen 361102 China
| | - Zibiao Li
- Institute of Materials Research and Engineering; Agency for Science,; Technology and Research; 2 Fusionopolis Way, #08-03 Innovis Singapore 138634 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering; Agency for Science,; Technology and Research; 2 Fusionopolis Way, #08-03 Innovis Singapore 138634 Singapore
- Department of Materials Science and Engineering; National University of Singapore; 9 Engineering Drive 1 Singapore 117575 Singapore
- Singapore Eye Research Institute; 11 Third Hospital Avenue Singapore 168751 Singapore
| |
Collapse
|
15
|
Xue K, Liow SS, Karim AA, Li Z, Loh XJ. A Recent Perspective on Noncovalently Formed Polymeric Hydrogels. CHEM REC 2018; 18:1517-1529. [PMID: 29791779 DOI: 10.1002/tcr.201800015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/25/2018] [Indexed: 12/28/2022]
Abstract
Chemically crosslinked covalent hydrogels form a permanent and often strong network, and have been extensively used so far in drug delivery and tissue engineering. However, it is more difficult to induce dynamic and highly tunable changes in these hydrogels. Noncovalently formed hydrogels show promise as inherently reversible systems with an ability to change in response to dynamic environments, and have garnered strong interest recently. In this Personal Account, we elucidate a few key attractive properties of noncovalent hydrogels and describe recent developments in hydrogels crosslinked using various different noncovalent interactions. These hydrogels offer huge control for modulating material properties and could be more relevant mimics for biological systems.
Collapse
Affiliation(s)
- Kun Xue
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore
| | - Sing Shy Liow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore
| | - Anis Abdul Karim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore.,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore.,Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore
| |
Collapse
|
16
|
Yi Y, Lin G, Chen S, Liu J, Zhang H, Mi P. Polyester micelles for drug delivery and cancer theranostics: Current achievements, progresses and future perspectives. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 83:218-232. [DOI: 10.1016/j.msec.2017.10.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 12/14/2022]
|
17
|
Chan BQY, Cheng H, Liow SS, Dou Q, Wu YL, Loh XJ, Li Z. Poly(carbonate urethane)-Based Thermogels with Enhanced Drug Release Efficacy for Chemotherapeutic Applications. Polymers (Basel) 2018; 10:E89. [PMID: 30966125 PMCID: PMC6415165 DOI: 10.3390/polym10010089] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/09/2018] [Accepted: 01/15/2018] [Indexed: 02/05/2023] Open
Abstract
In this study, we report the synthesis and characterisation of a thermogelling poly(carbonate urethane) system comprising poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG) and poly(polytetrahydrofuran carbonate) (PTHF carbonate). The incorporation of PTHF carbonate allowed for the control of the lower critical solution temperature (LCST) and decreased critical gelation concentration (CGC) of the thermogels significantly. In addition, the as-prepared thermogels displayed low toxicity against HepG2, L02 and HEK293T cells. Drug release studies were carried out using doxorubicin (Dox). Studies conducted using nude mice models with hepatocellular carcinoma revealed that the Dox-loaded poly(PEG/PPG/PTHF carbonate urethane) thermogels showed excellent in vivo anti-tumour performance and effectively inhibited tumour growth in the tested model.
Collapse
Affiliation(s)
- Benjamin Qi Yu Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore.
| | - Hongwei Cheng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Sing Shy Liow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore.
| | - Qingqing Dou
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore.
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore.
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore 168751, Singapore.
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore.
| |
Collapse
|
18
|
Recent advances in the development of biodegradable PHB-based toughening materials: Approaches, advantages and applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 92:1092-1116. [PMID: 30184731 DOI: 10.1016/j.msec.2017.11.006] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/03/2017] [Accepted: 11/11/2017] [Indexed: 10/18/2022]
Abstract
Polyhydroxybutyrate (PHB) is a natural biodegradable polymer that is produced by many types of bacteria as an intracellular energy storage material. Due to its numerous advantages such as biodegradability, biocompatibility, availability and with physical properties comparable to petroleum-based thermoplastics, PHB is a potential substitute in biomedical and packaging fields. However, several physical drawbacks, such as high production cost, thermal instability, and poor mechanical properties, due to secondary crystallization and slow nucleation rate, limit its competition with traditional plastics in industrial and biomedical applications. Thereby, many attempts have been employed to improve the material performance of toughened PHB so as to achieve greater competitiveness and sustainability. In this review, the most recent developments of PHB-based toughening materials are discussed with respect to their approaches and strategies, which includes: drawing and thermal treatment, blending with materials from natural sources and synthetic polymers, as well as forming reinforced composites with natural fibers and inorganic fillers. The alternation of PHB chemical structure to form various types of functional copolymers with enhanced materials performance is also summarized. The expanded utilization of these newly developed sophisticated PHB materials as engineering materials and the biomedical significance in different domains are also addressed.
Collapse
|
19
|
Ye C, Chi H. A review of recent progress in drug and protein encapsulation: Approaches, applications and challenges. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 83:233-246. [PMID: 29208283 DOI: 10.1016/j.msec.2017.10.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
Many drugs and proteins formulated for treatment of various diseases are not fully utilised due to environmentally problems such as degradation by enzymes or it being hydrophobic. To counter this problem, the drug and protein of interest are encapsulated by synthetic polymers where they are protected from the environment. This allows the molecule to reach its target safely and maximise its function. In this paper, we will discuss about the different techniques of encapsulation that includes emulsion evaporation, self-emulsifying drug delivery system and supercritical fluid. This will be followed by the drugs and proteins that are commonly encapsulated to counter life-threatening diseases such as cancer and diabetes. A novel method using foam was proposed and will be briefly discussed as it can play a huge role in future developments.
Collapse
Affiliation(s)
- Chen Ye
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong, China.
| | - Hong Chi
- Shandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, Shandong, China
| |
Collapse
|
20
|
Visible Light-Cured Glycol Chitosan Hydrogel Containing a Beta-Cyclodextrin-Curcumin Inclusion Complex Improves Wound Healing In Vivo. Molecules 2017; 22:molecules22091513. [PMID: 28891961 PMCID: PMC6151484 DOI: 10.3390/molecules22091513] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 12/17/2022] Open
Abstract
Scarless wound healing is ideal for patients suffering from soft tissue defects. In this study, we prepared a novel wet dressing (β-CD-ic-CUR/GC) based on the visible light-cured glycol chitosan (GC) hydrogel and inclusion complex between beta-cyclodextrin (β-CD) and curcumin (CUR). We also evaluated its efficacy in the acceleration of wound healing as compared to that of CUR-loaded GC (CUR/GC). The conjugation of glycidyl methacrylate (GM) to GC for photo-curing was confirmed by 1H-NMR measurement, and the photo-cured GC hydrogel was characterized by the analyses of rheology, swelling ratio, SEM and degradation rate. After visible light irradiation, the surface/cross-sectional morphologies and storage (G′)/loss (G′′) moduli revealed the formation of hydrogel with interconnected porosity. The dressing β-CD-ic-CUR/GC exhibited a controlled release of 90% CUR in a sustained manner for 30 days. On the other hand, CUR/GC showed CUR release of 16%. β-CD acted as an excipient in improving the water-solubility of CUR and affected the release behavior of CUR. The in vivo animal tests including measurement of the remaining unhealed wound area and histological analyses showed that β-CD-ic-CUR/GC may have potential as a wet dressing agent to enhance soft tissue recovery in open fractures.
Collapse
|