1
|
Li Y, Zhou D, Han L, Quan J, Wang F, Yang X, Hu L, Wang J, Xu H, Chen L. N-Type Small Molecule Electron Transport Layers with Excellent Surface Energy and Moisture Resistance Siloxane for Non-Fullerene Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308961. [PMID: 38059861 DOI: 10.1002/smll.202308961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/11/2023] [Indexed: 12/08/2023]
Abstract
Electron transport layers (ETLs) generally contain polar groups for enhancing performance and reducing the work function. Nevertheless, the polar group with high surface energy may cause inferior interfacial compatibility, which challenges the ETLs to balance stability and performance. Here, two conjugated small molecules of ETLs with low surface energy siloxane, namely PDI-Si and PDIN-Si, are synthesized. The siloxane with low surface energy not only enhances the interfacial compatibility between ETLs and active layers but also improves the moisture-proof stability of the device. Impressively, the amine-functionalized PDIN-Si can simultaneously exhibit conspicuous n-type self-doping properties and outstanding moisture-proof stability. The optimization of interfacial contact and morphology enables the PM6:Y6-based OSC with PDIN-Si to achieve a power conversion efficiency (PCE) of 15.87%, which is slightly superior to that of classical ETL PDINO devices (15.27%), and when the PDIN-Si film thickness reaches 28 nm, the PCE remains at 13.19% (≈83%), which indicates that PDIN-Si has satisfactory thickness insensitivity to facilitate roll-to-roll processing. Excitingly, after 120 h of storage in an environment with humidity above 45%, the unencapsulated device with PDIN-Si as ETL remains at 75% of the initial PCE value, while the device with PDINO as ETL is only 50%.
Collapse
Affiliation(s)
- Yubing Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Dan Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Liangjing Han
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Jianwei Quan
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Fang Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Xufang Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Lin Hu
- China-Australia Institute for Advanced Materials and Manufacturing (IAMM), Jiaxing University, Jiaxing, 314001, China
| | - Jianru Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Haitao Xu
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Lie Chen
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| |
Collapse
|
2
|
Lee S, Park CS, Yoon H. Nanoparticulate Photoluminescent Probes for Bioimaging: Small Molecules and Polymers. Int J Mol Sci 2022; 23:4949. [PMID: 35563340 PMCID: PMC9100005 DOI: 10.3390/ijms23094949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/22/2022] Open
Abstract
Recent interest in research on photoluminescent molecules due to their unique properties has played an important role in advancing the bioimaging field. In particular, small molecules and organic dots as probes have great potential for the achievement of bioimaging because of their desirable properties. In this review, we provide an introduction of probes consisting of fluorescent small molecules and polymers that emit light across the ultraviolet and near-infrared wavelength ranges, along with a brief summary of the most recent techniques for bioimaging. Since photoluminescence probes emitting light in different ranges have different goals and targets, their respective strategies also differ. Diverse and novel strategies using photoluminescence probes against targets have gradually been introduced in the related literature. Among recent papers (published within the last 5 years) on the topic, we here concentrate on the photophysical properties and strategies for the design of molecular probes, with key examples of in vivo photoluminescence research for practical applications. More in-depth studies on these probes will provide key insights into how to control the molecular structure and size/shape of organic probes for expanded bioimaging research and applications.
Collapse
Affiliation(s)
- Sanghyuck Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
| | - Chul Soon Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea;
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| |
Collapse
|
3
|
Luo Y, Luo Y, Huang X, Liu S, Cao Z, Guo L, Li Q, Cai YP, Wang Y. A New Ester-Substituted Quinoxaline-Based Narrow Bandgap Polymer Donor for Organic Solar Cells. Macromol Rapid Commun 2020; 42:e2000683. [PMID: 33350003 DOI: 10.1002/marc.202000683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/08/2020] [Indexed: 12/28/2022]
Abstract
The electron-deficient ester group substitution in the sidechain of the commonly used electron-withdrawing quinoxaline (Qx) unit is seldom studied, while ester-substituted Qx units possess easy syntheses and facile modulation of the polymer solubility, and the enhanced electron-withdrawing property of ester substituted Qx unit can theoretically broaden the optical absorption of the resulting polymers and improve the open circuit voltage in the corresponding organic solar cells (OSCs). In this work, a novel ester-substituted Qx-based narrow bandgap polymer (NBG) donor material PBDTT-EFQx, which exhibits an absorption edge of 790 nm (bandgap < 1.6 eV), is designed and synthesized. Results show that the OSCs composed of PBDTT-EFQx and PC71 BM present the highest power conversion efficiency (PCE) of 6.8%, compared to PCEs of 5.0% for PBDTT-EFQx:ITIC based devices and 4.1% for PBDTT-EFQx:N2200 based devices, respectively. Characterizations and analyses indicate that the PC71 BM-based OSCs have well-matched energy levels, better complementary light absorption, the highest and most balanced carrier mobilities, as well as the lowest degree of recombination losses, and therefore, leading to the highest PCE among the three types of OSCs. This work reveals that the ester-substituted quinoxaline unit is one of the potential building blocks for NBG polymer donors.
Collapse
Affiliation(s)
- Yue Luo
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University (SCNU), Guangzhou, Guangdong, 510006, P. R. China
| | - Yingtong Luo
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University (SCNU), Guangzhou, Guangdong, 510006, P. R. China
| | - Xuelong Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, P. R. China
| | - Shengjian Liu
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University (SCNU), Guangzhou, Guangdong, 510006, P. R. China
| | - Zhixiong Cao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, P. R. China
| | - Lingzhi Guo
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University (SCNU), Guangzhou, Guangdong, 510006, P. R. China
| | - Qingduan Li
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University (SCNU), Guangzhou, Guangdong, 510006, P. R. China
| | - Yue-Peng Cai
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University (SCNU), Guangzhou, Guangdong, 510006, P. R. China
| | - Yang Wang
- Allstar Tech (Zhongshan) Co., Ltd, Yanjiang West 1, No.6 Road, Keji Avenue, Torch Hi-tech Industrial Development Zone, Zhongshan, Guangdong, 528437, P. R. China
| |
Collapse
|
4
|
Tang Z, Xu X, Li R, Yu L, Meng L, Wang Y, Li Y, Peng Q. Asymmetric Siloxane Functional Side Chains Enable High-Performance Donor Copolymers for Photovoltaic Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17760-17768. [PMID: 32148023 DOI: 10.1021/acsami.9b20204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, three benzodithiophene-benzotriazole alternated wide band gap copolymers attaching symmetric or asymmetric conjugated side chains, namely, PDBTFBTA-2T, PBDTFTBA-TSi, and PBDTFBTA-2Si, were developed for efficient nonfullerene polymer solar cells. The symmetry effect of the side chains was investigated in detail on the overall properties of these donor polymers. The results demonstrated that the introduced siloxane functional groups showed less effect on the absorption and frontier orbital levels of the prepared polymers but had a significant effect on the miscibility between these polymer donors and the nonfullerene acceptor. When increasing the content of siloxane functional groups, the miscibility of the polymer donors and Y6 would be improved, leading to the decreased domain size and more mixed domains. Interestingly, the active blend based on PBDTFTBA-TSi with asymmetric side chains exhibited more balanced miscibility, carrier mobility, and phase separation, benefiting exciton diffusion and dissociation. Therefore, a champion power conversion efficiency (PCE) of 14.18% was achieved finally in PBDTFTBA-TSi devices, which was 20.6 and 19.0% higher than the symmetric counterparts of PBTFBTA-2T devices (PCE = 11.76%) and PBDTFBTA-2Si devices (PCE = 11.92%), respectively. This work highlights that the asymmetric side-chain engineering based on siloxane functional groups is a promising design strategy for high-performance polymer donor semiconductors.
Collapse
Affiliation(s)
- Ziye Tang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Xiaopeng Xu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Suffolk, Upton, New York 11973, United States
| | - Liyang Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Lei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuliang Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Ying Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Qiang Peng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|