1
|
Lysenkov E, Klepko V, Bulavin L, Lebovka N. Physico-Chemical Properties of Laponite®/Polyethylene-oxide Based Composites. CHEM REC 2024; 24:e202300166. [PMID: 37387571 DOI: 10.1002/tcr.202300166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/05/2023] [Indexed: 07/01/2023]
Abstract
This review aims to provide a literature overview as well as the authors' personal account to the studies of Laponite® (Lap)/Polyethylene-oxide (PEO) based composite materials and their applications. These composites can be prepared over a wide range of their mutual concentrations, they are highly water soluble, and have many useful physico-chemical properties. To the readers' convenience, the contents are subdivided into different sections, related with consideration of PEO properties and its solubility in water, behavior of Lap systems(structure of Lap-platelets, properties of aqueous dispersions of Lap and aging effects in them), analyzing ofproperties LAP/PEO systems, Lap platelets-PEO interactions, adsorption mechanisms, aging effects, aggregation and electrokinetic properties. The different applications of Lap/PEO composites are reviewed. These applications include Lap/PEO based electrolytes for lithium polymer batteries, electrospun nanofibers, environmental, biomedical and biotechnology engineering. Both Lap and PEO are highly biocompatible with living systems and they are non-toxic, non-yellowing, and non-inflammable. Medical applications of Lap/PEO composites in bio-sensing, tissue engineering, drug delivery, cell proliferation, and wound dressings are also discussed.
Collapse
Affiliation(s)
- Eduard Lysenkov
- Petro Mohyla Black Sea National University, Mykolaiv, Ukraine
| | - Valery Klepko
- Institute of Macromolecular Chemistry, Kyiv, Ukraine
| | - Leonid Bulavin
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Nikolai Lebovka
- Institute of Biocolloidal Chemistry named after F. D. Ovcharenko, Kyiv, Ukraine
| |
Collapse
|
2
|
Zhou Y, Wang G, Wang T, Wang J, Wen X, Sun H, Yu L, Liu X, Zhang J, Zhou Q, Sun Y. Multidynamic Osteogenic Differentiation by Effective Polydopamine Micro-Arc Oxide Manipulations. Int J Nanomedicine 2022; 17:4773-4790. [PMID: 36246934 PMCID: PMC9553511 DOI: 10.2147/ijn.s378387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022] Open
Abstract
Introduction The nanostructural modification of the oral implant surface can effectively mimic the morphology of natural bone tissue, allowing osteoblasts to achieve both proliferation and differentiation capabilities at the bone interface of the dental implant. To improve the osteoinductive activity on the surface of titanium implants for rapid osseointegration, we prepared a novel composite coating (MAO-PDA-NC) by micro-arc oxidation technique and immersion method and evaluated the proliferation, adhesion, and osteogenic differentiation of osteoblasts on this coating. Methods The coatings were prepared by micro-arc oxidation (MAO) technique and immersion method, and characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) for different coatings; the loading of PDA was examined using Fourier transform infrared spectroscopy (FTIR); the ion release capacity of the coatings was determined by inductively coupled plasma emission spectrometry (ICP-OES); the interfacial bonding of the coatings was examined using nanoscratch experiment strength. The cytotoxicity of the coating was examined by live/dead staining kit; cell proliferation viability was examined by CCK-8 kit; adhesion and osteogenic effect of the coating were examined by immunofluorescence staining and RT-PCR; osteogenic differentiation was examined by alkaline phosphatase staining. Results The surface morphology of titanium implants was modified by micro-arc oxidation technology, and a new MAO-PDA-NC composite coating was successfully prepared. The results showed that the MAO-PDA-NC coating not only optimized the physical and chemical properties of the titanium implant surface but also significantly stimulated the biological properties of osteoblast adhesion, proliferation, and osteogenic differentiation on the coating surface. Conclusion These results show that MAO-PDA-NC composite coating can significantly improve the surface properties of titanium implants and achieve a stable bond between implant and bone tissue, thus accelerating early osseointegration.
Collapse
Affiliation(s)
- Yuqi Zhou
- School of Stomatology, Weifang Medical University, Weifang, People’s Republic of China
| | - Guifang Wang
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| | - Tianqi Wang
- School of Stomatology, Weifang Medical University, Weifang, People’s Republic of China
| | - Jiajia Wang
- Department of Oral Surgery, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| | - Xutao Wen
- Department of Oral Surgery, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| | - Haishui Sun
- School of Stomatology, Weifang Medical University, Weifang, People’s Republic of China
| | - Lei Yu
- School of Stomatology, Weifang Medical University, Weifang, People’s Republic of China
| | - Xiaoying Liu
- School of Bioscience and Technology, Weifang Medical University, Weifang, People’s Republic of China
| | - Juanjuan Zhang
- School of Stomatology, Weifang Medical University, Weifang, People’s Republic of China
| | - Qin Zhou
- Department of Oral Surgery, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China,Correspondence: Qin Zhou, Department of Oral Surgery, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011,People’s Republic of China, Tel +86 15900827810, Email
| | - Yan Sun
- School of Stomatology, Weifang Medical University, Weifang, People’s Republic of China,Yan Sun, School of Stomatology, Weifang Medical University, Weifang, Shandong Province, 261053, People’s Republic of China, Tel +86 13356797219, Email
| |
Collapse
|
3
|
Liang Q, Yu X, Chen X, Huang Q, Sun T. A Stretching Force Control-Based Cyclic Loading Method for the Evaluation of Mechanical Properties of Gelation Methacrylate (GelMA) Microfibers. MICROMACHINES 2022; 13:1703. [PMID: 36296056 PMCID: PMC9609627 DOI: 10.3390/mi13101703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Microfluidic spun gelation mechacrylate (GelMA) microfiber has been widely utilized as a promising bioink for 3D bioprinting. However, its weak and easily tuned mechanical properties are still difficult to precisely evaluate, due to the lack of an effective stretching method. In this paper, we propose a force-control-based cyclic loading method for rapidly evaluating the elastic modulus: the E of the microfibers with different GelMA concentrations. A two-tube manipulation system is used to stretch microfiber with a non-destructive process. Based on the model reference adaptive control strategy, the stress response can be fitted into a sinusoidal wave when a small sinusoidal strain is automatically applied onto the microfiber. Afterwards, the maximum tensile stress and tensile stain is obtained to determine the E. Moreover, different stress amplitudes and frequencies are applied to form different stress-strain loops with almost same E. Compared with a frequently-used constant force loading method, the proposed method shows an obvious advantage in measurement accuracy, especially for low-concentration GelMA microfiber. Furthermore, the reasonableness of the measured E for different GelMA concentrations is confirmed by 3D cell culture experiments, and the results show the proposed method has great application potential to investigate the interaction between cell and fibrous bioink substrate.
Collapse
Affiliation(s)
- Qian Liang
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiao Yu
- Beijing Institute of Technology, Jinggong College, Beijing 100081, China
| | - Xie Chen
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qiang Huang
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tao Sun
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Karki S, Gohain MB, Yadav D, Ingole PG. Nanocomposite and bio-nanocomposite polymeric materials/membranes development in energy and medical sector: A review. Int J Biol Macromol 2021; 193:2121-2139. [PMID: 34780890 DOI: 10.1016/j.ijbiomac.2021.11.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 01/13/2023]
Abstract
Nanocomposite and bio-nanocomposite polymer materials/membranes have fascinated prominent attention in the energy as well as the medical sector. Their composites make them appropriate choices for various applications in the medical, energy and industrial sectors. Composite materials are subject of interest in the polymer industry. Different kinds of fillers, such as cellulose-based fillers, carbon black, clay nanomaterials, glass fibers, ceramic nanomaterial, carbon quantum dots, talc and many others have been incorporated into polymers to improve the quality of the final product. These results are dependent on a variety of factors; however, nanoparticle dispersion and distribution are major obstacles to fully using nanocomposites/bio-nanocomposites materials/membranes in various applications. This review examines the various nanocomposite and bio-nanocomposite materials applications in the energy and medical sector. The review also covers the variety of ways for increasing nanocomposite and bio-nanocomposite materials features, each with its own set of applications. Recent researches on composite materials have shown that polymeric nanocomposites and bio-nanocomposites are promising materials that have been intensively explored for many applications that include electronics, environmental remediation, energy, sensing (biosensor) and energy storage devices among other applications. In this review, we studied various nanocomposite and bio-nanocomposite materials, their controlling parameters to develop the product and examine their features and applications in the fields of energy and the medical sector.
Collapse
Affiliation(s)
- Sachin Karki
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Moucham Borpatra Gohain
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Diksha Yadav
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Pravin G Ingole
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
5
|
Chu CK, Joseph AJ, Limjoco MD, Yang J, Bose S, Thapa LS, Langer R, Anderson DG. Chemical Tuning of Fibers Drawn from Extensible Hyaluronic Acid Networks. J Am Chem Soc 2020; 142:19715-19721. [PMID: 33141568 DOI: 10.1021/jacs.0c09691] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polymer fibers with specific chemical and mechanical properties are key components of many biomaterials used for regenerative medicine and drug delivery. Here, we develop a bioinspired, low-energy process to produce mechanically tunable biopolymer fibers drawn from aqueous solutions. Hyaluronic acid (HA) forms dynamic cross-links with branched polyethylene glycol polymers end-functionalized with boronic acids of varied structure to produce extensible polymer networks. This dynamic fiber precursor (DFP) is directly drawn by pultrusion into HA fibers that display high aspect ratios, ranging from 4 to 20 μm in diameter and up to ∼10 m in length. Dynamic rheology measurements of the DFP and tensile testing of the resulting fibers reveal design considerations to tune the propensity for fiber formation and fiber mechanical properties, including the effect of polymer structure and concentration on elastic modulus, tensile strength, and ultimate strain. The materials' humidity-responsive contractile behavior, a unique property of spider silks rarely observed in synthetic materials, highlights possibilities for further biomimetic and stimulus-responsive fiber applications. This work demonstrates that chemical modification of dynamic interactions can be used to tune the mechanical properties of pultrusion-based fibers and their precursors.
Collapse
Affiliation(s)
- Crystal K Chu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alby J Joseph
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Matthew D Limjoco
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, United States
| | - Jiawei Yang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, United States
| | - Suman Bose
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lavanya S Thapa
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, United States
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Preparation and Characterization of Nano-Laponite/PLGA Composite Scaffolds for Urethra Tissue Engineering. Mol Biotechnol 2020; 62:192-199. [PMID: 32016781 DOI: 10.1007/s12033-020-00237-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The purpose of this study was to construct a biomimetic urethral repair substitute. The nano-Laponite/polylactic acid-glycolic acid copolymer (PLGA) fiber scaffolds were produced to replicate the natural human urethra tissue microenvironment. PLGA (molar ratio 50:50) and Laponite were used in this study as raw materials. The nano-Laponite/PLGA scaffolds were fabricated via electrospinning technology. After preparing the material, the microstructural and mechanical properties of the nano-Laponite/PLGA scaffold were tested via scanning electron microscopy and electronic universal testing. The effects of different amounts of Laponite on the degradation of the nano-Laponite/PLGA scaffold were studied. Human umbilical vein endothelial cells (HUVECs) were co-cultured with PLGA and nano-Laponite/PLGA scaffolds for 24, 48, or 72 h. Scanning electron microscopy results illustrated that the microstructure of the scaffold fabricated by electrospinning was similar to that of the natural extracellular matrix. When the electrospinning liquid contained 10% Laponite, the nano-Laponite/PLGA stress-strain curve illustrated that the scaffold has strong elastic deformation ability. HUVECs exhibited good growth on the nano-Laponite/PLGA scaffold. When the scaffold contained 1% Laponite, the cell proliferation rate in the CCK-8 test was significantly better than that for the other three materials, displaying good cell culture characteristics. The 1% nano-Laponite/PLGA composite scaffold can be used as a suitable urethral repair material, but its performance requires further development and research.
Collapse
|
7
|
Chen S, Jang TS, Pan HM, Jung HD, Sia MW, Xie S, Hang Y, Chong SKM, Wang D, Song J. 3D Freeform Printing of Nanocomposite Hydrogels through in situ Precipitation in Reactive Viscous Fluid. Int J Bioprint 2020; 6:258. [PMID: 32782988 PMCID: PMC7415863 DOI: 10.18063/ijb.v6i2.258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/03/2020] [Indexed: 12/25/2022] Open
Abstract
Composite hydrogels have gained great attention as three-dimensional (3D) printing biomaterials because of their enhanced intrinsic mechanical strength and bioactivity compared to pure hydrogels. In most conventional printing methods for composite hydrogels, particles are preloaded in ink before printing, which often reduces the printability of composite ink with little mechanical improvement due to poor particle-hydrogel interaction of physical mixing. In contrast, the in situ incorporation of nanoparticles into a hydrogel during 3D printing achieves uniform distribution of particles with remarkable mechanical reinforcement, while precursors dissolved in inks do not influence the printing process. Herein, we introduced a "printing in liquid" technique coupled with a hybridization process, which allows 3D freeform printing of nanoparticle-reinforced composite hydrogels. A viscoplastic matrix for this printing system provides not only support for printed hydrogel filaments but also chemical reactants to induce various reactions in printed objects for in situ modification. Nanocomposite hydrogel scaffolds were successfully fabricated through this 3D freeform printing of hyaluronic acid (HAc)-alginate (Alg) hydrogel inks through a two-step crosslinking strategy. The first ionic crosslinking of Alg provided structural stability during printing, while the secondary crosslinking of photo-curable HAc improved the mechanical and physiological stability of the nanocomposite hydrogels. For in situ precipitation during 3D printing, phosphate ions were dissolved in the hydrogel ink and calcium ions were added to the viscoplastic matrix. The composite hydrogels demonstrated a significant improvement in mechanical strength, biostability, as well as biological performance compared to pure HAc. Moreover, the multi-material printing of composites with different calcium phosphate contents was achieved by adjusting the ionic concentration of inks. Our method greatly accelerates the 3D printing of various functional or hybridized materials with complex geometries through the design and modification of printing materials coupled with in situ post-printing functionalization and hybridization in reactive viscoplastic matrices.
Collapse
Affiliation(s)
- Shengyang Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Tae-Sik Jang
- Liquid Processing and Casting Technology R&D Group, Korea Institute of Industrial Technology, Incheon 406-840, Republic of Korea
| | - Houwen Matthew Pan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Hyun-Do Jung
- Liquid Processing and Casting Technology R&D Group, Korea Institute of Industrial Technology, Incheon 406-840, Republic of Korea
| | - Ming Wei Sia
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Shuying Xie
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Yao Hang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Seow Khoon Mark Chong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Dongan Wang
- Department of Biomedical Engineering, City University of Hong Kong,83 Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Juha Song
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| |
Collapse
|
8
|
Chen S, Jang TS, Pan HM, Jung HD, Sia MW, Xie S, Hang Y, Chong SKM, Wang D, Song J. 3D Freeform Printing of Nanocomposite Hydrogels through in situ Precipitation in Reactive Viscous Fluid. Int J Bioprint 2020. [PMID: 32782988 DOI: 10.18063/ijb.v6i2.258.] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Composite hydrogels have gained great attention as three-dimensional (3D) printing biomaterials because of their enhanced intrinsic mechanical strength and bioactivity compared to pure hydrogels. In most conventional printing methods for composite hydrogels, particles are preloaded in ink before printing, which often reduces the printability of composite ink with little mechanical improvement due to poor particle-hydrogel interaction of physical mixing. In contrast, the in situ incorporation of nanoparticles into a hydrogel during 3D printing achieves uniform distribution of particles with remarkable mechanical reinforcement, while precursors dissolved in inks do not influence the printing process. Herein, we introduced a "printing in liquid" technique coupled with a hybridization process, which allows 3D freeform printing of nanoparticle-reinforced composite hydrogels. A viscoplastic matrix for this printing system provides not only support for printed hydrogel filaments but also chemical reactants to induce various reactions in printed objects for in situ modification. Nanocomposite hydrogel scaffolds were successfully fabricated through this 3D freeform printing of hyaluronic acid (HAc)-alginate (Alg) hydrogel inks through a two-step crosslinking strategy. The first ionic crosslinking of Alg provided structural stability during printing, while the secondary crosslinking of photo-curable HAc improved the mechanical and physiological stability of the nanocomposite hydrogels. For in situ precipitation during 3D printing, phosphate ions were dissolved in the hydrogel ink and calcium ions were added to the viscoplastic matrix. The composite hydrogels demonstrated a significant improvement in mechanical strength, biostability, as well as biological performance compared to pure HAc. Moreover, the multi-material printing of composites with different calcium phosphate contents was achieved by adjusting the ionic concentration of inks. Our method greatly accelerates the 3D printing of various functional or hybridized materials with complex geometries through the design and modification of printing materials coupled with in situ post-printing functionalization and hybridization in reactive viscoplastic matrices.
Collapse
Affiliation(s)
- Shengyang Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Tae-Sik Jang
- Liquid Processing and Casting Technology R&D Group, Korea Institute of Industrial Technology, Incheon 406-840, Republic of Korea
| | - Houwen Matthew Pan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Hyun-Do Jung
- Liquid Processing and Casting Technology R&D Group, Korea Institute of Industrial Technology, Incheon 406-840, Republic of Korea
| | - Ming Wei Sia
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Shuying Xie
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Yao Hang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Seow Khoon Mark Chong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Dongan Wang
- Department of Biomedical Engineering, City University of Hong Kong,83 Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Juha Song
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| |
Collapse
|
9
|
Gaharwar AK, Cross LM, Peak CW, Gold K, Carrow JK, Brokesh A, Singh KA. 2D Nanoclay for Biomedical Applications: Regenerative Medicine, Therapeutic Delivery, and Additive Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900332. [PMID: 30941811 PMCID: PMC6546555 DOI: 10.1002/adma.201900332] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/23/2019] [Indexed: 05/03/2023]
Abstract
Clay nanomaterials are an emerging class of 2D biomaterials of interest due to their atomically thin layered structure, charged characteristics, and well-defined composition. Synthetic nanoclays are plate-like polyions composed of simple or complex salts of silicic acids with a heterogeneous charge distribution and patchy interactions. Due to their biocompatible characteristics, unique shape, high surface-to-volume ratio, and charge, nanoclays are investigated for various biomedical applications. Here, a critical overview of the physical, chemical, and physiological interactions of nanoclay with biological moieties, including cells, proteins, and polymers, is provided. The state-of-the-art biomedical applications of 2D nanoclay in regenerative medicine, therapeutic delivery, and additive manufacturing are reviewed. In addition, recent developments that are shaping this emerging field are discussed and promising new research directions for 2D nanoclay-based biomaterials are identified.
Collapse
Affiliation(s)
- Akhilesh K Gaharwar
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Material Science and Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX, 77843, USA
| | - Lauren M Cross
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Charles W Peak
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Karli Gold
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - James K Carrow
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Anna Brokesh
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Kanwar Abhay Singh
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
10
|
Jiang Y, Yu X, Yu R. Rheology, crystallization, and thermal stability of poly(ethylene oxide) modified by a novel phenolic resin. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1002/adv.22160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ying Jiang
- School of Materials Science and Engineering; East China University of Science and Technology; Shanghai China
| | - Xiaoxiao Yu
- School of Materials Science and Engineering; East China University of Science and Technology; Shanghai China
| | - Ruobing Yu
- School of Materials Science and Engineering; East China University of Science and Technology; Shanghai China
| |
Collapse
|
11
|
Chen T, Hou K, Ren Q, Chen G, Wei P, Zhu M. Nanoparticle-Polymer Synergies in Nanocomposite Hydrogels: From Design to Application. Macromol Rapid Commun 2018; 39:e1800337. [DOI: 10.1002/marc.201800337] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/10/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Tao Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P.R. China
| | - Kai Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P.R. China
| | - Qianyi Ren
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P.R. China
| | - Guoyin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P.R. China
| | - Peiling Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P.R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P.R. China
| |
Collapse
|
12
|
Peak CW, Stein J, Gold KA, Gaharwar AK. Nanoengineered Colloidal Inks for 3D Bioprinting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:917-925. [PMID: 28981287 DOI: 10.1021/acs.langmuir.7b02540] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanoengineered hydrogels offer the potential to design shear-thinning bioinks for three-dimensional (3D) bioprinting. Here, we have synthesized colloidal bioinks composed of disk-shaped two-dimensional (2D) nanosilicates (Laponite) and poly(ethylene glycol) (PEG). The addition of Laponite reinforces the PEG network and increases viscosity, storage modulus, and network stability. PEG-Laponite hydrogels display shear-thinning and self-recovery characteristics due to rapid internal phase rearrangement. As a result, a range of complex patterns can be printed using PEG-Laponite bioinks. The 3D bioprinted structure has similar mechanical properties compared to the as-casted structure. In addition, encapsulated cells within the PEG-Laponite bioink show high viability after bioprinting. Overall, this study introduces a new class of PEG-Laponite colloidal inks for bioprinting and cell delivery.
Collapse
Affiliation(s)
- Charles W Peak
- Biomedical Engineering and ‡Material Science and Engineering, Dwight Look College of Engineering, and §Center for Remote Health Technologies and Systems, Texas A&M University , College Station, Texas 77843, United States
| | - Jean Stein
- Biomedical Engineering and ‡Material Science and Engineering, Dwight Look College of Engineering, and §Center for Remote Health Technologies and Systems, Texas A&M University , College Station, Texas 77843, United States
| | - Karli A Gold
- Biomedical Engineering and ‡Material Science and Engineering, Dwight Look College of Engineering, and §Center for Remote Health Technologies and Systems, Texas A&M University , College Station, Texas 77843, United States
| | - Akhilesh K Gaharwar
- Biomedical Engineering and ‡Material Science and Engineering, Dwight Look College of Engineering, and §Center for Remote Health Technologies and Systems, Texas A&M University , College Station, Texas 77843, United States
| |
Collapse
|
13
|
Yang Y, Liu X, Wei D, Zhong M, Sun J, Guo L, Fan H, Zhang X. Automated fabrication of hydrogel microfibers with tunable diameters for controlled cell alignment. Biofabrication 2017; 9:045009. [DOI: 10.1088/1758-5090/aa90e4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Hou K, Li Y, Liu Y, Zhang R, Hsiao BS, Zhu M. Continuous fabrication of cellulose nanocrystal/poly(ethylene glycol) diacrylate hydrogel fiber from nanocomposite dispersion: Rheology, preparation and characterization. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.06.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Motealleh A, Kehr NS. Nanocomposite Hydrogels and Their Applications in Tissue Engineering. Adv Healthc Mater 2017; 6. [PMID: 27900856 DOI: 10.1002/adhm.201600938] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/18/2016] [Indexed: 01/21/2023]
Abstract
Nanocomposite (NC) hydrogels, organic-inorganic hybrid materials, are of great interest as artificial three-dimensional (3D) biomaterials for biomedical applications. NC hydrogels are prepared in water by chemically or physically cross-linking organic polymers with nanomaterials (NMs). The incorporation of hard inorganic NMs into the soft organic polymer matrix enhances the physical, chemical, and biological properties of NC hydrogels. Therefore, NC hydrogels are excellent candidates for artificial 3D biomaterials, particularly in tissue engineering applications, where they can mimic the chemical, mechanical, electrical, and biological properties of native tissues. A wide range of functional NMs and synthetic or natural organic polymers have been used to design new NC hydrogels with novel properties and tailored functionalities for biomedical uses. Each of these approaches can improve the development of NC hydrogels and, thus, provide advanced 3D biomaterials for biomedical applications.
Collapse
Affiliation(s)
- Andisheh Motealleh
- Physikalisches Institut and Center for Nanotechnology; Westfälische Wilhelms-Universität Münster; Heisenbergstrasse 11 D-48149 Münster Germany
| | - Nermin Seda Kehr
- Physikalisches Institut and Center for Nanotechnology; Westfälische Wilhelms-Universität Münster; Heisenbergstrasse 11 D-48149 Münster Germany
| |
Collapse
|
16
|
Hou K, Wang H, Lin Y, Chen S, Yang S, Cheng Y, Hsiao BS, Zhu M. Large Scale Production of Continuous Hydrogel Fibers with Anisotropic Swelling Behavior by Dynamic-Crosslinking-Spinning. Macromol Rapid Commun 2016; 37:1795-1801. [DOI: 10.1002/marc.201600430] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/29/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Kai Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P. R. China
| | - Huiyi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P. R. China
| | - Yunyin Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P. R. China
| | - Shaohua Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P. R. China
| | - Shengyuan Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P. R. China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P. R. China
| | - Benjamin S. Hsiao
- Department of Chemistry; Stony Brook University; Stony Brook NY 11794 USA
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P. R. China
| |
Collapse
|
17
|
Peak CW, Carrow JK, Thakur A, Singh A, Gaharwar AK. Elastomeric Cell-Laden Nanocomposite Microfibers for Engineering Complex Tissues. Cell Mol Bioeng 2015. [DOI: 10.1007/s12195-015-0406-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
18
|
Liu X, Bhatia SR. Laponite® and Laponite®‐PEO hydrogels with enhanced elasticity in phosphate‐buffered saline. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3514] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiao Liu
- Department of Chemistry Stony Brook University Stony Brook NY 11794 USA
| | - Surita R. Bhatia
- Department of Chemistry Stony Brook University Stony Brook NY 11794 USA
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11793 USA
| |
Collapse
|
19
|
Gaharwar AK, Nikkhah M, Sant S, Khademhosseini A. Anisotropic poly (glycerol sebacate)-poly (
ϵ
-caprolactone) electrospun fibers promote endothelial cell guidance. Biofabrication 2014; 7:015001. [DOI: 10.1088/1758-5090/7/1/015001] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Carrow JK, Gaharwar AK. Bioinspired Polymeric Nanocomposites for Regenerative Medicine. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400427] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- James K. Carrow
- Department of Biomedical Engineering; Texas A&M University; College Station TX 77843 USA
| | - Akhilesh K. Gaharwar
- Department of Biomedical Engineering; Texas A&M University; College Station TX 77843 USA
- Department of Materials Science and Engineering; Texas A&M University; College Station TX 77843 USA
| |
Collapse
|
21
|
Gaharwar AK, Avery RK, Assmann A, Paul A, McKinley GH, Khademhosseini A, Olsen BD. Shear-thinning nanocomposite hydrogels for the treatment of hemorrhage. ACS NANO 2014; 8:9833-42. [PMID: 25221894 PMCID: PMC4212795 DOI: 10.1021/nn503719n] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/15/2014] [Indexed: 05/19/2023]
Abstract
Internal hemorrhaging is a leading cause of death after traumatic injury on the battlefield. Although several surgical approaches such as the use of fibrin glue and tissue adhesive have been commercialized to achieve hemostasis, these approaches are difficult to employ on the battlefield and cannot be used for incompressible wounds. Here, we present shear-thinning nanocomposite hydrogels composed of synthetic silicate nanoplatelets and gelatin as injectable hemostatic agents. These materials are demonstrated to decrease in vitro blood clotting times by 77%, and to form stable clot-gel systems. In vivo tests indicated that the nanocomposites are biocompatible and capable of promoting hemostasis in an otherwise lethal liver laceration. The combination of injectability, rapid mechanical recovery, physiological stability, and the ability to promote coagulation result in a hemostat for treating incompressible wounds in out-of-hospital, emergency conditions.
Collapse
Affiliation(s)
- Akhilesh K. Gaharwar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Reginald K. Avery
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander Assmann
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Cardiovascular Surgery, Heinrich Heine University, Medical Faculty, 40225 Duesseldorf, Germany
| | - Arghya Paul
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gareth H. McKinley
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ali Khademhosseini
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Address correspondence to ,
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Address correspondence to ,
| |
Collapse
|
22
|
Lei F, Yang S, Yang M, Li J, Guo S. Exfoliation of organic montmorillonite in iPP free of compatibilizer through the multistage stretching extrusion. Polym Bull (Berl) 2014. [DOI: 10.1007/s00289-014-1254-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
The osteogenic differentiation of SSEA-4 sub-population of human adipose derived stem cells using silicate nanoplatelets. Biomaterials 2014; 35:9087-99. [PMID: 25123923 DOI: 10.1016/j.biomaterials.2014.07.052] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/23/2014] [Indexed: 11/24/2022]
Abstract
How to surpass in vitro stem cell differentiation, reducing cell manipulation, and lead the in situ regeneration process after transplantation, remains to be unraveled in bone tissue engineering (bTE). Recently, we showed that the combination of human bone marrow stromal cells with bioactive silicate nanoplatelets (sNPs) promotes the osteogenic differentiation without the use of standard osteogenic inductors. Even more, using SSEA-4(+) cell-subpopulations (SSEA-4(+)hASCs) residing within the adipose tissue, as a single-cellular source to obtain relevant cell types for bone regeneration, was also proposed. Herein, sNPs were used to promote the osteogenic differentiation of SSEA-4(+)hASCs. The interactions between SSEA-4(+)hASCs and sNPs, namely the internalization pathway and effect on cells osteogenic differentiation, were evaluated. SNPs below 100 μg/mL showed high cytocompatibility and fast internalization via clathrin-mediated pathway. SNPs triggered an overexpression of osteogenic-related markers (RUNX2, osteopontin, osteocalcin) accompanied by increased alkaline phosphatase activity and deposition of a predominantly collagen-type I matrix. Consequently, a robust matrix mineralization was achieved, covering >90% of the culturing surface area. Overall, we demonstrated the high osteogenic differentiation potential of SSEA-4(+)hASCs, further enhanced by the addition of sNPs in a dose dependent manner. This strategy endorses the combination of an adipose-derived cell-subpopulation with inorganic compounds to achieve bone matrix-analogs with clinical relevance.
Collapse
|
24
|
Gaharwar AK, Mukundan S, Karaca E, Dolatshahi-Pirouz A, Patel A, Rangarajan K, Mihaila SM, Iviglia G, Zhang H, Khademhosseini A. Nanoclay-enriched poly(ɛ-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells. Tissue Eng Part A 2014; 20:2088-101. [PMID: 24842693 DOI: 10.1089/ten.tea.2013.0281] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Musculoskeletal tissue engineering aims at repairing and regenerating damaged tissues using biological tissue substitutes. One approach to achieve this aim is to develop osteoconductive scaffolds that facilitate the formation of functional bone tissue. We have fabricated nanoclay-enriched electrospun poly(ɛ-caprolactone) (PCL) scaffolds for osteogenic differentiation of human mesenchymal stem cells (hMSCs). A range of electrospun scaffolds is fabricated by varying the nanoclay concentrations within the PCL scaffolds. The addition of nanoclay decreases fiber diameter and increases surface roughness of electrospun fibers. The enrichment of PCL scaffold with nanoclay promotes in vitro biomineralization when subjected to simulated body fluid (SBF), indicating bioactive characteristics of the hybrid scaffolds. The degradation rate of PCL increases due to the addition of nanoclay. In addition, a significant increase in crystallization temperature of PCL is also observed due to enhanced surface interactions between PCL and nanoclay. The effect of nanoclay on the mechanical properties of electrospun fibers is also evaluated. The feasibility of using nanoclay-enriched PCL scaffolds for tissue engineering applications is investigated in vitro using hMSCs. The nanoclay-enriched electrospun PCL scaffolds support hMSCs adhesion and proliferation. The addition of nanoclay significantly enhances osteogenic differentiation of hMSCs on the electrospun scaffolds as evident by an increase in alkaline phosphates activity of hMSCs and higher deposition of mineralized extracellular matrix compared to PCL scaffolds. Given its unique bioactive characteristics, nanoclay-enriched PCL fibrous scaffold may be used for musculoskeletal tissue engineering.
Collapse
Affiliation(s)
- Akhilesh K Gaharwar
- 1 David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gaharwar AK, Mihaila SM, Kulkarni AA, Patel A, Di Luca A, Reis RL, Gomes ME, van Blitterswijk C, Moroni L, Khademhosseini A. Amphiphilic beads as depots for sustained drug release integrated into fibrillar scaffolds. J Control Release 2014; 187:66-73. [PMID: 24794894 DOI: 10.1016/j.jconrel.2014.04.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
Abstract
Native extracellular matrix (ECM) is a complex fibrous structure loaded with bioactive cues that affects the surrounding cells. A promising strategy to mimicking native tissue architecture for tissue engineering applications is to engineer fibrous scaffolds using electrospinning. By loading appropriate bioactive cues within these fibrous scaffolds, various cellular functions such as cell adhesion, proliferation and differentiation can be regulated. Here, we report on the encapsulation and sustained release of a model hydrophobic drug (dexamethasone (Dex)) within beaded fibrillar scaffold of poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT), a polyether-ester multiblock copolymer to direct differentiation of human mesenchymal stem cells (hMSCs). The amphiphilic beads act as depots for sustained drug release that is integrated into the fibrillar scaffolds. The entrapment of Dex within the beaded structure results in sustained release of the drug over the period of 28days. This is mainly attributed to the diffusion driven release of Dex from the amphiphilic electrospun scaffolds. In vitro results indicate that hMSCs cultured on Dex containing beaded fibrillar scaffolds exhibit an increase in osteogenic differentiation potential, as evidenced by increased alkaline phosphatase (ALP) activity, compared to the direct infusion of Dex in the culture medium. The formation of a mineralized matrix is also significantly enhanced due to the controlled Dex release from the fibrous scaffolds. This approach can be used to engineer scaffolds with appropriate chemical cues to direct tissue regeneration.
Collapse
Affiliation(s)
- Akhilesh K Gaharwar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, USA; Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge 02139, USA; Department of Biomedical Engineering, Texas A&M University, College Station 77843, USA; Department of Materials Science & Engineering, Texas A&M University, College Station 77843, USA
| | - Silvia M Mihaila
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, USA; 3B's Research Group, Biomaterials, Biodegradables and Biomimetics, Dept. of Polymer Engineering, University of Minho, AvePark, Taipas, 4806-909 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Ashish A Kulkarni
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | - Alpesh Patel
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | - Andrea Di Luca
- Tissue Regeneration Department, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - Rui L Reis
- 3B's Research Group, Biomaterials, Biodegradables and Biomimetics, Dept. of Polymer Engineering, University of Minho, AvePark, Taipas, 4806-909 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, Biomaterials, Biodegradables and Biomimetics, Dept. of Polymer Engineering, University of Minho, AvePark, Taipas, 4806-909 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Clemens van Blitterswijk
- Tissue Regeneration Department, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - Lorenzo Moroni
- Tissue Regeneration Department, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands.
| | - Ali Khademhosseini
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, USA; Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, USA; Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701, Republic of Korea; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
| |
Collapse
|
26
|
Li J, Suo Z, Vlassak JJ. Stiff, strong, and tough hydrogels with good chemical stability. J Mater Chem B 2014; 2:6708-6713. [DOI: 10.1039/c4tb01194e] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A hybrid hydrogel, consisting of hydrophilic and crystalline polymer networks, achieves high stiffness, high strength, and high toughness, while maintaining physical integrity in concentrated electrolyte solutions.
Collapse
Affiliation(s)
- Jianyu Li
- School of Engineering and Applied Sciences
- Harvard University
- Cambridge, USA
| | - Zhigang Suo
- School of Engineering and Applied Sciences
- Harvard University
- Cambridge, USA
- Kavli Institute for Bionano Science and Technology
- Harvard University
| | - Joost J. Vlassak
- School of Engineering and Applied Sciences
- Harvard University
- Cambridge, USA
| |
Collapse
|
27
|
Gaharwar AK, Peppas NA, Khademhosseini A. Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 2013; 111:441-53. [PMID: 24264728 DOI: 10.1002/bit.25160] [Citation(s) in RCA: 641] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/19/2013] [Accepted: 11/19/2013] [Indexed: 12/16/2022]
Abstract
Hydrogels mimic native tissue microenvironment due to their porous and hydrated molecular structure. An emerging approach to reinforce polymeric hydrogels and to include multiple functionalities focuses on incorporating nanoparticles within the hydrogel network. A wide range of nanoparticles, such as carbon-based, polymeric, ceramic, and metallic nanomaterials can be integrated within the hydrogel networks to obtain nanocomposites with superior properties and tailored functionality. Nanocomposite hydrogels can be engineered to possess superior physical, chemical, electrical, and biological properties. This review focuses on the most recent developments in the field of nanocomposite hydrogels with emphasis on biomedical and pharmaceutical applications. In particular, we discuss synthesis and fabrication of nanocomposite hydrogels, examine their current limitations and conclude with future directions in designing more advanced nanocomposite hydrogels for biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A & M University, College Station, Texas, 77843
| | | | | |
Collapse
|
28
|
Dawson JI, Oreffo ROC. Clay: new opportunities for tissue regeneration and biomaterial design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:4069-4086. [PMID: 23722321 DOI: 10.1002/adma.201301034] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/04/2013] [Indexed: 06/02/2023]
Abstract
Seminal recent studies that have shed new light on the remarkable properties of clay interactions suggest unexplored opportunities for biomaterial design and regenerative medicine. Here, recent conceptual and technological developments in the science of clay interactions with biomolecules, polymers, and cells are examined, focusing on the implications for tissue engineering and regenerative strategies. Pioneering studies demonstrating the utility of clay for drug-delivery and scaffold design are reviewed and areas for future research and development highlighted.
Collapse
Affiliation(s)
- Jonathan I Dawson
- Institute of Developmental Sciences University of Southampton Southampton, UK.
| | | |
Collapse
|
29
|
Gaharwar AK, Mihaila SM, Swami A, Patel A, Sant S, Reis RL, Marques AP, Gomes ME, Khademhosseini A. Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:3329-3336. [PMID: 23670944 DOI: 10.1002/adma.201300584] [Citation(s) in RCA: 356] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Indexed: 05/28/2023]
Abstract
Novel silicate nanoplatelets that induce osteogenic differentiation of human mesenchymal stem cells (hMSCs) in the absence of any osteoinductive factor are reported. The presence of the silicate triggers a set of events that follows the temporal pattern of osteogenic differentiation. These findings underscore the potential applications of these silicate nanoplatelets in designing bioactive scaffolds for musculoskeletal tissue engineering.
Collapse
Affiliation(s)
- Akhilesh K Gaharwar
- Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard medical School, Cambridge, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Enhanced orientation of PEO polymer chains induced by nanoclays in electrospun PEO/clay composite nanofibers. Colloid Polym Sci 2013. [DOI: 10.1007/s00396-012-2875-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: structural, mechanical and cell adhesion characteristics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:1800-7. [PMID: 23827639 DOI: 10.1016/j.msec.2012.12.099] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/05/2012] [Accepted: 12/31/2012] [Indexed: 02/02/2023]
Abstract
Photopolymerized hydrogels are extensively investigated for various tissue engineering applications, primarily due to their ability to form hydrogels in a minimally invasive manner. Although photocrosslinkable hydrogels provide necessary biological and chemical characteristics to mimic cellular microenvironments, they often lack sufficient mechanical properties. Recently, nanocomposite approaches have demonstrated potential to overcome these deficits by reinforcing the hydrogel network with. In this study, we investigate some physical, chemical, and biological properties of photocrosslinked poly(ethylene glycol) (PEG)-silica hydrogels. The addition of silica nanospheres significantly suppresses the hydration degree of the PEG hydrogels, indicating surface interactions between the silica nanospheres and the polymer chains. No significant change in hydrogel microstructure or average pore size due to the addition of silica nanospheres was observed. However, addition of silica nanospheres significantly increases both the mechanical strength and the toughness of the hydrogel networks. The biological properties of these nanocomposite hydrogels were evaluated by seeding fibroblast cells on the hydrogel surface. While the PEG hydrogels showed minimum cell adhesion, spreading and proliferation, the addition of silica nanospheres enhanced initial cell adhesion, promoted cell spreading and increased the metabolic activity of the cells. Overall, results indicate that the addition of silica nanospheres improves the mechanical stiffness and cell adhesion properties of PEG hydrogels and can be used for biomedical applications that required controlled cell adhesion.
Collapse
|
32
|
Gaharwar AK, Kishore V, Rivera C, Bullock W, Wu CJ, Akkus O, Schmidt G. Physically crosslinked nanocomposites from silicate-crosslinked PEO: mechanical properties and osteogenic differentiation of human mesenchymal stem cells. Macromol Biosci 2012; 12:779-93. [PMID: 22517665 DOI: 10.1002/mabi.201100508] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 01/30/2012] [Indexed: 01/21/2023]
Abstract
The mechanical and biological properties of silicate-crosslinked PEO nanocomposites are studied. A strong correlation is observed between silicate concentration and mechanical properties. In vitro cell culture studies reveal that an increase in silicate concentration enhances the attachment and proliferation of human mesenchymal stem cells significantly. An upregulation in the expression of osteocalcin on nanocomposites compared to the tissue culture polystyrene control is observed. Together, these results suggest that silicate-based nanocomposites are bioactive and have the potential to be used in a range of biotechnological and biomedical applications such as injectable matrices, biomedical coatings, drug delivery, and regenerative medicine.
Collapse
Affiliation(s)
- Akhilesh K Gaharwar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907-2032, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Tang X, Alavi S. Structure and physical properties of starch/poly vinyl alcohol/laponite RD nanocomposite films. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:1954-1962. [PMID: 22217361 DOI: 10.1021/jf2024962] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Nanocomposites of starch, poly vinyl alcohol (PVOH), and laponite RD (LRD) were produced by solution mixing and cast into films. In general, an increase in LRD content (0-20%) enhanced tensile strength and decreased water vapor permeability, irrespective of the relative humidity (50% and 75% RH). Tensile strength (TS) of starch/PVOH/LRD films ranged from 6.51 to 13.3 MPa. At 75% RH, TS was up to 65% higher as compared to films with sodium montmorillonite as filler. The most striking results were obtained with respect to elongation at break (E%), which ranged from 144% to 312%. Contrary to other polymer/clay nanocomposites, E% increased on addition of 5-20% LRD and was up to 175% higher than the control without clay. Nanocomposite structure and interactions were investigated using X-ray diffraction, transmission electron microscopy, and differential scanning calorimetry. Results indicated that LRD was a compatibilizer and cross-linking agent between polymers, and has the potential for use in biodegradable packaging films with good mechanical performance even in high humidity conditions.
Collapse
Affiliation(s)
- Xiaozhi Tang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210046, China
| | | |
Collapse
|
34
|
Gaharwar AK, Rivera CP, Wu CJ, Schmidt G. Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Acta Biomater 2011; 7:4139-48. [PMID: 21839864 DOI: 10.1016/j.actbio.2011.07.023] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 06/17/2011] [Accepted: 07/25/2011] [Indexed: 10/17/2022]
Abstract
The structures and mechanical properties of both physically and covalently cross-linked nanocomposite hydrogels made from poly(ethylene glycol) (PEG) and silicate nanoparticles (Laponite RD) are investigated. Injectable nanocomposite precursor solutions can be covalently cross-linked via photopolymerization. The resulting hydrogels are transparent and have interconnected pores, high elongation and toughness. These properties depend on the hydrogel composition, polymer-nanoparticle interactions and degree of cross-linking (both physical and covalent). Covalent cross-linking of polymer chains leads to the formation of an elastic network, whereas physical cross-linking between nanoparticles and polymer chains induces viscoelastic properties. At high deformations covalent bonds may be broken but physical bonds rebuild and to some extent self-heal the overall network structure. Addition of silicate also enhances the bioactivity and adhesiveness of the hydrogel as these materials stick to soft tissue as well as to hard surfaces. In addition, MC3T3-E1 mouse preosteoblast cells readily adhere and spread on nanocomposite hydrogel surfaces. Collectively, the combinations of properties such as elasticity, stiffness, interconnected network, adhesiveness to surfaces and bio-adhesion to cells provide inspiration and opportunities to engineer mechanically strong and elastic tissue matrixes for orthopedic, craniofacial and dental applications.
Collapse
|
35
|
Gaharwar AK, Dammu SA, Canter JM, Wu CJ, Schmidt G. Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles. Biomacromolecules 2011; 12:1641-50. [PMID: 21413708 DOI: 10.1021/bm200027z] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Unique combinations of hard and soft components found in biological tissues have inspired researchers to design and develop synthetic nanocomposite gels and hydrogels with elastomeric properties. These elastic materials can potentially be used as synthetic mimics for diverse tissue engineering applications. Here we present a set of elastomeric nanocomposite hydrogels made from poly(ethylene glycol) (PEG) and hydroxyapatite nanoparticles (nHAp). The aqueous nanocomposite PEG-nHAp precursor solutions can be injected and then covalently cross-linked via photopolymerization. The resulting PEG-nHAp hydrogels have interconnected pore sizes ranging from 100 to 300 nm. They have higher extensibilities, fracture stresses, compressive strengths, and toughness when compared with conventional PEO hydrogels. The enhanced mechanical properties are a result of polymer nanoparticle interactions that interfere with the permanent cross-linking of PEG during photopolymerization. The effect of nHAp concentration and temperature on hydrogel swelling kinetics was evaluated under physiological conditions. An increase in nHAp concentration decreased the hydrogel saturated swelling degree. The combination of PEG and nHAp nanoparticles significantly improved the physical and chemical hydrogel properties as well as some biological characteristics such as osteoblast cell adhesion. Further development of these elastomeric materials can potentially lead to use as a matrix for drug delivery and tissue repair especially for orthopedic applications.
Collapse
Affiliation(s)
- Akhilesh K Gaharwar
- Purdue University, Weldon School of Biomedical Engineering, West Lafayette, Indiana, United States
| | | | | | | | | |
Collapse
|