1
|
Banik O, Salve AL, Kumar P, Kumar S, Banoth E. Electrically conductive nanomaterials: transformative applications in biomedical engineering-a review. NANOTECHNOLOGY 2024; 36:022001. [PMID: 39389095 DOI: 10.1088/1361-6528/ad857d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
In recent years, significant advancements in nanotechnology have improved the various disciplines of scientific fields. Nanomaterials, like, carbon-based (carbon nanotubes, graphene), metallic, metal oxides, conductive polymers, and 2D materials (MXenes) exhibit exceptional electrical conductivity, mechanical strength, flexibility, thermal property and chemical stability. These materials hold significant capability in transforming material science and biomedical engineering by enabling the creation of more efficient, miniaturized, and versatile devices. The indulgence of nanotechnology with conductive materials in biological fields promises a transformative innovation across various industries, from bioelectronics to environmental regulations. The conductivity of nanomaterials with a suitable size and shape exhibits unique characteristics, which provides a platform for realization in bioelectronics as biosensors, tissue engineering, wound healing, and drug delivery systems. It can be explored for state-of-the-art cardiac, skeletal, nerve, and bone scaffold fabrication while highlighting their proof-of-concept in the development of biosensing probes and medical imaging. This review paper highlights the significance and application of the conductive nanomaterials associated with conductivity and their contribution towards a new perspective in improving the healthcare system globally.
Collapse
Affiliation(s)
- Oindrila Banik
- Opto-Biomedical Microsystems Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Amol Lalchand Salve
- Opto-Biomedical Microsystems Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Prasoon Kumar
- BioDesign and Medical Devices, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Santosh Kumar
- Department of Electronics and Communication Engineering, Centre of Excellence for Nanotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh 522302, India
| | - Earu Banoth
- Opto-Biomedical Microsystems Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
2
|
Wei Y, Weng X, Wang Y, Yang W. Stimuli-Responsive Polymersomes: Reshaping the Immunosuppressive Tumor Microenvironment. Biomacromolecules 2024; 25:4663-4676. [PMID: 39054960 DOI: 10.1021/acs.biomac.4c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The progression of cancer involves mutations in normal cells, leading to uncontrolled division and tissue destruction, highlighting the complexity of tumor microenvironments (TMEs). Immunotherapy has emerged as a transformative approach, yet the balance between efficacy and safety remains a challenge. Nanoparticles such as polymersomes offer the possibility to precisely target tumors, deliver drugs in a controlled way, effectively modulate the antitumor immunity, and notably reduce side effects. Herein, stimuli-responsive polymersomes, with capabilities for carrying multiple therapeutics, are highlighted for their potential in enhancing antitumor immunity through mechanisms like inducing immunogenic cell death and activating STING (stimulator of interferon genes), etc. The recent progress of utilizing stimuli-responsive polymersomes to reshape the TME is reviewed here. The advantages and limitations to applied stimuli-responsive polymersomes are outlined. Additionally, challenges and future prospects in leveraging polymersomes for cancer therapy are discussed, emphasizing the need for future research and clinical translation.
Collapse
Affiliation(s)
- Yaohua Wei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiao Weng
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan 450001 China
| | - Yayun Wang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan 450001 China
| | - Weijing Yang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan 450001 China
| |
Collapse
|
3
|
Tuncaboylu DC, Wischke C. Opportunities and Challenges of Switchable Materials for Pharmaceutical Use. Pharmaceutics 2022; 14:2331. [PMID: 36365149 PMCID: PMC9696173 DOI: 10.3390/pharmaceutics14112331] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 06/27/2024] Open
Abstract
Switchable polymeric materials, which can respond to triggering signals through changes in their properties, have become a major research focus for parenteral controlled delivery systems. They may enable externally induced drug release or delivery that is adaptive to in vivo stimuli. Despite the promise of new functionalities using switchable materials, several of these concepts may need to face challenges associated with clinical use. Accordingly, this review provides an overview of various types of switchable polymers responsive to different types of stimuli and addresses opportunities and challenges that may arise from their application in biomedicine.
Collapse
|
4
|
Mittal A, Krishna, Zabihi F, Rancan F, Achazi K, Nie C, Vogt A, Haag R, Sharma SK. Fabrication of hydrolase responsive diglycerol based Gemini amphiphiles for dermal drug delivery applications. RSC Adv 2022; 12:23566-23577. [PMID: 36090422 PMCID: PMC9386574 DOI: 10.1039/d2ra03090j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
Since biocatalysts manoeuvre most of the physiological activities in living organisms and exhibit extreme selectivity and specificity, their use to trigger physicochemical change in polymeric architectures has been successfully used for targeted drug delivery. Our major interest is to develop lipase responsive nanoscale delivery systems from bio-compatible and biodegradable building blocks. Herein, we report the synthesis of four novel non-ionic Gemini amphiphiles using a chemo-enzymatic approach. A symmetrical diglycerol has been used as a core that is functionalised with alkyl chains for the creation of a hydrophobic cavity, and for aqueous solubility (polyethylene glycol) monomethyl ether (mPEG) is incorporated. Such systems can exhibit a varied self-assembly behaviour leading to the observance of different morphological structures. The aggregation behaviour of the synthesised nanocarrier was studied by dynamic light scattering (DLS) and critical aggregation concentration (CAC) measurements. The nanotransport potential of amphiphiles was investigated for hydrophobic guest molecules, i.e. Nile red, nimodipine and curcumin. Cytotoxicity of the amphiphiles was studied using HeLa and MCF7 cell lines at different concentrations, i.e. 0.05, 0.1, and 0.5 mg mL-1. All nanocarriers were found to be non-cytotoxic up to a concentration of 0.1 mg mL-1. Confocal laser scanning microscopy (cLSM) study suggested the uptake of encapsulated dye in the cytosol of the cancer cells within 4 h, thus implying that amphiphilic systems can efficiently transport hydrophobic drug molecules into cells. The biomedical application of the synthesised Gemini amphiphiles was also investigated for dermal drug delivery. In addition, the enzyme-mediated release study was performed that demonstrated 90% of the dye is released within three days. All these results supported the capability of nanocarriers in drug delivery systems.
Collapse
Affiliation(s)
- Ayushi Mittal
- Department of Chemistry, University of Delhi Delhi 110 007 India +91-11-27666646
| | - Krishna
- Department of Chemistry, University of Delhi Delhi 110 007 India +91-11-27666646
| | - Fatemeh Zabihi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin Charitéplatz 1 10117 Berlin Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin Charitéplatz 1 10117 Berlin Germany
| | - Katharina Achazi
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Chuanxiong Nie
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin Charitéplatz 1 10117 Berlin Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Sunil K Sharma
- Department of Chemistry, University of Delhi Delhi 110 007 India +91-11-27666646
| |
Collapse
|
5
|
Pan Y, Tang W, Fan W, Zhang J, Chen X. Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection. Chem Soc Rev 2022; 51:9759-9830. [DOI: 10.1039/d1cs01145f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Wei Tang
- Departments of Pharmacy and Diagnostic Radiology, Nanomedicine Translational Research Program, Faculty of Science and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117544, Singapore
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
6
|
Nanogels Capable of Triggered Release. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 178:99-146. [PMID: 33665715 DOI: 10.1007/10_2021_163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This chapter provides an overview of soft and environmentally sensitive polymeric nanosystems, which are widely known as nanogels. These particles keep great promise to the area of drug delivery due to their high biocompatibility with body fluids and tissues, as well as due to their ability to encapsulate and release the loaded drugs in a controlled manner. For a long period of time, the controlled drug delivery systems were designed to provide long-termed or sustained release. However, some medical treatments such as cancer chemotherapy, protein and gene delivery do not require the prolonged release of the drug in the site of action. In contrast, the rapid increase of the drug concentration is needed for gaining the desired biological effect. Being very sensitive to surrounding media and different stimuli, nanogels can undergo physico-chemical transitions or chemical changes in their structure. Such changes can result in more rapid release of the drugs, which is usually referred to as triggered drug release. Herein we give the basic information on nanogel unique features, methods of sensitive nanogels preparation, as well as on main mechanisms of triggered release. Additionally, the triggered release of low-molecular drugs and biomacromolecules are discussed.
Collapse
|
7
|
Deka SR, Sharma AK, Kumar P. Synthesis and evaluation of Poly(N-isopropylacrylamide)-based stimuli-responsive biodegradable carrier with enhanced loading capacity and controlled release properties. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Gericke M, Schulze P, Heinze T. Nanoparticles Based on Hydrophobic Polysaccharide Derivatives-Formation Principles, Characterization Techniques, and Biomedical Applications. Macromol Biosci 2020; 20:e1900415. [PMID: 32090505 DOI: 10.1002/mabi.201900415] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/09/2020] [Indexed: 12/13/2022]
Abstract
Polysaccharide (PS) nanoparticles (NP) are fascinating materials that combine huge application potential with the unique beneficial features of natural biopolymers. Different types of PS-NP can be distinguished depending on the basic preparation principles (top-down vs bottom-up vs coating of nanomaterials) and the material from which they are obtained (native PS vs chemically modified PS derivatives vs nanocomposites). This review provides a comprehensive overview of an approach towards PS-NP that has gained rapidly increasing interest within the last decade; the nanoself-assembling of hydrophobic PS derivatives. This facile process is easy to perform and offers a broad structural diversity in terms of the PS backbone and the additional functionalities that can be introduced. Fundamental principles of different NP preparation techniques along with useful characterization methods are presented in this work. A comprehensive summary of PS-NP prepared by different techniques and with various PS backbones and types/amounts of hydrophobic substituents is given. The intention is to demonstrate how different parameters determine the size, size distribution, and zeta-potential of the particles. Moreover, application trends in biomedical areas are highlighted in which tailored functional PS-NP are evaluated and constantly developed further.
Collapse
Affiliation(s)
- Martin Gericke
- Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D-07743, Jena, Germany
| | - Peter Schulze
- Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D-07743, Jena, Germany
| | - Thomas Heinze
- Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D-07743, Jena, Germany
| |
Collapse
|
9
|
Zhang Y, Tong C, Ma Z, Lu L, Fu H, Pan S, Tong W, Li X, Zhang Y, An Q. A self-powered delivery substrate boosts active enzyme delivery in response to human movements. NANOSCALE 2019; 11:14372-14382. [PMID: 31332411 DOI: 10.1039/c9nr04673a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stimulated drug releases in response to human movements are highly appealing in medical therapy and various daily uses. However, the design of a mechanically responsive substrate that presents high delivery capacities and can also preserve the activities of sensitive molecules such as enzymes is still challenging. Taking advantage of the recent development in effective piezoelectric flexible films and in molecular delivery devices, we propose a composite delivery substrate that preserves enzyme activities and enhances molecular delivery in response to human movements such as finger presses or massages. The substrate is achieved by combining two parts, which are the energy converting unit and the molecular loading and releasing unit. The energy converting unit is a piezoelectric-dielectric flexible composite film that produces enhanced electricity and preserves the electricity longer compared to a pure piezoelectric polymer. The molecular delivery unit is a layer-by-layer multilayer containing mesoporous silica particles that are assembled at pH 9 but used in neutral solutions. The releases of molecules including small molecules, peptides, and proteins are all accelerated in response to finger presses irrespective of the signs or densities of their charges. More importantly, the enzyme CAT preserves its activity after release from the composite substrates, meaning that the CAT-loaded (PAH/MS)n(PAH/DAS)n@rGO-TFB/PVDF-HFP composite substrate holds promise as a self-powered soothing pad that effectively removes residue H2O2.
Collapse
Affiliation(s)
- Yi Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing, 100083, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Shahriari M, Zahiri M, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Enzyme responsive drug delivery systems in cancer treatment. J Control Release 2019; 308:172-189. [PMID: 31295542 DOI: 10.1016/j.jconrel.2019.07.004] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/11/2022]
Abstract
Recent technological approaches in drug delivery have attracted scientist interest for improving therapeutic index of medicines and drug compliance. One of the powerful strategies to control the transportation of drugs is implementation of intelligent stimuli-responsive drug delivery system (DDS). In this regard, tumor tissues with unique characteristics including leaky vasculature and diverse enzyme expression profiles facilitate the development of efficient enzyme-responsive nanoscale delivery systems. Based on the stimuli nature (physical, chemical and biological), these systems can be categorized into three groups according to the nature of trigger initiating the drug release. Enzymes are substantial constituents of the biotechnology toolbox offering promising capabilities and ideal characteristics to accelerate chemical reactions. Nanoparticles which have the ability to trigger their cargo release in the presence of specific enzymes are fabricated implementing fascinating physico-chemical properties of different materials in a nanoscale dimension. In order to reduce the adverse effects of the therapeutic agents, nanocarriers can be utilized and modified with enzyme-labile linkages to provide on-demand enzyme-responsive drug release. In the current review, we give an overview of drug delivery systems which can deliver drugs to the tumor microenvironment and initiate the drug release in response to specific enzymes highly expressed in particular tumor tissues. This strategy offers a versatile platform for intelligent drug release at the site of action.
Collapse
Affiliation(s)
- Mahsa Shahriari
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Zahiri
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Yadav S, Deka SR, Tiwari K, Sharma AK, Kumar P. Multi-Stimuli Responsive Self-Assembled Nanostructures Useful for Colon Drug Delivery. IEEE Trans Nanobioscience 2017; 16:764-772. [DOI: 10.1109/tnb.2017.2757958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Cao S, Xu P, Ma Y, Yao X, Yao Y, Zong M, Li X, Lou W. Recent advances in immobilized enzymes on nanocarriers. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(16)62528-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Yadav S, Deka SR, Verma G, Sharma AK, Kumar P. Photoresponsive amphiphilic azobenzene–PEG self-assembles to form supramolecular nanostructures for drug delivery applications. RSC Adv 2016. [DOI: 10.1039/c5ra26658k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Self-assembled smart nanostructures have emerged as controlled and site-specific systems for drug delivery applications.
Collapse
Affiliation(s)
- Santosh Yadav
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi 110007
- India
- Academy of Scientific and Innovative Research
| | - Smriti Rekha Deka
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi 110007
- India
| | - Geeta Verma
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi 110007
- India
| | - Ashwani Kumar Sharma
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi 110007
- India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi 110007
- India
| |
Collapse
|
14
|
Li Z, Zhang Y, Lu D, Liu Z. Uniform mPEG- b-PMETAC enables pH-responsive delivery of insulin. J Appl Polym Sci 2015. [DOI: 10.1002/app.42596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zongjun Li
- Key Lab for Industrial Biocatalysis; Ministry of Education; Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Yifei Zhang
- Key Lab for Industrial Biocatalysis; Ministry of Education; Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Diannan Lu
- Key Lab for Industrial Biocatalysis; Ministry of Education; Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Zheng Liu
- Key Lab for Industrial Biocatalysis; Ministry of Education; Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| |
Collapse
|
15
|
|
16
|
Abstract
Enzymatic action is shown to transform a chemically neutral polymer chain into a chemically charged cationic structure.
Collapse
Affiliation(s)
- Jingyi Rao
- Department of Materials
- ETH-Zürich
- Switzerland
| | - Anzar Khan
- Department of Materials
- ETH-Zürich
- Switzerland
| |
Collapse
|
17
|
Wu X, Ge J, Zhu J, Zhang Y, Yong Y, Liu Z. A general method for synthesizing enzyme–polymer conjugates in reverse emulsions using Pluronic as a reactive surfactant. Chem Commun (Camb) 2015; 51:9674-7. [DOI: 10.1039/c5cc01776a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general method was proposed for synthesizing enzyme–Pluronic nanoconjugates and microgels in reverse emulsions formed by using aldehyde-functionalized Pluronic F-127 as a reactive surfactant.
Collapse
Affiliation(s)
- Xiaoling Wu
- Key Lab for Industrial Biocatalysis
- Ministry of Education
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
| | - Jun Ge
- Key Lab for Industrial Biocatalysis
- Ministry of Education
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
| | - Jingying Zhu
- Key Lab for Industrial Biocatalysis
- Ministry of Education
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
| | - Yifei Zhang
- Key Lab for Industrial Biocatalysis
- Ministry of Education
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
| | - You Yong
- Key Lab for Industrial Biocatalysis
- Ministry of Education
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
| | - Zheng Liu
- Key Lab for Industrial Biocatalysis
- Ministry of Education
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
| |
Collapse
|
18
|
Han R, Li J, Shin HD, Chen RR, Liu L, Du G, Chen J. Fusion of self-assembling amphipathic oligopeptides with cyclodextrin glycosyltransferase improves 2-O-D-glucopyranosyl-L-ascorbic acid synthesis with soluble starch as the glycosyl donor. Appl Environ Microbiol 2014; 80:4717-24. [PMID: 24858090 PMCID: PMC4148807 DOI: 10.1128/aem.01249-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/13/2014] [Indexed: 11/20/2022] Open
Abstract
In this study, we fused six self-assembling amphipathic peptides (SAPs) with cyclodextrin glycosyltransferase (CGTase) from Paenibacillus macerans to catalyze 2-O-D-glucopyranosyl-L-ascorbic acid (AA-2G) production with cheap substrates, including maltose, maltodextrin, and soluble starch as glycosyl donors. The results showed that two fusion enzymes, SAP5-CGTase and SAP6-CGTase, increased AA-2G yields to 2.33- and 3.36-fold that of wild-type CGTase when soluble starch was used as a substrate. The cyclization activities of these enzymes decreased, while disproportionation activities increased. Enzymatic characterization of the two fusion enzymes was performed, and kinetics analysis of AA-2G synthesis confirmed the enhanced soluble starch specificity of SAP5-CGTase and SAP6-CGTase compared to that in the wild-type CGTase. As revealed by structure modeling of the fusion and wild-type CGTases, enhanced substrate-binding capacity may result from the increased number of hydrogen bonds present after fusion. This study demonstrates an effective protein fusion approach to improving the substrate specificity of CGTase for AA-2G synthesis. Fusion enzymes, especially SAP6-CGTase, are promising starting points for further development through protein engineering.
Collapse
Affiliation(s)
- Ruizhi Han
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Synergetic Innovation of Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Synergetic Innovation of Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Hyun-dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Rachel R. Chen
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Synergetic Innovation of Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- National Engineering of Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Jian Chen
- Synergetic Innovation of Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
- National Engineering of Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
19
|
Wu X, Wang R, Zhang Y, Ge J, Liu Z. Enantioselective Ammonolysis of Phenylglycine Methyl Ester with Lipase–Pluronic Nanoconjugate in Tertiary Butanol. Catal Letters 2014. [DOI: 10.1007/s10562-014-1289-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Rao J, Hottinger C, Khan A. Enzyme-triggered cascade reactions and assembly of abiotic block copolymers into micellar nanostructures. J Am Chem Soc 2014; 136:5872-5. [PMID: 24720255 DOI: 10.1021/ja501632r] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Catalytic action of an enzyme is shown to transform a non-assembling block copolymer, composed of a completely non-natural repeat unit structure, into a self-assembling polymer building block. To achieve this, poly(styrene) is combined with an enzyme-sensitive methacrylate-based polymer segment carrying carefully designed azobenzene side chains. Once exposed to the enzyme azoreductase, in the presence of coenzyme NADPH, the azobenzene linkages undergo a bond scission reaction. This triggers a spontaneous 1,6-self-elimination cascade process and transforms the initially hydrophobic methacrylate polymer segment into a hydrophilic hydroxyethyl methacrylate structure. This change in chemical polarity of one of the polymer blocks confers an amphiphilic character to the diblock copolymer and permits it to self-assemble into a micellar nanostructure in water.
Collapse
Affiliation(s)
- Jingyi Rao
- Department of Materials, ETH-Zürich , CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
21
|
Li Z, Zhang Y, Lin M, Ouyang P, Ge J, Liu Z. Lipase-Catalyzed One-Step and Regioselective Synthesis of Clindamycin Palmitate. Org Process Res Dev 2013. [DOI: 10.1021/op400135y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Zhixian Li
- Department
of Chemical Engineering, Tsinghua University, Beijing, Haidian District 100084, P.R. China
| | - Yifei Zhang
- Department
of Chemical Engineering, Tsinghua University, Beijing, Haidian District 100084, P.R. China
| | - Mengmeng Lin
- Department
of Chemical Engineering, Tsinghua University, Beijing, Haidian District 100084, P.R. China
| | - Pingkai Ouyang
- Department
of Chemical Engineering, Tsinghua University, Beijing, Haidian District 100084, P.R. China
- College
of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Hongqiao Bridge, Gulou, Nanjing 21009, Jiangsu, P.R. China
| | - Jun Ge
- Department
of Chemical Engineering, Tsinghua University, Beijing, Haidian District 100084, P.R. China
| | - Zheng Liu
- Department
of Chemical Engineering, Tsinghua University, Beijing, Haidian District 100084, P.R. China
| |
Collapse
|
22
|
Lu X, Liu S, Zhang D, Zhou X, Wang M, Liu Y, Wu J, Du G, Chen J. Enhanced thermal stability and specific activity of Pseudomonas aeruginosa lipoxygenase by fusing with self-assembling amphipathic peptides. Appl Microbiol Biotechnol 2013; 97:9419-27. [DOI: 10.1007/s00253-013-4751-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 01/20/2013] [Accepted: 01/31/2013] [Indexed: 11/24/2022]
|
23
|
Zhu L, Gong L, Zhang Y, Wang R, Ge J, Liu Z, Zare RN. Rapid Detection of Phenol Using a Membrane Containing Laccase Nanoflowers. Chem Asian J 2013; 8:2358-60. [DOI: 10.1002/asia.201300020] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Indexed: 11/08/2022]
|
24
|
Wang R, Zhang Y, Lu D, Ge J, Liu Z, Zare RN. Functional protein-organic/inorganic hybrid nanomaterials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:320-8. [DOI: 10.1002/wnan.1210] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Ge J, Neofytou E, Lei J, Beygui RE, Zare RN. Protein-polymer hybrid nanoparticles for drug delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:3573-8. [PMID: 22888073 DOI: 10.1002/smll.201200889] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/15/2012] [Indexed: 05/14/2023]
Abstract
Amphiphilic bovine serum albumin-poly(methyl methacrylate) conjugate forms nanoparticles with the uniform size of ~100 nm by self-assembling. Loaded with the hydrophobic anti-tumor drug camptothecin, the nanoparticle efficiently delivers drugs into cancer cells, and thus inhibits ~79% of tumor growth in animals compared with free drug.
Collapse
Affiliation(s)
- Jun Ge
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA
| | | | | | | | | |
Collapse
|
26
|
Ge J, Yang C, Zhu J, Lu D, Liu Z. Nanobiocatalysis in Organic Media: Opportunities for Enzymes in Nanostructures. Top Catal 2012. [DOI: 10.1007/s11244-012-9906-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Zelzer M, Todd SJ, Hirst AR, McDonald TO, Ulijn RV. Enzyme responsive materials: design strategies and future developments. Biomater Sci 2012; 1:11-39. [PMID: 32481995 DOI: 10.1039/c2bm00041e] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Enzyme responsive materials (ERMs) are a class of stimuli responsive materials with broad application potential in biological settings. This review highlights current and potential future design strategies for ERMs and provides an overview of the present state of the art in the area.
Collapse
Affiliation(s)
- Mischa Zelzer
- WestCHEM, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, U.K..
| | | | | | | | | |
Collapse
|
28
|
Hu J, Zhang G, Liu S. Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. Chem Soc Rev 2012; 41:5933-49. [PMID: 22695880 DOI: 10.1039/c2cs35103j] [Citation(s) in RCA: 492] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Being responsive and adaptive to external stimuli is an intrinsic feature characteristic of all living organisms and soft matter. Specifically, responsive polymers can exhibit reversible or irreversible changes in chemical structures and/or physical properties in response to a specific signal input such as pH, temperature, ionic strength, light irradiation, mechanical force, electric and magnetic fields, and analyte of interest (e.g., ions, bioactive molecules, etc.) or an integration of them. The past decade has evidenced tremendous growth in the fundamental research of responsive polymers, and accordingly, diverse applications in fields ranging from drug or gene nanocarriers, imaging, diagnostics, smart actuators, adaptive coatings, to self-healing materials have been explored and suggested. Among a variety of external stimuli that have been utilized for the design of novel responsive polymers, enzymes have recently emerged to be a promising triggering motif. Enzyme-catalyzed reactions are highly selective and efficient toward specific substrates under mild conditions. They are involved in all biological and metabolic processes, serving as the prime protagonists in the chemistry of living organisms at a molecular level. The integration of enzyme-catalyzed reactions with responsive polymers can further broaden the design flexibility and scope of applications by endowing the latter with enhanced triggering specificity and selectivity. In this tutorial review, we describe recent developments concerning enzyme-responsive polymeric assemblies, nanoparticles, and hydrogels by highlighting this research area with selected literature reports. Three different types of systems, namely, enzyme-triggered self-assembly and aggregation of synthetic polymers, enzyme-driven disintegration and structural reorganization of polymeric assemblies and nanoparticles, and enzyme-triggered sol-to-gel and gel-to-sol transitions, are described. Their promising applications in drug controlled release, biocatalysis, imaging, sensing, and diagnostics are also discussed.
Collapse
Affiliation(s)
- Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, PR China
| | | | | |
Collapse
|
29
|
Kaewprapan K, Inprakhon P, Marie E, Durand A. Enzymatically degradable nanoparticles of dextran esters as potential drug delivery systems. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2012.01.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Ge J, Neofytou E, Cahill TJ, Beygui RE, Zare RN. Drug release from electric-field-responsive nanoparticles. ACS NANO 2012; 6:227-33. [PMID: 22111891 PMCID: PMC3489921 DOI: 10.1021/nn203430m] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We describe a new temperature and electric field dual-stimulus responsive nanoparticle system for programmed drug delivery. Nanoparticles of a conducting polymer (polypyrrole) are loaded with therapeutic pharmaceuticals and are subcutaneously localized in vivo with the assistance of a temperature-sensitive hydrogel (PLGA-PEG-PLGA). We have shown that drug release from the conductive nanoparticles is controlled by the application of a weak, external DC electric field. This approach represents a novel interactive drug delivery system that can show an externally tailored release profile with an excellent spatial, temporal, and dosage control.
Collapse
Affiliation(s)
- Jun Ge
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080 (USA)
| | - Evgenios Neofytou
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5407 (USA)
| | - Thomas J. Cahill
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080 (USA)
| | - Ramin E. Beygui
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5407 (USA)
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080 (USA)
- Corresponding author: Richard N. Zare, Department of Chemistry, Stanford University, Stanford, CA 94305-5080 (USA), Tel: (+1) 650-723-3062, Fax: (+1) 650-725-0259,
| |
Collapse
|