1
|
Eck M, Mecking S. Closed-Loop Recyclable and Nonpersistent Polyethylene-like Polyesters. Acc Chem Res 2024; 57:971-980. [PMID: 38446139 PMCID: PMC10956388 DOI: 10.1021/acs.accounts.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
ConspectusAliphatic polyesters based on long-chain monomers were synthesized for the first time almost a century ago. In fact, Carothers' seminal observations that founded the entire field of synthetic polymer fibers were made on such a polyester sample. However, as materials, they have evolved only over the past decade. This is driven by the corresponding monomers becoming practically available from advanced catalytic conversions of plant oils, and future prospects comprise a possible generation from third-generation feedstocks, such as microalgae or waste. Long-chain polyesters such as polyester-18.18 can be considered to be polyethylene chains with a low density of potential breakpoints in the chain. These do not compromise the crystalline structure or the material properties, which resemble linear high-density polyethylene (HDPE), and the materials can also be melt processed by injection molding, film or fiber extrusion, and filament deposition in additive manufacturing. At the same time, they enable closed-loop chemical recycling via solvolysis, which is also possible in mixed waste streams containing polyolefins and even poly(ethylene terephthalate). Recovered monomers possess a quality that enables the generation of recycled polyesters with properties on par with those of the virgin material. The (bio)degradability varies enormously with the constituent monomers. Polyesters based on short-chain diols and long-chain dicarboxylates fully mineralize under industrial composting conditions, despite their HDPE-like crystallinity and hydrophobicity. Fundamental studies of the morphology and thermal behavior of these polymers revealed the location of the in-chain groups and their peculiar role in structure formation during crystallization as well as during melting. All of the concepts outlined were extended to, and elaborated on further, by analogous long-chain aliphatic polymers with other in-chain groups such as carbonates and acetals. The title materials are a potential solution for much needed circular closed-loop recyclable plastics that also as a backstop if lost to the environment will not be persistent for many decades.
Collapse
Affiliation(s)
- Marcel Eck
- Chair of Chemical Materials
Science, Department of Chemistry, University
of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Stefan Mecking
- Chair of Chemical Materials
Science, Department of Chemistry, University
of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
2
|
Schwab S, Baur M, Nelson TF, Mecking S. Synthesis and Deconstruction of Polyethylene-type Materials. Chem Rev 2024; 124:2327-2351. [PMID: 38408312 PMCID: PMC10941192 DOI: 10.1021/acs.chemrev.3c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/16/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
Polyethylene deconstruction to reusable smaller molecules is hindered by the chemical inertness of its hydrocarbon chains. Pyrolysis and related approaches commonly require high temperatures, are energy-intensive, and yield mixtures of multiple classes of compounds. Selective cleavage reactions under mild conditions (
Collapse
Affiliation(s)
- Simon
T. Schwab
- Chair of Chemical Materials Science,
Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Maximilian Baur
- Chair of Chemical Materials Science,
Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Taylor F. Nelson
- Chair of Chemical Materials Science,
Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Stefan Mecking
- Chair of Chemical Materials Science,
Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| |
Collapse
|
3
|
Go LOP, Abdellatif MM, Makino R, Shimoyama D, Higashi S, Hirano H, Nomura K. Synthesis of Network Biobased Aliphatic Polyesters Exhibiting Better Tensile Properties than the Linear Polymers by ADMET Polymerization in the Presence of Glycerol Tris(undec-10-enoate). Polymers (Basel) 2024; 16:468. [PMID: 38399846 PMCID: PMC10891964 DOI: 10.3390/polym16040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Development of biobased aliphatic polyesters with better mechanical (tensile) properties in film has attracted considerable attention. This report presents the synthesis of soluble network biobased aliphatic polyesters by acyclic diene metathesis (ADMET) polymerization of bis(undec-10-enyl)isosorbide diester [M1, dianhydro-D-glucityl bis(undec-10-enoate)] in the presence of a tri-arm crosslinker [CL, glycerol tris(undec-10-enoate)] using a ruthenium-carbene catalyst, and subsequent olefin hydrogenation using RhCl(PPh3)3. The resultant polymers, after hydrogenation (expressed as HCP1) and prepared in the presence of 1.0 mol% CL, showed better tensile properties than the linear polymer (HP1) with similar molecular weight [tensile strength (elongation at break): 20.8 MPa (282%) in HP1 vs. 35.4 MPa (572%) in HCP1]. It turned out that the polymer films prepared by the addition of CL during the polymerization (expressed as a 2-step approach) showed better tensile properties. The resultant polymer film also shows better tensile properties than the conventional polyolefins such as linear high density polyethylene, polypropylene, and low density polyethylene.
Collapse
Affiliation(s)
- Lance O’Hari P. Go
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan; (L.O.P.G.); (M.M.A.)
| | - Mohamed Mehawed Abdellatif
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan; (L.O.P.G.); (M.M.A.)
| | - Ryoji Makino
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan; (L.O.P.G.); (M.M.A.)
| | - Daisuke Shimoyama
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan; (L.O.P.G.); (M.M.A.)
| | - Seiji Higashi
- Osaka Research Institute of Industrial Science and Technology (ORIST), 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan; (S.H.)
| | - Hiroshi Hirano
- Osaka Research Institute of Industrial Science and Technology (ORIST), 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan; (S.H.)
| | - Kotohiro Nomura
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan; (L.O.P.G.); (M.M.A.)
| |
Collapse
|
4
|
Johnson AM, Johnson JA. Thermally Robust yet Deconstructable and Chemically Recyclable High-Density Polyethylene (HDPE)-Like Materials Based on Si-O Bonds. Angew Chem Int Ed Engl 2023:e202315085. [PMID: 37903133 DOI: 10.1002/anie.202315085] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
Polyethylene (PE) is the most widely produced synthetic polymer. By installing chemically cleavable bonds into the backbone of PE, it is possible to produce chemically deconstructable PE derivatives; to date, however, such designs have primarily relied on carbonyl- and olefin-related functional groups. Bifunctional silyl ethers (BSEs; SiR2 (OR'2 )) could expand the functional scope of PE mimics as they possess strong Si-O bonds and facile chemical tunability. Here, we report BSE-containing high-density polyethylene (HDPE)-like materials synthesized through a one-pot catalytic ring-opening metathesis polymerization (ROMP) and hydrogenation sequence. The crystallinity of these materials can be adjusted by varying the BSE concentration or the steric bulk of the Si-substituents, providing handles to control thermomechanical properties. Two methods for chemical recycling of HDPE mimics are introduced, including a circular approach that leverages acid-catalyzed Si-O bond exchange with 1-propanol. Additionally, despite the fact that the starting HDPE mimics were synthesized by chain-growth polymerization (ROMP), we show that it is possible to recover the molar mass and dispersity of recycled HDPE products using step-growth Si-O bond formation or exchange, generating high molecular weight recycled HDPE products with mechanical properties similar to commercial HDPE.
Collapse
Affiliation(s)
- Alayna M Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Martínez A, Zárate-Saldaña D, Vargas J, Santiago AA. Unsaturated Copolyesters from Macrolactone/Norbornene: Toward Reaction Kinetics of Metathesis Copolymerization Using Ruthenium Carbene Catalysts. Int J Mol Sci 2022; 23:ijms23094521. [PMID: 35562910 PMCID: PMC9102099 DOI: 10.3390/ijms23094521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 02/04/2023] Open
Abstract
Unsaturated copolyesters are of great interest in polymer science due to their broad potential applications and sustainability. Copolyesters were synthesized from the ring-opening metathesis copolymerization of ω-6-hexadecenlactone (HDL) and norbornene (NB) using ruthenium-alkylidene [Ru(Cl2)(=CHPh)(1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)(PCy3)] (Ru1), [Ru(Cl)2(=CHPh)(PCy3)2] (Ru2), and ruthenium-vinylidene [RuCl2(=C=CH(p-C6H4CF3))(PCy3)2] (Ru3) catalysts, respectively, yielding HDL-NB copolymers with different ratios of the monomer HDL in the feed. The activity of N-heterocyclic-carbene (NHC) (Ru1) and phosphine (Ru2 and Ru3) ligands containing ruthenium-carbene catalysts were evaluated in the synthesis of copolymer HDL-NB. The catalysts Ru1 with an NHC ligand showed superior activity and stability over catalysts Ru2 and Ru3 bearing PCy3 ligands. The incorporation of the monomers in the copolymers determined by 1H-NMR spectroscopy was similar to that of the HDL-NB values in the feed. Experiments, at distinct monomer molar ratios, were carried out using the catalysts Ru1–Ru3 to determine the copolymerization reactivity constants by applying the Mayo–Lewis and Fineman–Ross methods. The copolymer distribution under equilibrium conditions was studied by the 13C NMR spectra, indicating that the copolymer HDL-NB is a gradient copolymer. The main factor determining the decrease in melting temperature is the inclusion of norbornene units, indicating that the PNB units permeate trough the HDL chains. The copolymers with different molar ratios [HDL]/[NB] have good thermal stability up to 411 °C in comparison with the homopolymer PHDL (384 °C). Further, the stress–strain measurements in tension for these copolymers depicted the appreciable increment in stress values as the NB content increases.
Collapse
Affiliation(s)
- Araceli Martínez
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex. Hacienda de San José de la Huerta, Morelia C.P. 58190, Michoacán, Mexico; (D.Z.-S.); (A.A.S.)
- Correspondence: ; Tel.: +52-5559042697
| | - Daniel Zárate-Saldaña
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex. Hacienda de San José de la Huerta, Morelia C.P. 58190, Michoacán, Mexico; (D.Z.-S.); (A.A.S.)
| | - Joel Vargas
- Instituto de Investigaciones en Materiales, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex. Hacienda de San José de la Huerta, Morelia C.P. 58190, Michoacán, Mexico;
| | - Arlette A. Santiago
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex. Hacienda de San José de la Huerta, Morelia C.P. 58190, Michoacán, Mexico; (D.Z.-S.); (A.A.S.)
| |
Collapse
|
6
|
Biermann U, Bornscheuer UT, Feussner I, Meier MAR, Metzger JO. Fatty Acids and their Derivatives as Renewable Platform Molecules for the Chemical Industry. Angew Chem Int Ed Engl 2021; 60:20144-20165. [PMID: 33617111 PMCID: PMC8453566 DOI: 10.1002/anie.202100778] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 12/13/2022]
Abstract
Oils and fats of vegetable and animal origin remain an important renewable feedstock for the chemical industry. Their industrial use has increased during the last 10 years from 31 to 51 million tonnes annually. Remarkable achievements made in the field of oleochemistry in this timeframe are summarized herein, including the reduction of fatty esters to ethers, the selective oxidation and oxidative cleavage of C-C double bonds, the synthesis of alkyl-branched fatty compounds, the isomerizing hydroformylation and alkoxycarbonylation, and olefin metathesis. The use of oleochemicals for the synthesis of a great variety of polymeric materials has increased tremendously, too. In addition to lipases and phospholipases, other enzymes have found their way into biocatalytic oleochemistry. Important achievements have also generated new oil qualities in existing crop plants or by using microorganisms optimized by metabolic engineering.
Collapse
Affiliation(s)
- Ursula Biermann
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
- abiosuse.V.Bloherfelder Straße 23926129OldenburgGermany
| | - Uwe T. Bornscheuer
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| | - Ivo Feussner
- University of GoettingenAlbrecht-von-Haller Institute for Plant SciencesInternational Center for Advanced Studies of Energy Conversion (ICASEC) and Goettingen Center of Molecular Biosciences (GZMB)Dept. of Plant BiochemistryJustus-von-Liebig-Weg 1137077GoettingenGermany
| | - Michael A. R. Meier
- Laboratory of Applied ChemistryInstitute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Straße am Forum 776131KarlsruheGermany
- Laboratory of Applied ChemistryInstitute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Jürgen O. Metzger
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
- abiosuse.V.Bloherfelder Straße 23926129OldenburgGermany
| |
Collapse
|
7
|
Biermann U, Bornscheuer UT, Feussner I, Meier MAR, Metzger JO. Fettsäuren und Fettsäurederivate als nachwachsende Plattformmoleküle für die chemische Industrie. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ursula Biermann
- Institut für Chemie Universität Oldenburg 26111 Oldenburg Deutschland
- abiosuse.V. Bloherfelder Straße 239 26129 Oldenburg Deutschland
| | - Uwe T. Bornscheuer
- Institut für Biochemie Abt. Biotechnologie & Enzymkatalyse Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| | - Ivo Feussner
- Universität Göttingen Albrecht-von-Haller Institut für Pflanzenwissenschaften International Center for Advanced Studies of Energy Conversion (ICASEC) und Göttinger Zentrum für Molekulare Biowissenschaften (GZMB) Abt. für die Biochemie der Pflanze Justus-von-Liebig-Weg 11 37077 Göttingen Deutschland
| | - Michael A. R. Meier
- Labor für Angewandte Chemie Institut für Organische Chemie (IOC) Karlsruher Institut für Technology (KIT) Straße am Forum 7 76131 Karlsruhe Deutschland
- Labor für Angewandte Chemie Institut für biologische und chemische Systeme –, Funktionale Molekülsysteme (IBCS-FMS) Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Jürgen O. Metzger
- Institut für Chemie Universität Oldenburg 26111 Oldenburg Deutschland
- abiosuse.V. Bloherfelder Straße 239 26129 Oldenburg Deutschland
| |
Collapse
|
8
|
Marxsen SF, Häußler M, Mecking S, Alamo RG. Crystallization of Long-Spaced Precision Polyacetals III: Polymorphism and Crystallization Kinetics of Even Polyacetals Spaced by 6 to 26 Methylenes. Polymers (Basel) 2021; 13:1560. [PMID: 34067999 PMCID: PMC8152236 DOI: 10.3390/polym13101560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
In this paper we extend the study of polymorphism and crystallization kinetics of aliphatic polyacetals to include shorter (PA-6) and longer (PA-26) methylene lengths in a series of even long-spaced systems. On a deep quenching to 0 °C, the longest even polyacetals, PA-18 and PA-26, develop mesomorphic-like disordered structures which, on heating, transform progressively to hexagonal, Form I, and Form II crystallites. Shorter polyacetals, such as PA-6 and PA-12 cannot bypass the formation of Form I. In these systems a mixture of this form and disordered structures develops even under fast deep quenching. A prediction from melting points that Form II will not develop in polyacetals with eight or fewer methylene groups between consecutive acetals was further corroborated with data for PA-6. The temperature coefficient of the overall crystallization rate of the two highest temperature polymorphs, Form I and Form II, was analyzed from the differential scanning calorimetry (DSC) peak crystallization times. The crystallization rate of Form II shows a deep inversion at temperatures approaching the polymorphic transition region from above. The new data on PA-26 confirm that at the minimum rate the heat of fusion is so low that crystallization becomes basically extinguished. The rate inversion and dramatic drop in the heat of fusion irrespective of crystallization time are associated with a competition in nucleation between Forms I and II. The latter is due to large differences in nucleation barriers between these two phases. As PA-6 does not develop Form II, the rate data of this polyacetal display a continuous temperature gradient. The data of the extended polyacetal series demonstrate the important role of methylene sequence length on polymorphism and crystallization kinetics.
Collapse
Affiliation(s)
- Stephanie F. Marxsen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St, Tallahassee, FL 32310, USA;
| | - Manuel Häußler
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany; (M.H.); (S.M.)
| | - Stefan Mecking
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany; (M.H.); (S.M.)
| | - Rufina G. Alamo
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St, Tallahassee, FL 32310, USA;
| |
Collapse
|
9
|
Yan B, Hou J, Wei C, Xiao Y, Lang M, Huang F. Facile preparation of long-chain aliphatic polycarbonates containing block copolycarbonates via one-pot sequential organic catalyzed polymerization of macrocyclic carbonates and trimethylene carbonates. Polym Chem 2020. [DOI: 10.1039/d0py00031k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A universal and effective approach was reported to synthesize block copolycarbonates containing long-chain aliphatic polycarbonates and PTMC segments using the ROP differences between macrocyclic and small cyclic carbonates with TBD as catalyst.
Collapse
Affiliation(s)
- Bingkun Yan
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Jiaqian Hou
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Chao Wei
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Yan Xiao
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Meidong Lang
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Farong Huang
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|
10
|
Rank C, Yan L, Mecking S, Winey KI. Periodic Polyethylene Sulfonates from Polyesterification: Bulk and Nanoparticle Morphologies and Ionic Conductivities. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01762] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christina Rank
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | | | - Stefan Mecking
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | | |
Collapse
|
11
|
Yelchuri V, Srikanth K, Prasad RBN, Karuna MSL. Olefin metathesis of fatty acids and vegetable oils. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1615-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Meier MAR. Plant-Oil-Based Polyamides and Polyurethanes: Toward Sustainable Nitrogen-Containing Thermoplastic Materials. Macromol Rapid Commun 2018; 40:e1800524. [DOI: 10.1002/marc.201800524] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/06/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Michael A. R. Meier
- Karlsruhe Institute of Technology; Institute of Organic Chemistry; Materialwissenschaftliches Zentrum MZE; Straße am Forum 7, 76131 Karlsruhe Germany
| |
Collapse
|
13
|
Ghaffar SH, Madyan OA, Fan M, Corker J. The Influence of Additives on the Interfacial Bonding Mechanisms Between Natural Fibre and Biopolymer Composites. Macromol Res 2018. [DOI: 10.1007/s13233-018-6119-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Wang B, Pan L, Ma Z, Li Y. Ring-Opening Polymerization with Lewis Pairs and Subsequent Nucleophilic Substitution: A Promising Strategy to Well-Defined Polyethylene-like Polyesters without Transesterification. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02378] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Bin Wang
- Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Li Pan
- Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhe Ma
- Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300350, China
| |
Collapse
|
15
|
|
16
|
Soares MJ, Dannecker PK, Vilela C, Bastos J, Meier MA, Sousa AF. Poly(1,20-eicosanediyl 2,5-furandicarboxylate), a biodegradable polyester from renewable resources. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.03.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Synthesis of Unsaturated Nonionic Poly(ester-sulfones) via Acyclic Diene Metathesis (ADMET) Polymerization and Anode-Selective Electrophoretic Deposition. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600277] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Stempfle F, Ortmann P, Mecking S. Long-Chain Aliphatic Polymers To Bridge the Gap between Semicrystalline Polyolefins and Traditional Polycondensates. Chem Rev 2016; 116:4597-641. [DOI: 10.1021/acs.chemrev.5b00705] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Florian Stempfle
- Chair of
Chemical Materials
Science, Department of Chemistry, University of Konstanz, Universitätsstrasse
10, D-78457 Konstanz, Germany
| | - Patrick Ortmann
- Chair of
Chemical Materials
Science, Department of Chemistry, University of Konstanz, Universitätsstrasse
10, D-78457 Konstanz, Germany
| | - Stefan Mecking
- Chair of
Chemical Materials
Science, Department of Chemistry, University of Konstanz, Universitätsstrasse
10, D-78457 Konstanz, Germany
| |
Collapse
|
19
|
Mgaya JE, Bartlett SA, Mubofu EB, Mgani QA, Slawin AMZ, Pogorzelec PJ, Cole-Hamilton DJ. Synthesis of Bifunctional Monomers by the Palladium-Catalyzed Carbonylation of Cardanol and its Derivatives. ChemCatChem 2016. [DOI: 10.1002/cctc.201501110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- James E. Mgaya
- EaStCHEM, School of Chemistry; University of St. Andrews, Purdie Building, North Haugh; St Andrews, Fife KY16 9ST Scotland UK), Fax: (+44) 1334-463808
- Chemistry Department; University of Dar es Salaam; Dar es Salaam Tanzania
| | - Stuart A. Bartlett
- EaStCHEM, School of Chemistry; University of St. Andrews, Purdie Building, North Haugh; St Andrews, Fife KY16 9ST Scotland UK), Fax: (+44) 1334-463808
| | - Egid B. Mubofu
- Chemistry Department; University of Dar es Salaam; Dar es Salaam Tanzania
| | - Quintino A. Mgani
- Chemistry Department; University of Dar es Salaam; Dar es Salaam Tanzania
| | - Alexandra M. Z. Slawin
- EaStCHEM, School of Chemistry; University of St. Andrews, Purdie Building, North Haugh; St Andrews, Fife KY16 9ST Scotland UK), Fax: (+44) 1334-463808
| | - Peter J. Pogorzelec
- EaStCHEM, School of Chemistry; University of St. Andrews, Purdie Building, North Haugh; St Andrews, Fife KY16 9ST Scotland UK), Fax: (+44) 1334-463808
| | - David J. Cole-Hamilton
- EaStCHEM, School of Chemistry; University of St. Andrews, Purdie Building, North Haugh; St Andrews, Fife KY16 9ST Scotland UK), Fax: (+44) 1334-463808
| |
Collapse
|
20
|
High trans-1,4 (co)polymerization of β-myrcene and isoprene with an iminophosphonamide lanthanum catalyst. CHINESE JOURNAL OF POLYMER SCIENCE 2015. [DOI: 10.1007/s10118-016-1729-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Pandey S, Chikkali SH. Highly Regioselective Isomerizing Hydroformylation of Long-Chain Internal Olefins Catalyzed by a Rhodium Bis(Phosphite) Complex. ChemCatChem 2015. [DOI: 10.1002/cctc.201500743] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Swechchha Pandey
- Polyolefin Lab, Polymer Science and Engineering Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune- 411008 India
| | - Samir H. Chikkali
- Polyolefin Lab, Polymer Science and Engineering Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune- 411008 India
- Academy of Scientific and Innovative Research (AcSIR); Anusandhan Bhawan, 2 Rafi Marg New Delhi- 110001 India
| |
Collapse
|
22
|
Pepels MPF, Govaert LE, Duchateau R. Influence of the Main-Chain Configuration on the Mechanical Properties of Linear Aliphatic Polyesters. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01089] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Mark P. F. Pepels
- Laboratory
of Polymer Materials, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Leon E. Govaert
- Polymer
Technology, Department of Mechanical Engineering Eindhoven University of Technology,
P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Rob Duchateau
- Laboratory
of Polymer Materials, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- SABIC T&I, STC-Geleen, SABIC Europe B.V., Urmonderbaan 22, 6160 AH Geleen, The Netherlands
| |
Collapse
|
23
|
Pepels MPF, Koeken RAC, van der Linden SJJ, Heise A, Duchateau R. Mimicking (Linear) Low-Density Polyethylenes Using Modified Polymacrolactones. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00820] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Mark P. F. Pepels
- Laboratory
of Polymer Materials, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Ronald A. C. Koeken
- Laboratory
of Polymer Materials, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Sjoerd J. J. van der Linden
- Laboratory
of Polymer Materials, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Andreas Heise
- Laboratory
of Polymer Materials, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
- School
of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Rob Duchateau
- Laboratory
of Polymer Materials, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
- SABIC T&I, STC-Geleen, SABIC Europe B.V., Urmonderbaan 22, 6160 AH Geleen, The Netherlands
| |
Collapse
|
24
|
Steinbach T, Wurm FR. Poly(phosphoester)s: A New Platform for Degradable Polymers. Angew Chem Int Ed Engl 2015; 54:6098-108. [DOI: 10.1002/anie.201500147] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Indexed: 11/09/2022]
|
25
|
Steinbach T, Wurm FR. Polyphosphoester: eine neue Plattform für abbaubare Polymere. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
26
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2013. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.09.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Liu B, Li L, Sun G, Liu D, Li S, Cui D. Isoselective 3,4-(co)polymerization of bio-renewable myrcene using NSN-ligated rare-earth metal precursor: an approach to a new elastomer. Chem Commun (Camb) 2015; 51:1039-41. [DOI: 10.1039/c4cc08962f] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Perfect 3,4-regio- (>99%) and isospecific stereo-selective (mmmm > 99%) PMY were achieved by a lutetium dialkyl complex bearing a NSN-bidentate β-diimidosulfonate ligand for the first time.
Collapse
Affiliation(s)
- Bo Liu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Lei Li
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Guangping Sun
- Key Laboratory of Automobile Materials of Ministry of Education
- Department of Materials Science and Engineering
- Jilin University
- Changchun 130022
- China
| | - Dongtao Liu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Shihui Li
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Dongmei Cui
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|
28
|
Wei Z, Zhou C, Yu Y, Li Y. Biobased copolyesters from renewable resources: synthesis and crystallization behavior of poly(decamethylene sebacate-co-isosorbide sebacate). RSC Adv 2015. [DOI: 10.1039/c5ra04761g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of biobased copolyesters poly(decamethylene sebacate-co-isosorbide sebacate) are synthesized and their crystallization behavior is explored.
Collapse
Affiliation(s)
- Zhiyong Wei
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Cheng Zhou
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Yang Yu
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Yang Li
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| |
Collapse
|
29
|
Zhang J, Zhu W, Li C, Zhang D, Xiao Y, Guan G, Zheng L. Effect of the biobased linear long-chain monomer on crystallization and biodegradation behaviors of poly(butylene carbonate)-based copolycarbonates. RSC Adv 2015. [DOI: 10.1039/c4ra10466h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, high-molecular-weight poly(butylene carbonate)-based copolycarbonates with highly enhanced crystallization property were successfully prepared, by randomly copolymerizing with a biobased linear long-chain aliphatic diol.
Collapse
Affiliation(s)
- Jie Zhang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Engineering Plastics
- Institute of Chemistry
- Chinese Academy of Sciences (ICCAS)
- Beijing100190
| | - Wenxiang Zhu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Engineering Plastics
- Institute of Chemistry
- Chinese Academy of Sciences (ICCAS)
- Beijing100190
| | - Chuncheng Li
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Engineering Plastics
- Institute of Chemistry
- Chinese Academy of Sciences (ICCAS)
- Beijing100190
| | - Dong Zhang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Engineering Plastics
- Institute of Chemistry
- Chinese Academy of Sciences (ICCAS)
- Beijing100190
| | - Yaonan Xiao
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Engineering Plastics
- Institute of Chemistry
- Chinese Academy of Sciences (ICCAS)
- Beijing100190
| | - Guohu Guan
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Engineering Plastics
- Institute of Chemistry
- Chinese Academy of Sciences (ICCAS)
- Beijing100190
| | - Liuchun Zheng
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Engineering Plastics
- Institute of Chemistry
- Chinese Academy of Sciences (ICCAS)
- Beijing100190
| |
Collapse
|
30
|
Lv A, Li ZL, Du FS, Li ZC. Synthesis, Functionalization, and Controlled Degradation of High Molecular Weight Polyester from Itaconic Acid via ADMET Polymerization. Macromolecules 2014. [DOI: 10.1021/ma5020066] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- An Lv
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zi-Long Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
31
|
Synthesis of polyethylene/polyester copolymers through main chain exchange reactions via olefin metathesis. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Parkhurst RR, Balog S, Weder C, Simon YC. Synthesis of poly(sulfonate ester)s by ADMET polymerization. RSC Adv 2014. [DOI: 10.1039/c4ra08788g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Genovese L, Gigli M, Lotti N, Gazzano M, Siracusa V, Munari A, Dalla Rosa M. Biodegradable Long Chain Aliphatic Polyesters Containing Ether-Linkages: Synthesis, Solid-State, and Barrier Properties. Ind Eng Chem Res 2014. [DOI: 10.1021/ie5017865] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laura Genovese
- Dipartimento
di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Università di Bologna, Via Terracini 28, 40131 Bologna, Bologna, Italy
| | - Matteo Gigli
- Dipartimento
di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Università di Bologna, Via Terracini 28, 40131 Bologna, Bologna, Italy
| | - Nadia Lotti
- Dipartimento
di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Università di Bologna, Via Terracini 28, 40131 Bologna, Bologna, Italy
| | - Massimo Gazzano
- Istituto per la Sintesi Organica e la Fotoreattività, CNR, Via Selmi 2, 40126 Bologna, Bologna, Italy
| | - Valentina Siracusa
- Dipartimento
di Ingegneria Industriale, Università di Catania, Viale A.
Doria 6, 95125 Catania, Catania, Italy
| | - Andrea Munari
- Dipartimento
di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Università di Bologna, Via Terracini 28, 40131 Bologna, Bologna, Italy
| | - Marco Dalla Rosa
- Dipartimento
di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Forlı̀-Cesena, Italy
| |
Collapse
|
34
|
Kolb N, Winkler M, Syldatk C, Meier MA. Long-chain polyesters and polyamides from biochemically derived fatty acids. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2013.11.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Bouyahyi M, Duchateau R. Metal-Based Catalysts for Controlled Ring-Opening Polymerization of Macrolactones: High Molecular Weight and Well-Defined Copolymer Architectures. Macromolecules 2014. [DOI: 10.1021/ma402072t] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Miloud Bouyahyi
- SABIC T&I, STC-Geleen, SABIC Europe B.V., Urmonderbaan 22, 6160 AH Geleen, The Netherlands
| | - Rob Duchateau
- SABIC T&I, STC-Geleen, SABIC Europe B.V., Urmonderbaan 22, 6160 AH Geleen, The Netherlands
- Laboratory
of Polymer Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
36
|
Vilela C, Sousa AF, Fonseca AC, Serra AC, Coelho JFJ, Freire CSR, Silvestre AJD. The quest for sustainable polyesters – insights into the future. Polym Chem 2014. [DOI: 10.1039/c3py01213a] [Citation(s) in RCA: 367] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Christl JT, Roesle P, Stempfle F, Wucher P, Göttker-Schnetmann I, Müller G, Mecking S. Catalyst Activity and Selectivity in the Isomerising Alkoxycarbonylation of Methyl Oleate. Chemistry 2013; 19:17131-40. [DOI: 10.1002/chem.201301124] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Indexed: 11/07/2022]
|
38
|
Yuki Y, Takahashi K, Tanaka Y, Nozaki K. Tandem Isomerization/Hydroformylation/Hydrogenation of Internal Alkenes to n-Alcohols Using Rh/Ru Dual- or Ternary-Catalyst Systems. J Am Chem Soc 2013; 135:17393-400. [DOI: 10.1021/ja407523j] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yamato Yuki
- Department of Chemistry and Biotechnology,
Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kohei Takahashi
- Department of Chemistry and Biotechnology,
Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yoshiyuki Tanaka
- Mizushima R&D Center, Mitsubishi Chemical Corporation, 3-10 Ushiodori, Kurashiki, Okayama 712-8054, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology,
Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
39
|
Pepels MPF, Hansen MR, Goossens H, Duchateau R. From Polyethylene to Polyester: Influence of Ester Groups on the Physical Properties. Macromolecules 2013. [DOI: 10.1021/ma401403x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Mark P. F. Pepels
- Laboratory
of Polymer Materials, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Michael Ryan Hansen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Interdisciplinary
Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Han Goossens
- Laboratory
of Polymer Materials, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Rob Duchateau
- Laboratory
of Polymer Materials, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
40
|
Affiliation(s)
- Patrick Ortmann
- Chair of Chemical Materials
Science, Department of Chemistry, University of Konstanz, Universitätsstrasse
10, 78457 Konstanz, Germany
| | - Stefan Mecking
- Chair of Chemical Materials
Science, Department of Chemistry, University of Konstanz, Universitätsstrasse
10, 78457 Konstanz, Germany
| |
Collapse
|
41
|
Maisonneuve L, Lebarbé T, Grau E, Cramail H. Structure–properties relationship of fatty acid-based thermoplastics as synthetic polymer mimics. Polym Chem 2013. [DOI: 10.1039/c3py00791j] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
42
|
Mutlu H, Hofsäß R, Montenegro RE, Meier MAR. Self-metathesis of fatty acid methyl esters: full conversion by choosing the appropriate plant oil. RSC Adv 2013. [DOI: 10.1039/c3ra40330k] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|