1
|
Samokhvalov AV, Mironova AA, Eremin SA, Zherdev AV, Dzantiev BB. Polycations as Aptamer-Binding Modulators for Sensitive Fluorescence Anisotropy Assay of Aflatoxin B1. SENSORS (BASEL, SWITZERLAND) 2024; 24:3230. [PMID: 38794084 PMCID: PMC11125339 DOI: 10.3390/s24103230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Fluorescence induced by the excitation of a fluorophore with plane-polarized light has a different polarization depending on the size of the fluorophore-containing reagent and the rate of its rotation. Based on this effect, many analytical systems have been implemented in which an analyte contained in a sample and labeled with a fluorophore (usually fluorescein) competes to bind to antibodies. Replacing antibodies in such assays with aptamers, low-cost and stable oligonucleotide receptors, is complicated because binding a fluorophore to them causes a less significant change in the polarization of emissions. This work proposes and characterizes the compounds of the reaction medium that improve analyte binding and reduce the mobility of the aptamer-fluorophore complex, providing a higher analytical signal and a lower detection limit. This study was conducted on aflatoxin B1 (AFB1), a ubiquitous toxicant contaminating foods of plant origins. Eight aptamers specific to AFB1 with the same binding site and different regions stabilizing their structures were compared for affinity, based on which the aptamer with 38 nucleotides in length was selected. The polymers that interact reversibly with oligonucleotides, such as poly-L-lysine and polyethylene glycol, were tested. It was found that they provide the desired reduction in the depolarization of emitted light as well as high concentrations of magnesium cations. In the selected optimal medium, AFB1 detection reached a limit of 1 ng/mL, which was 12 times lower than in the tris buffer commonly used for anti-AFB1 aptamers. The assay time was 30 min. This method is suitable for controlling almond samples according to the maximum permissible levels of their contamination by AFB1. The proposed approach could be applied to improve other aptamer-based analytical systems.
Collapse
Affiliation(s)
- Alexey V. Samokhvalov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.S.); (A.A.M.); (A.V.Z.)
| | - Alena A. Mironova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.S.); (A.A.M.); (A.V.Z.)
| | - Sergei A. Eremin
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.S.); (A.A.M.); (A.V.Z.)
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.S.); (A.A.M.); (A.V.Z.)
| |
Collapse
|
2
|
Hashim PK, Abdrabou SSMA. Sub-100 nm carriers by template polymerization for drug delivery applications. NANOSCALE HORIZONS 2024; 9:693-707. [PMID: 38497369 DOI: 10.1039/d3nh00491k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Size-controlled drug delivery systems (DDSs) have gained significant attention in the field of pharmaceutical sciences due to their potential to enhance drug efficacy, minimize side effects, and improve patient compliance. This review provides a concise overview of the preparation method, advancements, and applications of size-controlled drug delivery systems focusing on the sub-100 nm size DDSs. The importance of tailoring the size for achieving therapeutic goals is briefly mentioned. We highlight the concept of "template polymerization", a well-established method in covalent polymerization that offers precise control over molecular weight. We demonstrate the utility of this approach in crafting a monolayer of a polymer around biomolecule templates such as DNA, RNA, and protein, achieving the generation of DDSs with sizes ranging from several tens of nanometers. A few representative examples of small-size DDSs that share a conceptual similarity to "template polymerization" are also discussed. This review concludes by briefly discussing the drug release behaviors and the future prospects of "template polymerization" for the development of innovative size-controlled drug delivery systems, which promise to optimize drug delivery precision, efficacy, and safety.
Collapse
Affiliation(s)
- P K Hashim
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan.
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | | |
Collapse
|
3
|
Heo TY, Choi SH. Ionic Strength-Dependent Structure of Complex Coacervate Core Micelles. J Phys Chem B 2024; 128:1256-1265. [PMID: 38288748 DOI: 10.1021/acs.jpcb.3c06004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Salt concentration-dependent structure of complex coacervate core micelles (C3Ms), formed by polyether-based block copolyelectrolytes containing cationic ammonium (A) or anionic sulfonate (S) groups in aqueous media, is investigated by light scattering and small-angle X-ray/neutron scattering (SAX/NS). As the salt concentration increases, both a core radius (Rcore) and an aggregation number (Nagg) significantly decrease, but a corona thickness (Lcorona) is nearly unchanged. Larger salt concentrations can lower the interfacial tension between the coacervate cores and aqueous media, resulting in an increased interfacial area per chain and a more relaxed conformation of the core blocks. Based on the structure characterization, the scaling relationship between structure parameters (i.e., Rcore, Nagg, and Lcorona) and salt concentration is obtained and compared to the theoretical description estimated by the free energy balance between the entropic penalty of core stretching and the interfacial energy. We propose that the free energy contribution of the core block stretching is not negligible in C3Ms because of the highly swollen cores caused by water.
Collapse
Affiliation(s)
- Tae-Young Heo
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Soo-Hyung Choi
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| |
Collapse
|
4
|
Zhao B, Zhang X, Bickle MS, Fu S, Li Q, Zhang F. Development of polypeptide-based materials toward messenger RNA delivery. NANOSCALE 2024; 16:2250-2264. [PMID: 38213302 DOI: 10.1039/d3nr05635j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Messenger RNA (mRNA)-based therapeutic agents have demonstrated significant potential in recent times, particularly in the context of the COVID-19 pandemic outbreak. As a promising prophylactic and therapeutic strategy, polypeptide-based mRNA delivery systems attract significant interest because of their low cost, simple preparation, tuneable sizes and morphology, convenient large-scale production, biocompatibility, and biodegradability. In this review, we begin with a brief discussion of the synthesis of polypeptides, followed by a review of commonly used polypeptides in mRNA delivery, including classical polypeptides and cell-penetrating peptides. Then, the challenges against mRNA delivery, including extracellular, intracellular, and clinical barriers, are discussed in detail. Finally, we highlight a range of strategies for polypeptide-based mRNA delivery, offering valuable insights into the advancement of polypeptide-based mRNA carrier development.
Collapse
Affiliation(s)
- Bowen Zhao
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
| | - Xiao Zhang
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
| | - Molly S Bickle
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
| | - Shiwei Fu
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
| | - Qingchun Li
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
| | - Fuwu Zhang
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
- The Dr John T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
5
|
Casadidio C, Hartman JEM, Mesquita B, Haegebaert R, Remaut K, Neumann M, Hak J, Censi R, Di Martino P, Hennink WE, Vermonden T. Effect of Polyplex Size on Penetration into Tumor Spheroids. Mol Pharm 2023; 20:5515-5531. [PMID: 37811785 PMCID: PMC10630948 DOI: 10.1021/acs.molpharmaceut.3c00397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
Ovarian cancer is one of the most lethal gynecological cancers in the world. In recent years, nucleic acid (NA)-based formulations have been shown to be promising treatments for ovarian cancer, including tumor nodules. However, gene therapy is not that far advanced in clinical reality due to unfavorable physicochemical properties of the NAs, such as high molecular weight, poor cellular uptake, rapid degradation by nucleases, etc. One of the strategies used to overcome these drawbacks is the complexation of anionic NAs via electrostatic interactions with cationic polymers, resulting in the formation of so-called polyplexes. In this work, the role of the size of pDNA and siRNA polyplexes on their penetration into ovarian-cancer-based tumor spheroids was investigated. For this, a methoxypoly(ethylene glycol) poly(2-(dimethylamino)ethyl methacrylate) (mPEG-pDMAEMA) diblock copolymer was synthesized as a polymeric carrier for NA binding and condensation with either plasmid DNA (pDNA) or short interfering RNA (siRNA). When prepared in HEPES buffer (10 mM, pH 7.4) at a nitrogen/phosphate (N/P) charge ratio of 5 and pDNA polyplexes were formed with a size of 162 ± 11 nm, while siRNA-based polyplexes displayed a size of 25 ± 2 nm. The polyplexes had a slightly positive zeta potential of +7-8 mV in the same buffer. SiRNA and pDNA polyplexes were tracked in vitro into tumor spheroids, resembling in vivo avascular ovarian tumor nodules. For this purpose, reproducible spheroids were obtained by coculturing ovarian carcinoma cells with primary mouse embryonic fibroblasts in different ratios (5:2, 1:1, and 2:5). Penetration studies revealed that after 24 h of incubation, siRNA polyplexes were able to penetrate deeper into the homospheroids (composed of only cancer cells) and heterospheroids (cancer cells cocultured with fibroblasts) compared to pDNA polyplexes which were mainly located in the rim. The penetration of the polyplexes was slowed when increasing the fraction of fibroblasts present in the spheroids. Furthermore, in the presence of serum siRNA polyplexes encoding for luciferase showed a high cellular uptake in 2D cells resulting in ∼50% silencing of luciferase expression. Taken together, these findings show that self-assembled small siRNA polyplexes have good potential as a platform to test ovarian tumor nodulus penetration..
Collapse
Affiliation(s)
- Cristina Casadidio
- Department
of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Utrecht University 99, 3508 TB Utrecht, The Netherlands
- School
of Pharmacy, Drug Delivery Division, University
of Camerino, CHiP Research Center, Via Madonna delle Carceri, 62032 Camerino, Macerata, Italy
| | - Jet E. M. Hartman
- Department
of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Utrecht University 99, 3508 TB Utrecht, The Netherlands
| | - Bárbara
S. Mesquita
- Department
of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Utrecht University 99, 3508 TB Utrecht, The Netherlands
| | - Ragna Haegebaert
- Laboratory
of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical
Sciences, Ghent University, 9000 Ghent, Belgium
| | - Katrien Remaut
- Laboratory
of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical
Sciences, Ghent University, 9000 Ghent, Belgium
| | - Myriam Neumann
- Department
of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Utrecht University 99, 3508 TB Utrecht, The Netherlands
| | - Jaimie Hak
- Department
of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Utrecht University 99, 3508 TB Utrecht, The Netherlands
| | - Roberta Censi
- School
of Pharmacy, Drug Delivery Division, University
of Camerino, CHiP Research Center, Via Madonna delle Carceri, 62032 Camerino, Macerata, Italy
- Recusol
Srl, Via del Bastione
16, 62032 Camerino, Macerata, Italy
| | - Piera Di Martino
- Department
of Pharmacy, “G. D’Annunzio”
University of Chieti and Pescara, Via dei Vestini 1, 66100 Chieti, Chieti, Italy
- Recusol
Srl, Via del Bastione
16, 62032 Camerino, Macerata, Italy
| | - Wim E. Hennink
- Department
of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Utrecht University 99, 3508 TB Utrecht, The Netherlands
| | - Tina Vermonden
- Department
of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Utrecht University 99, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
6
|
Benavides I, Scott WA, Cai X, Zhou ZH, Deming TJ. Preparation and stability of pegylated poly(S-alkyl-L-homocysteine) coacervate core micelles in aqueous media. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:81. [PMID: 37707598 DOI: 10.1140/epje/s10189-023-00339-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023]
Abstract
We report development and preparation of synthetic polypeptide based, coacervate core polyelectrolyte complex micelles, PCMs, in aqueous media, which were characterized and evaluated for the encapsulation and in vitro release of a model single-stranded RNA, polyadenylic acid, poly(A). Cationic, α-helical polypeptides pegylated at their N-termini, PEG113-b-5bn and PEG113-b-5cn, were designed to form coacervate core PCMs upon mixing with multivalent anions in aqueous media. Sodium tripolyphosphate (TPP) and poly(A) were used as model multivalent anions that allowed optimization of polypeptide composition and chain length for formation of stable, nanoscale PCMs. PEG113-b-5c27 was selected for preparation of PCMs that were characterized under different environmental conditions using dynamic light scattering, atomic force microscopy and cryoelectron microscopy. The PCMs were found to efficiently encapsulate poly(A), were stable at physiologically relevant pH and solution ionic strength, and were able to release poly(A) in the presence of excess polyvalent anions. These PCMs were found to be a promising model system for further development of polypeptide based therapeutic delivery vehicles.
Collapse
Affiliation(s)
- Isaac Benavides
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Wendell A Scott
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Xiaoying Cai
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Timothy J Deming
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
7
|
Stevens K, Marras AE, Campagna TR, Ting JM, Tirrell MV. Effect of Charged Block Length Mismatch on Double Diblock Polyelectrolyte Complex Micelle Cores. Macromolecules 2023; 56:5557-5566. [PMID: 37521249 PMCID: PMC10373519 DOI: 10.1021/acs.macromol.3c00555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/23/2023] [Indexed: 08/01/2023]
Abstract
Polyelectrolyte complex micelles are hydrophilic nanoparticles that self-assemble in aqueous environments due to associative microphase separation between oppositely charged blocky polyelectrolytes. In this work, we employ a suite of physical characterization tools to examine the effect of charged block length mismatch on the equilibrium structure of double diblock polyelectrolyte complex micelles (D-PCMs) by mixing a diverse library of peptide and synthetic charged-neutral block polyelectrolytes with a wide range of charged block lengths (25-200 units) and chemistries. Early work on D-PCMs suggested that this class of micelles can only be formed from blocky polyelectrolytes with identical charged block lengths, a phenomenon referred to as chain length recognition. Here, we use salt annealing to create PCMs at equilibrium, which shows that chain length recognition, a longstanding hurdle to repeatable self-assembly from mismatched polyelectrolytes, can be overcome. Interestingly, D-PCM structure-property relationships display a range of values that vary systematically with the charged block lengths and chemical identity of constituent polyelectrolyte pairings and cannot be described by generalizable scaling laws. We discuss the interdependent growth behavior of the radius, ionic pair aggregation number, and density in the micelle core for three chemically distinct diblock pairings and suggest a potential physical mechanism that leads to this unique behavior. By comparing the results of these D-PCMs to the scaling laws recently developed for single diblock polyelectrolyte complex micelles (S-PCMs: diblock + homopolymer), we observe that D-PCM design schemes reduce the size and aggregation number and restrict their growth to a function of charged block length relative to S-PCMs. Understanding these favorable attributes enables more predictive use of a wider array of charged molecular building blocks to anticipate and control macroscopic properties of micelles spanning countless storage and delivery applications.
Collapse
Affiliation(s)
- Kaden
C. Stevens
- Pritzker
School of Molecular Engineering, The University
of Chicago, Chicago, Illinois 60637, United States
| | - Alexander E. Marras
- Walker
Department of Mechanical Engineering, The
University of Texas at Austin, Austin, Texas 78712, United States
- Texas
Materials Institute, The University of Texas
at Austin, Austin, Texas 78712, United States
| | - Trinity R. Campagna
- Pritzker
School of Molecular Engineering, The University
of Chicago, Chicago, Illinois 60637, United States
| | | | - Matthew V. Tirrell
- Pritzker
School of Molecular Engineering, The University
of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
8
|
Yang W, Mixich L, Boonstra E, Cabral H. Polymer-Based mRNA Delivery Strategies for Advanced Therapies. Adv Healthc Mater 2023; 12:e2202688. [PMID: 36785927 PMCID: PMC11469255 DOI: 10.1002/adhm.202202688] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Messenger RNA (mRNA)-based therapies offer great promise for the treatment of a variety of diseases. In 2020, two FDA approvals of mRNA-based vaccines have elevated mRNA vaccines to global recognition. However, the therapeutic capabilities of mRNA extend far beyond vaccines against infectious diseases. They hold potential for cancer vaccines, protein replacement therapies, gene editing therapies, and immunotherapies. For realizing such advanced therapies, it is crucial to develop effective carrier systems. Recent advances in materials science have led to the development of promising nonviral mRNA delivery systems. In comparison to other carriers like lipid nanoparticles, polymer-based delivery systems often receive less attention, despite their unique ability to carefully tune their chemical features to promote mRNA protection, their favorable pharmacokinetics, and their potential for targeting delivery. In this review, the central features of polymer-based systems for mRNA delivery highlighting the molecular design criteria, stability, and biodistribution are discussed. Finally, the role of targeting ligands for the future of RNA therapies is analyzed.
Collapse
Affiliation(s)
- Wenqian Yang
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Lucas Mixich
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Eger Boonstra
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Horacio Cabral
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| |
Collapse
|
9
|
Foo W, Cseresnyés Z, Rössel C, Teng Y, Ramoji A, Chi M, Hauswald W, Huschke S, Hoeppener S, Popp J, Schacher FH, Sierka M, Figge MT, Press AT, Bauer M. Tuning the corona-core ratio of polyplex micelles for selective oligonucleotide delivery to hepatocytes or hepatic immune cells. Biomaterials 2023; 294:122016. [PMID: 36702000 DOI: 10.1016/j.biomaterials.2023.122016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Targeted delivery of oligonucleotides or small molecular drugs to hepatocytes, the liver's parenchymal cells, is challenging without targeting moiety due to the highly efficient mononuclear phagocyte system (MPS) of the liver. The MPS comprises Kupffer cells and specialized sinusoidal endothelial cells, efficiently clearing nanocarriers regardless of their size and surface properties. Physiologically, this non-parenchymal shield protects hepatocytes; however, these local barriers must be overcome for drug delivery. Nanocarrier structural properties strongly influence tissue penetration, in vivo pharmacokinetics, and biodistribution profile. Here we demonstrate the in vivo biodistribution of polyplex micelles formed by polyion complexation of short interfering (si)RNA with modified poly(ethylene glycol)-block-poly(allyl glycidyl ether) (PEG-b-PAGE) diblock copolymer that carries amino moieties in the side chain. The ratio between PEG corona and siRNA complexed PAGE core of polyplex micelles was chemically varied by altering the degree of polymerization of PAGE. Applying Raman-spectroscopy and dynamic in silico modeling on the polyplex micelles, we determined the corona-core ratio (CCR) and visualized the possible micellar structure with varying CCR. The results for this model system reveal that polyplex micelles with higher CCR, i.e., better PEG coverage, exclusively accumulate and thus allow passive cell-type-specific targeting towards hepatocytes, overcoming the macrophage-rich reticuloendothelial barrier of the liver.
Collapse
Affiliation(s)
- WanLing Foo
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Am Klinikum 1, 07747, Jena, Germany
| | - Zoltán Cseresnyés
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Research Group Applied Systems Biology, Beutenbergstraße 13, 07745, Jena, Germany
| | - Carsten Rössel
- Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany; Friedrich-Schiller-University, Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Humboldtstraße 10, 07743, Jena, Germany
| | - Yingfeng Teng
- Friedrich-Schiller-University, Computational Materials Science Group, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Löbdergraben 32, 07743, Jena, Germany
| | - Anuradha Ramoji
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University, Am Klinikum 1, 07747, Jena, Germany
| | - Mingzhe Chi
- Friedrich-Schiller-University, Computational Materials Science Group, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Löbdergraben 32, 07743, Jena, Germany
| | - Walter Hauswald
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Sophie Huschke
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Am Klinikum 1, 07747, Jena, Germany
| | - Stephanie Hoeppener
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Research Group Applied Systems Biology, Beutenbergstraße 13, 07745, Jena, Germany; Friedrich-Schiller-University, Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Humboldtstraße 10, 07743, Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University, Am Klinikum 1, 07747, Jena, Germany
| | - Felix H Schacher
- Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany; Friedrich-Schiller-University, Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Humboldtstraße 10, 07743, Jena, Germany
| | - Marek Sierka
- Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany; Friedrich-Schiller-University, Computational Materials Science Group, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Löbdergraben 32, 07743, Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Research Group Applied Systems Biology, Beutenbergstraße 13, 07745, Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, 07743, Jena, Germany; Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany
| | - Adrian T Press
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Am Klinikum 1, 07747, Jena, Germany; Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University, Am Klinikum 1, 07747, Jena, Germany; Friedrich-Schiller-University, Faculty of Medicine, Kastanienstraße. 1, 07747, Jena, Germany.
| | - Michael Bauer
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Am Klinikum 1, 07747, Jena, Germany; Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
10
|
Lee A, Gosnell N, Milinkovic D, Taladriz-Blanco P, Rothen-Rutishauser B, Petri-Fink A. Layer-by-Layer siRNA Particle Assemblies for Localized Delivery of siRNA to Epithelial Cells through Surface-Mediated Particle Uptake. ACS APPLIED BIO MATERIALS 2023; 6:83-92. [PMID: 36598879 PMCID: PMC9847476 DOI: 10.1021/acsabm.2c00668] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023]
Abstract
Localized delivery of small interfering RNA (siRNA) is a promising approach for spatial control of cell responses at biomaterial interfaces. Layer-by-layer (LbL) assembly of siRNA with cationic polyelectrolytes has been used in film and nanoparticle vectors for transfection. Herein, we combine the ability of particles to efficiently deliver siRNA with the ability of film polyelectrolyte multilayers to act locally. LbL particles were prepared with alternating layers of poly(l-arginine) and siRNA and capped with hyaluronic acid. Negatively charged LbL particles were subsequently assembled on the poly(l-lysine)-functionalized substrate to form a LbL particle-decorated surface. Cells grown in contact with the particle-decorated surface were able to survive, internalize particles, and undergo gene silencing. This work shows that particle-decorated surfaces can be engineered by using electrostatic interactions and used to deliver therapeutic payloads for cell-instructive biointerfaces.
Collapse
Affiliation(s)
- Aaron Lee
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Natalia Gosnell
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Daela Milinkovic
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Patricia Taladriz-Blanco
- International
Iberian Nanotechnology Laboratory, Water
Quality Group, Avenue
Mestre Jose Veiga s/n, 4715-330 Braga, Portugal
| | | | - Alke Petri-Fink
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- Department
of Chemistry, University of Fribourg, Chemin du Musee 9, 1700 Fribourg, Switzerland
| |
Collapse
|
11
|
Winkeljann B, Keul DC, Merkel OM. Engineering poly- and micelleplexes for nucleic acid delivery - A reflection on their endosomal escape. J Control Release 2023; 353:518-534. [PMID: 36496051 PMCID: PMC9900387 DOI: 10.1016/j.jconrel.2022.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
For the longest time, the field of nucleic acid delivery has remained skeptical whether or not polycationic drug carrier systems would ever make it into clinical practice. Yet, with the disclosure of patents on polyethyleneimine-based RNA carriers through leading companies in the field of nucleic acid therapeutics such as BioNTech SE and the progress in clinical studies beyond phase I trials, this aloofness seems to regress. As one of the most striking characteristics of polymer-based vectors, the extraordinary tunability can be both a blessing and a curse. Yet, knowing about the adjustment screws and how they impact the performance of the drug carrier provides the formulation scientist committed to its development with a head start. Here, we equip the reader with a toolbox - a toolbox that should advise and support the developer to conceptualize a cutting-edge poly- or micelleplex system for the delivery of therapeutic nucleic acids; to be specific, to engineer the vector towards maximum endosomal escape performance at minimum toxicity. Therefore, after briefly sketching the boundary conditions of polymeric vector design, we will dive into the topic of endosomal trafficking. We will not only discuss the most recent knowledge of the endo-lysosomal compartment but further depict different hypotheses and mechanisms that facilitate the endosomal escape of polyplex systems. Finally, we will combine the different facets introduced in the previous chapters with the fundamental building blocks of polymer vector design and evaluate the advantages and drawbacks. Throughout the article, a particular focus will be placed on cellular peculiarities, not only as an additional barrier, but also to give inspiration to how such cell-specific traits might be capitalized on.
Collapse
Affiliation(s)
- Benjamin Winkeljann
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, 81377 Munich, Germany,Center for NanoScience (CeNS), Ludwig-Maximilians-University Munich, 80799 Munich, Germany
| | - David C. Keul
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, 81377 Munich, Germany
| | - Olivia M. Merkel
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, 81377 Munich, Germany,Center for NanoScience (CeNS), Ludwig-Maximilians-University Munich, 80799 Munich, Germany,Corresponding author at: Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Haus B, 81377 München, Germany
| |
Collapse
|
12
|
Hilton MA, Manning HW, Górniak I, Brady SK, Johnson MM, Zimmer J, Lang MJ. Single-molecule investigations of single-chain cellulose biosynthesis. Proc Natl Acad Sci U S A 2022; 119:e2122770119. [PMID: 36161928 PMCID: PMC9546554 DOI: 10.1073/pnas.2122770119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Cellulose biosynthesis in sessile bacterial colonies originates in the membrane-integrated bacterial cellulose synthase (Bcs) AB complex. We utilize optical tweezers to measure single-strand cellulose biosynthesis by BcsAB from Rhodobacter sphaeroides. Synthesis depends on uridine diphosphate glucose, Mg2+, and cyclic diguanosine monophosphate, with the last displaying a retention time of ∼80 min. Below a stall force of 12.7 pN, biosynthesis is relatively insensitive to force and proceeds at a rate of one glucose addition every 2.5 s at room temperature, increasing to two additions per second at 37°. At low forces, conformational hopping is observed. Single-strand cellulose stretching unveiled a persistence length of 6.2 nm, an axial stiffness of 40.7 pN, and an ability for complexes to maintain a tight grip, with forces nearing 100 pN. Stretching experiments exhibited hysteresis, suggesting that cellulose microstructure underpinning robust biofilms begins to form during synthesis. Cellohexaose spontaneously binds to nascent single cellulose strands, impacting polymer mechanical properties and increasing BcsAB activity.
Collapse
Affiliation(s)
- Mark A. Hilton
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
| | - Harris W. Manning
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
| | - Ireneusz Górniak
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908
| | - Sonia K. Brady
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
| | - Madeline M. Johnson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908
- HHMI, Chevy Chase, MD 20815
| | - Matthew J. Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37235
| |
Collapse
|
13
|
Polyion complex (PIC) micelles formed from oppositely charged styrene-based polyelectrolytes via electrostatic, hydrophobic, and π–π interactions. Polym J 2022. [DOI: 10.1038/s41428-022-00659-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Wu L, Zhou W, Lin L, Chen A, Feng J, Qu X, Zhang H, Yue J. Delivery of therapeutic oligonucleotides in nanoscale. Bioact Mater 2022; 7:292-323. [PMID: 34466734 PMCID: PMC8379367 DOI: 10.1016/j.bioactmat.2021.05.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/28/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023] Open
Abstract
Therapeutic oligonucleotides (TOs) represent one of the most promising drug candidates in the targeted cancer treatment due to their high specificity and capability of modulating cellular pathways that are not readily druggable. However, efficiently delivering of TOs to cancer cellular targets is still the biggest challenge in promoting their clinical translations. Emerging as a significant drug delivery vector, nanoparticles (NPs) can not only protect TOs from nuclease degradation and enhance their tumor accumulation, but also can improve the cell uptake efficiency of TOs as well as the following endosomal escape to increase the therapeutic index. Furthermore, targeted and on-demand drug release of TOs can also be approached to minimize the risk of toxicity towards normal tissues using stimuli-responsive NPs. In the past decades, remarkable progresses have been made on the TOs delivery based on various NPs with specific purposes. In this review, we will first give a brief introduction on the basis of TOs as well as the action mechanisms of several typical TOs, and then describe the obstacles that prevent the clinical translation of TOs, followed by a comprehensive overview of the recent progresses on TOs delivery based on several various types of nanocarriers containing lipid-based nanoparticles, polymeric nanoparticles, gold nanoparticles, porous nanoparticles, DNA/RNA nanoassembly, extracellular vesicles, and imaging-guided drug delivery nanoparticles.
Collapse
Affiliation(s)
- Lei Wu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Wenhui Zhou
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, Turku, 20520, Finland
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Lihua Lin
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Anhong Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Jing Feng
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Xiangmeng Qu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, Turku, 20520, Finland
| | - Jun Yue
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
15
|
Capelôa L, Yazdi M, Zhang H, Chen X, Nie Y, Wagner E, Lächelt U, Barz M. Cross-linkable Polyion Complex Micelles from Polypept(o)ide-based ABC-triblock Copolymers for siRNA Delivery. Macromol Rapid Commun 2021; 43:e2100698. [PMID: 34967473 DOI: 10.1002/marc.202100698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/14/2021] [Indexed: 11/12/2022]
Abstract
ABC-type triblock copolymers are a rising platform especially for oligonucleotide delivery as they offer an additional functionality beside the anyhow needed functions of shielding and complexation. We present a polypept(o)ide-based triblock copolymer synthesized by amine-initiated ring-opening polymerization (ROP) of N-carboxyanhydrides (NCAs), comprising a shielding block A of polysarcosine (pSar), a poly(S-ethylsulfonyl-l-cystein) (pCys(SO2 Et)) block B for bioreversible and chemo-selective cross-linking and a poly(l-lysine) (pLys) block C for complexation to construct polyion complex (PIC) micelles as vehicle for small interfering RNA (siRNA) delivery. We investigated the self-assembly behavior of ABC-type triblocks to derive correlations between block lengths of the polymer and PIC micelle structure, showing an enormous effect of the β-sheet forming pCys(SO2 Et) block. Moreover, the block enables the introduction of disulfide cross-links by reaction with multifunctional thiols to increase stability against dilution. The right content of the additional block leads to well-defined cross-linked 50-60 nm PIC micelles purified from production impurities and determinable siRNA loading. These PIC micelles can deliver functional siRNA into Neuro2A and KB cells evaluated by cellular uptake and specific gene knockdown assays. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Leon Capelôa
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einstein weg 55, Leiden, 2333CC, The Netherlands.,Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 63, Mainz, 55131, Germany
| | - Mina Yazdi
- Pharmaceutical Biotechnology, Department of Pharmacy, LMU Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Heyang Zhang
- Leiden Academic Center for Drug Research (LACDR), Leiden University, Einstein weg 55, Leiden, 2333CC, The Netherlands
| | - Xiaobing Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P.R. China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P.R. China
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, LMU Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Ulrich Lächelt
- Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - Matthias Barz
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einstein weg 55, Leiden, 2333CC, The Netherlands.,Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 63, Mainz, 55131, Germany
| |
Collapse
|
16
|
Chaya H, Naito M, Cho M, Toh K, Hayashi K, Fukushima S, Yamasaki Y, Kataoka K, Miyata K. Dynamic Stabilization of Unit Polyion Complexes Incorporating Small Interfering RNA by Fine-Tuning of Cationic Block Length in Two-Branched Poly(ethylene glycol)- b-poly(l-lysine). Biomacromolecules 2021; 23:388-397. [PMID: 34935361 DOI: 10.1021/acs.biomac.1c01344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To stabilize small interfering RNA (siRNA) in the bloodstream for systemic RNAi therapeutics, we previously fabricated ultrasmall siRNA nanocarriers that were sub-20 nm in hydrodynamic diameter, named as unit polyion complexes (uPICs), using two-branched poly(ethylene glycol)-b-poly(l-lysine) (bPEG-PLys). The blood retention time of uPICs is dramatically increased in the presence of free bPEG-PLys, suggesting dynamic stabilization of uPICs by free bPEG-PLys based on their equilibrium. Herein, we examined how the degree of polymerization of PLys (DPPLys) affected the dynamic stability of uPICs in the bloodstream during prolonged circulation. We prepared a series of bPEG-PLys with DPPLys values of 10, 13, 20, 40, and 80 for the uPIC formation and siRNA with 40 negative charges. These bPEG-PLys were then evaluated in physicochemical characterization and pharmacokinetic analyses. Structural analyses revealed that the uPIC size and association numbers were mainly determined by the molecular weights of PEG and DPPLys, respectively. Under bPEG-PLys-rich conditions, the hydrodynamic diameters of uPICs were 15-20 nm, which were comparable to that of the bPEG block (i.e., ∼18 nm). Importantly, DPPLys significantly affected the association constant of bPEG-PLys to siRNA (Ka) and blood retention of free bPEG-PLys. A smaller DPPLys resulted in a lower Ka and a longer blood retention time of free bPEG-PLys. Thus, DPPLys can control the dynamic stability of uPICs, i.e., the balance between Ka and blood concentration of free bPEG-PLys. Ultimately, the bPEG-PLys with DPPLys values of 14 and 19 prolonged the blood circulation of siRNA-loaded uPICs with relatively small amounts of free bPEG-PLys. This study revealed that the uPIC formation between siRNA and bPEG-PLys can be controlled by their charges, which may be helpful for designing PIC-based delivery systems.
Collapse
Affiliation(s)
- Hiroyuki Chaya
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mitsuru Naito
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaru Cho
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuko Toh
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Kotaro Hayashi
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Shigeto Fukushima
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Yuichi Yamasaki
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
17
|
Chou JJ, Berger AG, Jalili-Firoozinezhad S, Hammond PT. A design approach for layer-by-layer surface-mediated siRNA delivery. Acta Biomater 2021; 135:331-341. [PMID: 34481054 PMCID: PMC9316412 DOI: 10.1016/j.actbio.2021.08.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/27/2022]
Abstract
The ability to coat scaffolds and wound dressings with therapeutic short interfering RNA (siRNA) holds much potential for applications in wound healing, cancer treatment, and regenerative medicine. Layer-by-layer (LbL) technology is an effective method to formulate polyelectrolyte thin films for local delivery of siRNA; however, the formation and efficacy of LbL coatings as drug delivery systems are highly contingent on the assembly conditions. Here, we investigate the effects of LbL assembly parameters on film composition and consequent siRNA-mediated gene knockdown efficiency in vitro. Films comprising poly(β-amino ester) (PBAE) and siRNA were built on polyglactin 910 (Vicryl) sutures consisting of poly(10% L-lactide, 90% glycolide). A fractional factorial design was employed, varying the following LbL assembly conditions: pH, ionic strength, PBAE concentration, and siRNA concentration. Effects of these parameters on PBAE loading, siRNA loading, their respective weight ratios, and in vitro siRNA-mediated knockdown were elucidated. The parameter effects were leveraged to create a rationally designed set of solution conditions that was predicted to give effective siRNA-mediated knockdown, but not included in any of the original experimental conditions. This level of knockdown with our rationally designed loading conditions (47%) is comparable to previous formulations from our lab while being simpler in construction and requiring fewer film layers, which could save time and cost in manufacturing. This study highlights the importance of LbL solution conditions in the preparation of surface-mediated siRNA delivery systems and presents an adaptable methodology for extending these electrostatically-assembled coatings to the delivery of other therapeutic nucleic acids. STATEMENT OF SIGNIFICANCE: Short interfering RNA (siRNA) therapeutics are powerful tools to silence aberrant gene expression in the diseased state; however, the clinical utility of these therapies relies on effective controlled delivery approaches. Electrostatic self-assembly through the layer-by-layer (LbL) process enables direct siRNA release from surfaces, but this method is highly dependent upon the specific solution conditions used. Here, we use a fractional factorial design to illustrate how these assembly conditions impact composition of siRNA-eluting LbL thin films. We then elucidate how these properties mediate in vitro transfection efficacy. Ultimately, this work presents a significant step towards understanding how optimization of assembly conditions for surface-mediated LbL delivery can promote transfection efficacy while reducing the processing and material required.
Collapse
Affiliation(s)
- Jonathan J Chou
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| | - Adam G Berger
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| | - Sasan Jalili-Firoozinezhad
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| | - Paula T Hammond
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
18
|
Yang W, Miyazaki T, Chen P, Hong T, Naito M, Miyahara Y, Matsumoto A, Kataoka K, Miyata K, Cabral H. Block catiomer with flexible cationic segment enhances complexation with siRNA and the delivery performance in vitro. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:850-863. [PMID: 34658669 PMCID: PMC8519541 DOI: 10.1080/14686996.2021.1976055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 05/14/2023]
Abstract
RNA interference (RNAi) by small interfering RNAs (siRNAs) is a promising therapeutic approach. Because siRNA has limited intracellular access and is rapidly cleared in vivo, the success of RNAi depends on efficient delivery technologies. Particularly, polyion complexation between block catiomers and siRNA is a versatile approach for constructing effective carriers, such as unit polyion complexes (uPIC), core-shell polyion complex (PIC) micelles and vesicular siRNAsomes, by engineering the structure of block catiomers. In this regard, the flexibility of block catiomers could be an important parameter in the formation of PIC nanostructures with siRNA, though its effect remains unknown. Here, we studied the influence of block catiomer flexibility on the assembly of PIC structures with siRNA using a complementary polymeric system, i.e. poly(ethylene glycol)-poly(L-lysine) (PEG-PLL) and PEG-poly(glycidylbutylamine) (PEG-PGBA), which has a relatively more flexible polycation segment than PEG-PLL. Mixing PEG-PGBA with siRNA at molar ratios of primary amines in polymer to phosphates in the siRNA (N/P ratios) higher than 1.5 promoted the multimolecular association of uPICs, whereas PEG-PLL formed uPIC at all N/P ratios higher than 1. Moreover, uPICs from PEG-PGBA were more stable against counter polyanion exchange than uPICs from PEG-PLL, probably due to a favorable complexation process, as suggested by computational studies of siRNA/block catiomer binding. In in vitro experiments, PEG-PGBA uPICs promoted effective intracellular delivery of siRNA and efficient gene knockdown. Our results indicate the significance of polycation flexibility on assembling PIC structures with siRNA, and its potential for developing innovative delivery systems.
Collapse
Affiliation(s)
- Wenqian Yang
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Takuya Miyazaki
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Pengwen Chen
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Taehun Hong
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Mitsuru Naito
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuji Miyahara
- Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
| | - Akira Matsumoto
- Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Kanjiro Miyata
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| |
Collapse
|
19
|
Marras AE, Ting JM, Stevens KC, Tirrell MV. Advances in the Structural Design of Polyelectrolyte Complex Micelles. J Phys Chem B 2021; 125:7076-7089. [PMID: 34160221 PMCID: PMC9282648 DOI: 10.1021/acs.jpcb.1c01258] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polyelectrolyte complex micelles (PCMs) are a unique class of self-assembled nanoparticles that form with a core of associated polycations and polyanions, microphase-separated from neutral, hydrophilic coronas in aqueous solution. The hydrated nature and structural and chemical versatility make PCMs an attractive system for delivery and for fundamental polymer physics research. By leveraging block copolymer design with controlled self-assembly, fundamental structure-property relationships can be established to tune the size, morphology, and stability of PCMs precisely in pursuit of tailored nanocarriers, ultimately offering storage, protection, transport, and delivery of active ingredients. This perspective highlights recent advances in predictive PCM design, focusing on (i) structure-property relationships to target specific nanoscale dimensions and shapes and (ii) characterization of PCM dynamics primarily using time-resolved scattering techniques. We present several vignettes from these two emerging areas of PCM research and discuss key opportunities for PCM design to advance precision medicine.
Collapse
Affiliation(s)
- Alexander E Marras
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jeffrey M Ting
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Kaden C Stevens
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew V Tirrell
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
20
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Liu Y, Yin L. α-Amino acid N-carboxyanhydride (NCA)-derived synthetic polypeptides for nucleic acids delivery. Adv Drug Deliv Rev 2021; 171:139-163. [PMID: 33333206 DOI: 10.1016/j.addr.2020.12.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
In recent years, gene therapy has come into the spotlight for the prevention and treatment of a wide range of diseases. Polypeptides have been widely used in mediating nucleic acid delivery, due to their versatilities in chemical structures, desired biodegradability, and low cytotoxicity. Chemistry plays an essential role in the development of innovative polypeptides to address the challenges of producing efficient and safe gene vectors. In this Review, we mainly focused on the latest chemical advances in the design and preparation of polypeptide-based nucleic acid delivery vehicles. We first discussed the synthetic approach of polypeptides via ring-opening polymerization (ROP) of N-carboxyanhydrides (NCAs), and introduced the various types of polypeptide-based gene delivery systems. The extracellular and intracellular barriers against nucleic acid delivery were then outlined, followed by detailed review on the recent advances in polypeptide-based delivery systems that can overcome these barriers to enable in vitro and in vivo gene transfection. Finally, we concluded this review with perspectives in this field.
Collapse
Affiliation(s)
- Yong Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| |
Collapse
|
22
|
Ji Q, Hou J, Yong X, Gong G, Muddassir M, Tang T, Xie J, Fan W, Chen X. Targeted Dual Small Interfering Ribonucleic Acid Delivery via Non-Viral Polymeric Vectors for Pulmonary Fibrosis Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007798. [PMID: 33604928 DOI: 10.1002/adma.202007798] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Inhibiting the myofibroblast differentiation of lung-resident mesenchymal stem cells (LR-MSCs) is a promising yet challenging approach for pulmonary fibrosis (PF) therapy. Here, micelles formed by a graft copolymer of multiple PEGs modified branched polyethylenimine are used for delivering runt-related transcription factor-1 (RUNX1) small interfering RNA (siRNA) (siRUNX1) to the lung, aiming to inhibit the myofibroblast differentiation of LR-MSCs. LR-MSC targeting is achieved by functionalizing the micelle surface with an anti-stem-cell antigen-1 antibody fragment (Fab'). Consequently, therapeutic benefits are obtained by successful suppression of myofibroblast differentiation of LR-MSCs in bleomycin-induced PF model mice treated with siRUNX1-loaded micelles. Furthermore, an excellent synergistic effect of PF therapy is achieved for this micelle system loaded siRUNX1 and glioma-associated oncogene homolog-1 (Gli1) small interfering RNA (siGli1), a traditional anti-PF siRNA of glioma-associated oncogene homolog-1. Hence, this work not only provides RUNX1 as a novel PF therapeutic target, but also as a promising dual siRNA-loaded nanocarrier system for the therapy of PF.
Collapse
Affiliation(s)
- Qijian Ji
- Department of Critical Care Medicine, Xuyi People's Hospital, 28 Hongwu Road, Xuyi, Huai'an, Jiangsu, 211700, China
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Jiwei Hou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xueqing Yong
- Department of Nuclear Science & Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211106, China
| | - Guangming Gong
- Department of Pharmaceutics, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Mohd Muddassir
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Tianyu Tang
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Jinbing Xie
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119228, Singapore
| |
Collapse
|
23
|
Naito M, Chaya H, Toh K, Kim BS, Hayashi K, Fukushima S, Nagata T, Yokota T, Kataoka K, Miyata K. Structural tuning of oligonucleotides for enhanced blood circulation properties of unit polyion complexes prepared from two-branched poly(ethylene glycol)-block-poly(l-lysine). J Control Release 2021; 330:812-820. [PMID: 33417983 DOI: 10.1016/j.jconrel.2021.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/26/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023]
Abstract
Downsizing nanocarriers is a promising strategy for systemically targeting fibrotic cancers, such as pancreatic cancer, owing to enhanced tissue permeability. We recently developed a small oligonucleotide nanocarrier called a unit polyion complex (uPIC) using a single oligonucleotide molecule and one or two molecule(s) of two-branched poly(ethylene glycol)-b-poly(l-lysine) (bPEG-PLys). The uPIC is a dynamic polyion-pair equilibrated with free bPEG-PLys, and thus, is highly stabilized in the presence of excess amounts of free bPEG-PLys in the bloodstream. However, the dynamic polyion-pairing behavior of uPICs needs to be further investigated for longevity in the bloodstream, especially under lower amounts of free bPEG-PLys. Herein, the polyion-pairing behavior of uPICs was investigated by highlighting oligonucleotide stability and negative charge number. To this end, small interfering RNA (siRNA) and antisense oligonucleotides (ASO) were chemically modified to acquire nuclease resistance, and the ASO was hybridized with complementary RNA (cRNA) to form a hetero-duplex oligonucleotide (HDO) with twice the negative charges. While all oligonucleotides similarly formed sub-20 nm-sized uPICs from a single oligonucleotide molecule, the association number of bPEG-PLys (ANbPEG-PLys) in uPICs varied based on the negative charge number of oligonucleotides (N-), that is, ANbPEG-PLys = ~2 at N- = ~40 (i.e., siRNA and HDO) and ANbPEG-PLys = ~1 at N- = 20 (i.e., ASO), presumably because of the balanced charge neutralization between the oligonucleotide and bPEG-PLys with a positive charge number (N+) of ~20. Ultimately, the uPICs prepared from the chemically modified oligonucleotide with higher negative charges showed considerably longer blood retention than those from the control oligonucleotides without chemical modifications or with lower negative charges. The difference in the blood circulation properties of uPICs was more pronounced under lower amounts of free bPEG-PLys. These results demonstrate that the chemical modification and higher negative charge in oligonucleotides facilitated the polyion-pairing between the oligonucleotide and bPEG-PLys under harsh biological conditions, facilitating enhanced blood circulation of uPICs.
Collapse
Affiliation(s)
- Mitsuru Naito
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Chaya
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuko Toh
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Beob Soo Kim
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kotaro Hayashi
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Shigeto Fukushima
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
24
|
Li J, Kataoka K. Chemo-physical Strategies to Advance the in Vivo Functionality of Targeted Nanomedicine: The Next Generation. J Am Chem Soc 2020; 143:538-559. [PMID: 33370092 DOI: 10.1021/jacs.0c09029] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The past few decades have witnessed an evolution of nanomedicine from biologically inert entities to more smart systems, aimed at advancing in vivo functionality. However, we should recognize that most systems still rely on reasonable explanation-including some over-explanation-rather than definitive evidence, which is a watershed radically determining the speed and extent of advancing nanomedicine. Probing nano-bio interactions and desirable functionality at the tissue, cellular, and molecular levels is most frequently overlooked. Progress toward answering these questions will provide instructive insight guiding more effective chemo-physical strategies. Thus, in the next generation, we argue that much effort should be made to provide definitive evidence for proof-of-mechanism, in lieu of creating many new and complicated systems for similar proof-of-concept.
Collapse
Affiliation(s)
- Junjie Li
- Innovation Center of NanoMedicne, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicne, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan.,Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
25
|
Mi P, Miyata K, Kataoka K, Cabral H. Clinical Translation of Self‐Assembled Cancer Nanomedicines. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000159] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Peng Mi
- Department of Radiology, Center for Medical Imaging, State Key Laboratory of Biotherapy and Cancer Center West China Hospital, Sichuan University No. 17 People's South Road Chengdu 610041 China
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
| | - Kazunori Kataoka
- Institute for Future Initiatives The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐0033 Japan
- Innovation Center of NanoMedicine Kawasaki Institute of Industrial Promotion 3‐25‐14, Tonomachi, Kawasaki‐ku Kawasaki 210‐0821 Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
| |
Collapse
|
26
|
Kim BS, Naito M, Chaya H, Hori M, Hayashi K, Min HS, Yi Y, Kim HJ, Nagata T, Anraku Y, Kishimura A, Kataoka K, Miyata K. Noncovalent Stabilization of Vesicular Polyion Complexes with Chemically Modified/Single-Stranded Oligonucleotides and PEG- b-guanidinylated Polypeptides for Intracavity Encapsulation of Effector Enzymes Aimed at Cooperative Gene Knockdown. Biomacromolecules 2020; 21:4365-4376. [PMID: 32924444 DOI: 10.1021/acs.biomac.0c01192] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
For the simultaneous delivery of antisense oligonucleotides and their effector enzymes into cells, nanosized vesicular polyion complexes (PICs) were fabricated from oppositely charged polyion pairs of oligonucleotides and poly(ethylene glycol) (PEG)-b-polypeptides. First, the polyion component structures were carefully designed to facilitate a multimolecular (or secondary) association of unit PICs for noncovalent (or chemical cross-linking-free) stabilization of vesicular PICs. Chemically modified, single-stranded oligonucleotides (SSOs) dramatically stabilized the multimolecular associates under physiological conditions, compared to control SSOs without chemical modifications and duplex oligonucleotides. In addition, a high degree of guanidino groups in the polypeptide segment was also crucial for the high stability of multimolecular associates. Dynamic light scattering and transmission electron microscopy revealed the stabilized multimolecular associates to have a 100 nm sized vesicular architecture with a narrow size distribution. The loading number of SSOs per nanovesicle was determined to be ∼2500 using fluorescence correlation spectroscopic analyses with fluorescently labeled SSOs. Furthermore, the nanovesicle stably encapsulated ribonuclease H (RNase H) as an effector enzyme at ∼10 per nanovesicle through simple vortex-mixing with preformed nanovesicles. Ultimately, the RNase H-encapsulated nanovesicle efficiently delivered SSOs with RNase H into cultured cancer cells, thereby eliciting the significantly higher gene knockdown compared with empty nanovesicles (without RNase H) or a mixture of nanovesicles with RNase H without encapsulation. These results demonstrate the great potential of noncovalently stabilized nanovesicles for the codelivery of two varying bio-macromolecule payloads for ensuring their cooperative biological activity.
Collapse
Affiliation(s)
- Beob Soo Kim
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mitsuru Naito
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Chaya
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mao Hori
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kotaro Hayashi
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Hyun Su Min
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yu Yi
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hyun Jin Kim
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yasutaka Anraku
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akihiro Kishimura
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan.,Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
27
|
Koji K, Yoshinaga N, Mochida Y, Hong T, Miyazaki T, Kataoka K, Osada K, Cabral H, Uchida S. Bundling of mRNA strands inside polyion complexes improves mRNA delivery efficiency in vitro and in vivo. Biomaterials 2020; 261:120332. [PMID: 32877764 DOI: 10.1016/j.biomaterials.2020.120332] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023]
Abstract
RNA nanotechnology has promise for developing mRNA carriers with enhanced physicochemical and functional properties. However, the potential synergy for mRNA delivery of RNA nanotechnology in cooperation with established carrier systems remains unknown. This study proposes a combinational system of RNA nanotechnology and mRNA polyplexes, by focusing on mRNA steric structure inside the polyplexes. Firstly, several mRNA strands are bundled through hybridization with RNA oligonucleotide crosslinkers to obtain tight mRNA structure, and then the bundled mRNA is mixed with poly(ethylene glycol) (PEG)-polycation block copolymers to prepare PEG-coated polyplex micelles (PMs). mRNA bundling results in highly condensed mRNA packaging inside PM core with dense PEG chains on the surface, thereby, improving PM stability against polyion exchange reaction and ribonuclease (RNase) attack. Importantly, such stabilization effects are attributed to bundled structure of mRNA rather than the increase in total mRNA amount encapsulated in the PMs, as encapsulation of long mRNA strands without bundling fails to improve PM stability. Consequently, PMs loading bundled mRNA exhibit enhanced stability in mouse blood circulation, and induce efficient protein expression in cultured cells and mouse brain.
Collapse
Affiliation(s)
- Kyoko Koji
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Naoto Yoshinaga
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuki Mochida
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Taehun Hong
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takuya Miyazaki
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina, Kanagawa, 243-0435, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan; Policy Alternatives Research Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kensuke Osada
- Department of Molecular Imaging and Theranostics, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan.
| | - Satoshi Uchida
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan.
| |
Collapse
|
28
|
Miyazaki T, Uchida S, Nagatoishi S, Koji K, Hong T, Fukushima S, Tsumoto K, Ishihara K, Kataoka K, Cabral H. Polymeric Nanocarriers with Controlled Chain Flexibility Boost mRNA Delivery In Vivo through Enhanced Structural Fastening. Adv Healthc Mater 2020; 9:e2000538. [PMID: 32583633 DOI: 10.1002/adhm.202000538] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/29/2020] [Indexed: 12/20/2022]
Abstract
Messenger RNA (mRNA) shows high therapeutic potential, though effective delivery systems are still needed for boosting its application. Nanocarriers loading mRNA via polyion complexation with block catiomers into core-shell micellar structures are promising systems for enhancing mRNA delivery. Engineering the interaction between mRNA and catiomers through polymer design can promote the development of mRNA-loaded micelles (mRNA/m) with increased delivery efficiency. Particularly, the polycation chain rigidity may critically affect the mRNA-catiomer interplay to yield potent nanocarriers, yet its effect remains unknown. Herein, the influence of polycation stiffness on the performance of mRNA/m by developing block complementary catiomers having polycation segments with different flexibility, that is, poly(ethylene glycol)-poly(glycidylbutylamine) (PEG-PGBA) and PEG-poly(L-lysine) (PEG-PLL) is studied. PEG-PGBA allows more than 50-fold stronger binding to mRNA than the relatively more rigid PEG-PLL, resulting in mRNA/m with enhanced protection against enzymatic attack and polyanions. mRNA/m from PEG-PGBA significantly enhances mRNA in vivo bioavailability and increased protein translation, indicating the importance of controlling polycation flexibility for forming stable polyion complexes with mRNA toward improved delivery.
Collapse
Affiliation(s)
- Takuya Miyazaki
- Graduate School of EngineeringThe University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
- Kanagawa Institute of Industrial Science and Technology 705‐1 Shimoimaizumi, Ebina Kanagawa 243‐0435 Japan
| | - Satoshi Uchida
- Graduate School of EngineeringThe University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
| | - Satoru Nagatoishi
- Institute of Medical ScienceThe University of Tokyo 4‐6‐1 Shirokanedai, Minato‐ku Tokyo 108‐8639 Japan
| | - Kyoko Koji
- Graduate School of EngineeringThe University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
| | - Taehun Hong
- Graduate School of EngineeringThe University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
| | - Shigeto Fukushima
- Innovation Center of NanoMedicine (iCONM) 3‐25‐14 Tonomachi, Kawasaki‐ku Kawasaki 210‐0821 Japan
| | - Kouhei Tsumoto
- Graduate School of EngineeringThe University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
- Institute of Medical ScienceThe University of Tokyo 4‐6‐1 Shirokanedai, Minato‐ku Tokyo 108‐8639 Japan
| | - Kazuhiko Ishihara
- Graduate School of EngineeringThe University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine (iCONM) 3‐25‐14 Tonomachi, Kawasaki‐ku Kawasaki 210‐0821 Japan
- Institute for Future InitiativesThe University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐0033 Japan
| | - Horacio Cabral
- Graduate School of EngineeringThe University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
| |
Collapse
|
29
|
Gallops CE, Ziebarth JD, Wang Y. Coarse-grained Simulations of the Impact of Chain Length and Stiffness on the Formation and Aggregation of Polyelectrolyte Complexes. MACROMOL THEOR SIMUL 2020; 29:2000015. [PMID: 36117803 PMCID: PMC9480279 DOI: 10.1002/mats.202000015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Indexed: 09/05/2024]
Abstract
Polyelectrolyte complexes formed from nucleic acids and synthetic polycations have been studied because of their potential in gene delivery. Coarse-grained molecular dynamics simulations are performed to examine the impact of chain length and polyanion stiffness on polyplex formation and aggregation. Polyplexes containing single polyanion chain fall into three structural regimes depending on polyanion stiffness: flexible polyanions form collapsed complexes, semiflexible polyanions form various morphologies including toroids and hairpins, and stiff polyanions form rod-like structures. Polyplex size generally decreases as polycation length increases. Aggregation (i.e., formation of complexes containing multiple polyanions) is observed in some simulations containing multiple polyanions and an excess of short polycations. Aggregation is observed to only occur for semiflexible and stiff polyanions and is promoted by shorter polycation lengths. Simulations of short, stiff polyanions condensed by long polycations are used as a model for siRNA gene delivery complexes. These simulations show multiple polyanions are spaced out along the polycation with polyanion-polyanion interactions, usually limited to overlapping chain ends. These structures differ from aggregates of longer polyanions in which the polyanions are packed together in parallel, forming bundles.
Collapse
Affiliation(s)
- Caleb E. Gallops
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152
| | - Jesse D. Ziebarth
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152
| | - Yongmei Wang
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152
| |
Collapse
|
30
|
Min HS, Kim HJ, Naito M, Ogura S, Toh K, Hayashi K, Kim BS, Fukushima S, Anraku Y, Miyata K, Kataoka K. Systemic Brain Delivery of Antisense Oligonucleotides across the Blood-Brain Barrier with a Glucose-Coated Polymeric Nanocarrier. Angew Chem Int Ed Engl 2020; 59:8173-8180. [PMID: 31995252 PMCID: PMC7317551 DOI: 10.1002/anie.201914751] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Current antisense oligonucleotide (ASO) therapies for the treatment of central nervous system (CNS) disorders are performed through invasive administration, thereby placing a major burden on patients. To alleviate this burden, we herein report systemic ASO delivery to the brain by crossing the blood-brain barrier using glycemic control as an external trigger. Glucose-coated polymeric nanocarriers, which can be bound by glucose transporter-1 expressed on the brain capillary endothelial cells, are designed for stable encapsulation of ASOs, with a particle size of about 45 nm and an adequate glucose-ligand density. The optimized nanocarrier efficiently accumulates in the brain tissue 1 h after intravenous administration and exhibits significant knockdown of a target long non-coding RNA in various brain regions, including the cerebral cortex and hippocampus. These results demonstrate that the glucose-modified polymeric nanocarriers enable noninvasive ASO administration to the brain for the treatment of CNS disorders.
Collapse
Affiliation(s)
- Hyun Su Min
- Department of Materials EngineeringGraduate School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo113-8656Japan
| | - Hyun Jin Kim
- Center for Disease Biology and Integrative MedicineGraduate School of MedicineThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo113-0033Japan
| | - Mitsuru Naito
- Center for Disease Biology and Integrative MedicineGraduate School of MedicineThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo113-0033Japan
| | - Satomi Ogura
- Department of Materials EngineeringGraduate School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo113-8656Japan
| | - Kazuko Toh
- Innovation Center of Nanomedicine (iCONM)Kawasaki Institute of Industrial Promotion3-25-14 Tonomachi, Kawasaki-kuKawasaki210-0821Japan
| | - Kotaro Hayashi
- Innovation Center of Nanomedicine (iCONM)Kawasaki Institute of Industrial Promotion3-25-14 Tonomachi, Kawasaki-kuKawasaki210-0821Japan
| | - Beob Soo Kim
- Department of Materials EngineeringGraduate School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo113-8656Japan
| | - Shigeto Fukushima
- Innovation Center of Nanomedicine (iCONM)Kawasaki Institute of Industrial Promotion3-25-14 Tonomachi, Kawasaki-kuKawasaki210-0821Japan
| | - Yasutaka Anraku
- Innovation Center of Nanomedicine (iCONM)Kawasaki Institute of Industrial Promotion3-25-14 Tonomachi, Kawasaki-kuKawasaki210-0821Japan
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo113-8656Japan
| | - Kanjiro Miyata
- Department of Materials EngineeringGraduate School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo113-8656Japan
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine (iCONM)Kawasaki Institute of Industrial Promotion3-25-14 Tonomachi, Kawasaki-kuKawasaki210-0821Japan
- Institute for Future InitiativesThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo113-0033Japan
| |
Collapse
|
31
|
Fliervoet LAL, Zhang H, van Groesen E, Fortuin K, Duin NJCB, Remaut K, Schiffelers RM, Hennink WE, Vermonden T. Local release of siRNA using polyplex-loaded thermosensitive hydrogels. NANOSCALE 2020; 12:10347-10360. [PMID: 32369076 DOI: 10.1039/d0nr03147j] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
One of the challenges for the clinical translation of RNA interference (RNAi)-based therapies concerns the deposition of therapeutically effective doses of the nucleic acids, like siRNA, at a local tissue level without severe off-target effects. To address this issue, hydrogels can be used as matrices for the local and sustained release of the siRNA cargo. In this study, the formation of polyplexes based on siRNA and poly(2-dimethylaminoethyl methacrylate) (PDMAEMA)-based polymers was investigated, followed by their loading in a thermosensitive hydrogel to promote local siRNA release. A multifunctional NPD triblock copolymer consisting of a thermosensitive poly(N-isopropylacrylamide) (PNIPAM, N), a hydrophilic poly(ethylene glycol) (PEG, P), and a cationic PDMAEMA (D) block was used to study the binding properties with siRNA taking the non-thermosensitive PD polymer as control. For both polymers, small polyplexes with sizes ranging from 10-20 nm were formed in aqueous solution (HBS buffer, 20 mM HEPES, 150 mM NaCl, pH 7.4) when prepared at a N/P charge ratio of 5 or higher. Formulating the siRNA into NPD or PD polyplexes before loading into the thermosensitive PNIPAM-PEG-PNIPAM hydrogel resulted in a more controlled and sustained release compared to free siRNA release from the hydrogel. The polyplexes were released for 128 hours in HBS, when changing the release medium twice a day, while free siRNA was completely released within 50 hours with already 40% being released after changing the release medium just once. The release of the polyplexes was dependent on the dissolution rate of the hydrogel matrix. Moreover, intact polyplexes were released from the hydrogels with a similar size as before loading, suggesting that the hydrogel material did not compromise the polyplex stability. Finally, it was shown that the released polyplexes were still biologically active and transfected FaDu cells, which was observed by siRNA-induced luciferase silencing in vitro. This study shows the development of an injectable thermosensitive hydrogel to promote local and sustained release of siRNA, which can potentially be used to deliver siRNA for various applications, such as the treatment of tumors.
Collapse
Affiliation(s)
- Lies A L Fliervoet
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, PO Box 80082, 3508 TB Utrecht, the Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kim BS, Osawa S, Yum J, Naito M, Miyata K. Installation of a Thermoswitchable Hydrophobic Domain into a Unimer Polyion Complex for Enhanced Cellular Uptake of siRNA. Bioconjug Chem 2020; 31:1320-1326. [DOI: 10.1021/acs.bioconjchem.0c00238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Beob Soo Kim
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shigehito Osawa
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Jongmin Yum
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mitsuru Naito
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
33
|
Tokumaru Y, Takabe K, Yoshida K, Akao Y. Effects of MIR143 on rat sarcoma signaling networks in solid tumors: A brief overview. Cancer Sci 2020; 111:1076-1083. [PMID: 32077199 PMCID: PMC7156858 DOI: 10.1111/cas.14357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/01/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
Rat sarcoma (RAS) is a well-known oncogene that plays important roles in cancer proliferation, cell survival and cell invasion. RAS exists as three major isoforms, Kirsten rat sarcoma (KRAS), Harvey rat sarcoma (HRAS) and neuroblastoma rat sarcoma (NRAS). Mutations of these genes account for approximately 30% of all cancers. Among them, KRAS mutations are the most common, responsible for 85%, followed by NRAS (12%) and HRAS (3%). Although the development of RAS inhibitors has been explored for over the past decade, so far, no effective inhibitor has been found. MicroRNA (miRNA) are a class of small non-coding RNA that control the gene expression of pleural target genes at the post-transcriptional level. MiRNA play critical roles in the physiological and pathological processes at work in cancers, such as cell proliferation, cell death, cell invasion and metastasis. MicroRNA-143 (MIR143) is known to function as a tumor suppressor in a variety of cancers. One of its known mechanisms is suppression of RAS expression and its effector signaling pathways, such as PI3K/AKT and MAPK/ERK. Within the last five years, we developed a potent chemically modified MIR143-3p that enabled us to elucidate the details of the KRAS signaling networks at play in colon and other cancer cells. In this review, we will discuss the role of MIR143-3p in those RAS signaling networks that are related to various biological processes of cancer cells. In addition, we will discuss the possibility of the use of MIR143 as a therapeutic drug for targeting RAS signaling networks.
Collapse
Affiliation(s)
- Yoshihisa Tokumaru
- Breast SurgeryDepartment of Surgical OncologyRoswell Park Comprehensive Cancer CenterBuffaloNew York
- Department of Surgical OncologyGraduate School of MedicineGifu UniversityGifuJapan
| | - Kazuaki Takabe
- Breast SurgeryDepartment of Surgical OncologyRoswell Park Comprehensive Cancer CenterBuffaloNew York
- Department of SurgeryUniversity at Buffalo Jacobs School of Medicine and Biomedical SciencesThe State University of New YorkBuffaloNew York
| | - Kazuhiro Yoshida
- Department of Surgical OncologyGraduate School of MedicineGifu UniversityGifuJapan
| | - Yukihiro Akao
- United Graduate School of Drug and Medical Information SciencesGifu UniversityGifuJapan
| |
Collapse
|
34
|
Min HS, Kim HJ, Naito M, Ogura S, Toh K, Hayashi K, Kim BS, Fukushima S, Anraku Y, Miyata K, Kataoka K. Systemic Brain Delivery of Antisense Oligonucleotides across the Blood–Brain Barrier with a Glucose‐Coated Polymeric Nanocarrier. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hyun Su Min
- Department of Materials Engineering Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Hyun Jin Kim
- Center for Disease Biology and Integrative Medicine Graduate School of Medicine The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Mitsuru Naito
- Center for Disease Biology and Integrative Medicine Graduate School of Medicine The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Satomi Ogura
- Department of Materials Engineering Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kazuko Toh
- Innovation Center of Nanomedicine (iCONM) Kawasaki Institute of Industrial Promotion 3-25-14 Tonomachi, Kawasaki-ku Kawasaki 210-0821 Japan
| | - Kotaro Hayashi
- Innovation Center of Nanomedicine (iCONM) Kawasaki Institute of Industrial Promotion 3-25-14 Tonomachi, Kawasaki-ku Kawasaki 210-0821 Japan
| | - Beob Soo Kim
- Department of Materials Engineering Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Shigeto Fukushima
- Innovation Center of Nanomedicine (iCONM) Kawasaki Institute of Industrial Promotion 3-25-14 Tonomachi, Kawasaki-ku Kawasaki 210-0821 Japan
| | - Yasutaka Anraku
- Innovation Center of Nanomedicine (iCONM) Kawasaki Institute of Industrial Promotion 3-25-14 Tonomachi, Kawasaki-ku Kawasaki 210-0821 Japan
- Department of Bioengineering Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kanjiro Miyata
- Department of Materials Engineering Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine (iCONM) Kawasaki Institute of Industrial Promotion 3-25-14 Tonomachi, Kawasaki-ku Kawasaki 210-0821 Japan
- Institute for Future Initiatives The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
35
|
Lou B, Connor K, Sweeney K, Miller IS, O'Farrell A, Ruiz-Hernandez E, Murray DM, Duffy GP, Wolfe A, Mastrobattista E, Byrne AT, Hennink WE. RGD-decorated cholesterol stabilized polyplexes for targeted siRNA delivery to glioblastoma cells. Drug Deliv Transl Res 2020; 9:679-693. [PMID: 30972664 DOI: 10.1007/s13346-019-00637-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The development of an effective and safe treatment for glioblastoma (GBM) represents a significant challenge in oncology today. Downregulation of key mediators of cell signal transduction by RNA interference is considered a promising treatment strategy but requires efficient, intracellular delivery of siRNA into GBM tumor cells. Here, we describe novel polymeric siRNA nanocarriers functionalized with cRGD peptide that mediates targeted and efficient reporter gene silencing in U87R invasive human GBM cells. The polymer was synthesized via RAFT copolymerization of N-(2-hydroxypropyl)-methacrylamide (HPMA) and N-acryloxysuccinimide (NAS), followed by post-polymerization modification with cholesterol for stabilization, cationic amines for siRNA complexation, and azides for copper-free click chemistry. The novel resultant cationic polymer harboring a terminal cholesterol group, self-assembled with siRNA to yield nanosized polyplexes (~ 40 nm) with good colloidal stability at physiological ionic strength. Post-modification of the preformed polyplexes with PEG-cRGD end-functionalized with bicyclo[6.1.0]nonyne (BCN) group resulted in enhanced cell uptake and increased luciferase gene silencing in U87R cells, compared to polyplexes lacking cRGD-targeting groups.
Collapse
Affiliation(s)
- Bo Lou
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Kate Connor
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York Street, Dublin 2, Ireland
| | - Kieron Sweeney
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York Street, Dublin 2, Ireland.,Department of Neurosurgery, Beaumont Hospital, Dublin, Ireland
| | - Ian S Miller
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York Street, Dublin 2, Ireland
| | - Alice O'Farrell
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York Street, Dublin 2, Ireland
| | | | - David M Murray
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York Street, Dublin 2, Ireland
| | - Garry P Duffy
- Anatomy, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Alan Wolfe
- UCD School of Veterinary Medicine, Belfield, Dublin, Ireland
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Annette T Byrne
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York Street, Dublin 2, Ireland
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
36
|
Tabujew I, Heidari M, Freidel C, Helm M, Tebbe L, Wolfrum U, Nagel-Wolfrum K, Koynov K, Biehl P, Schacher FH, Potestio R, Peneva K. Tackling the Limitations of Copolymeric Small Interfering RNA Delivery Agents by a Combined Experimental–Computational Approach. Biomacromolecules 2019; 20:4389-4406. [DOI: 10.1021/acs.biomac.9b01061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ilja Tabujew
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Maziar Heidari
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Christoph Freidel
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Lars Tebbe
- Institute of Zoology, Johannes Gutenberg University Mainz, Muellerweg 6, 55099 Mainz, Germany
| | - Uwe Wolfrum
- Institute of Zoology, Johannes Gutenberg University Mainz, Muellerweg 6, 55099 Mainz, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Zoology, Johannes Gutenberg University Mainz, Muellerweg 6, 55099 Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Philip Biehl
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Felix H. Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Raffaello Potestio
- Physics Department, University of Trento, Via Sommarive 14, I-38123 Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, I-38123 Trento, Italy
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| |
Collapse
|
37
|
Kim BS, Kim HJ, Osawa S, Hayashi K, Toh K, Naito M, Min HS, Yi Y, Kwon IC, Kataoka K, Miyata K. Dually Stabilized Triblock Copolymer Micelles with Hydrophilic Shell and Hydrophobic Interlayer for Systemic Antisense Oligonucleotide Delivery to Solid Tumor. ACS Biomater Sci Eng 2019; 5:5770-5780. [DOI: 10.1021/acsbiomaterials.9b00384] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Beob Soo Kim
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | | | - Shigehito Osawa
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kotaro Hayashi
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Kazuko Toh
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | | | - Hyun Su Min
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yu Yi
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
38
|
Affiliation(s)
- Jukka Niskanen
- Université de MontréalDépartement de chimie, C.P. 6128 Succursale Centre-Ville Montréal, QC H3 C 3 J7 Canada
| | - Jaana Vapaavuori
- Université de MontréalDépartement de chimie, C.P. 6128 Succursale Centre-Ville Montréal, QC H3 C 3 J7 Canada
- Department of Chemistry and Materials ScienceAalto University P.O. Box 16100 FI-00076 AALTO Finland
| |
Collapse
|
39
|
Zhou W, Wang J, Ding P, Guo X, Cohen Stuart MA, Wang J. Functional Polyion Complex Vesicles Enabled by Supramolecular Reversible Coordination Polyelectrolytes. Angew Chem Int Ed Engl 2019; 58:8494-8498. [DOI: 10.1002/anie.201903513] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/10/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Wenjuan Zhou
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Jiahua Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Peng Ding
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Martien A. Cohen Stuart
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
40
|
Zhou W, Wang J, Ding P, Guo X, Cohen Stuart MA, Wang J. Functional Polyion Complex Vesicles Enabled by Supramolecular Reversible Coordination Polyelectrolytes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wenjuan Zhou
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Jiahua Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Peng Ding
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Martien A. Cohen Stuart
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
41
|
Watanabe S, Hayashi K, Toh K, Kim HJ, Liu X, Chaya H, Fukushima S, Katsushima K, Kondo Y, Uchida S, Ogura S, Nomoto T, Takemoto H, Cabral H, Kinoh H, Tanaka HY, Kano MR, Matsumoto Y, Fukuhara H, Uchida S, Nangaku M, Osada K, Nishiyama N, Miyata K, Kataoka K. In vivo rendezvous of small nucleic acid drugs with charge-matched block catiomers to target cancers. Nat Commun 2019; 10:1894. [PMID: 31019193 PMCID: PMC6482185 DOI: 10.1038/s41467-019-09856-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/29/2019] [Indexed: 11/13/2022] Open
Abstract
Stabilisation of fragile oligonucleotides, typically small interfering RNA (siRNA), is one of the most critical issues for oligonucleotide therapeutics. Many previous studies encapsulated oligonucleotides into ~100-nm nanoparticles. However, such nanoparticles inevitably accumulate in liver and spleen. Further, some intractable cancers, e.g., tumours in pancreas and brain, have inherent barrier characteristics preventing the penetration of such nanoparticles into tumour microenvironments. Herein, we report an alternative approach to cancer-targeted oligonucleotide delivery using a Y-shaped block catiomer (YBC) with precisely regulated chain length. Notably, the number of positive charges in YBC is adjusted to match that of negative charges in each oligonucleotide strand (i.e., 20). The YBC rendezvouses with a single oligonucleotide in the bloodstream to generate a dynamic ion-pair, termed unit polyion complex (uPIC). Owing to both significant longevity in the bloodstream and appreciably small size (~18 nm), the uPIC efficiently delivers oligonucleotides into pancreatic tumour and brain tumour models, exerting significant antitumour activity.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/pharmacokinetics
- Brain Neoplasms/genetics
- Brain Neoplasms/metabolism
- Brain Neoplasms/mortality
- Brain Neoplasms/therapy
- Carbocyanines/chemistry
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Drug Carriers/chemical synthesis
- Drug Carriers/pharmacokinetics
- Fluorescent Dyes/chemistry
- Gene Expression Regulation, Neoplastic
- Humans
- Injections, Intravenous
- Male
- Mice
- Nanostructures/administration & dosage
- Nanostructures/chemistry
- Oligonucleotides/chemical synthesis
- Oligonucleotides/genetics
- Oligonucleotides/metabolism
- Oligonucleotides/pharmacokinetics
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/therapy
- Polyethylene Glycols/chemistry
- Polylysine/chemistry
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Long Noncoding/antagonists & inhibitors
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Interfering/chemical synthesis
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Small Interfering/pharmacokinetics
- Static Electricity
- Survival Analysis
- Xenograft Model Antitumor Assays
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- Sumiyo Watanabe
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8544, Japan
| | - Kotaro Hayashi
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Kazuko Toh
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Hyun Jin Kim
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Xueying Liu
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Hiroyuki Chaya
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shigeto Fukushima
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Keisuke Katsushima
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Satoshi Uchida
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Satomi Ogura
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takahiro Nomoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-11, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Hiroyasu Takemoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-11, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroaki Kinoh
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Hiroyoshi Y Tanaka
- Department of Pharmaceutical Biomedicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi, Okayama Prefecture, 700-8530, Japan
| | - Mitsunobu R Kano
- Department of Pharmaceutical Biomedicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi, Okayama Prefecture, 700-8530, Japan
- Department of Pharmaceutical Biomedicine, Okayama University Graduate School of Interdisciplinary Science and Engineering in Health Systems, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi, Okayama Prefecture, 700-8530, Japan
| | - Yu Matsumoto
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroshi Fukuhara
- Department of Urology, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Shunya Uchida
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8544, Japan
| | - Kensuke Osada
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Nobuhiro Nishiyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-11, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Kanjiro Miyata
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan.
- Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
42
|
Yoshikawa Y, Taniguchi K, Tsujino T, Heishima K, Inamoto T, Takai T, Minami K, Azuma H, Miyata K, Hayashi K, Kataoka K, Akao Y. Anti-cancer Effects of a Chemically Modified miR-143 on Bladder Cancer by Either Systemic or Intravesical Treatment. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:290-302. [PMID: 30911586 PMCID: PMC6416526 DOI: 10.1016/j.omtm.2019.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/13/2019] [Indexed: 12/29/2022]
Abstract
We developed a novel chemically modified miR-143 (miR-143#12), and with it we investigated the contribution of miR-143 to the pathogenesis of bladder cancer (BC), in which miR-143 is extremely downregulated. Since miR-143 silenced K-RAS and RAS effector-signaling molecules Erk and Akt, we performed the ectopic expression of miR-143 in human BC 253J-BV cells, and we examined the growth inhibition and the mechanism of it in vitro and in orthotopic model mice. As a result, miR-143#12 induced a marked growth inhibition with apoptosis through impairing RAS-signaling networks, including SOS1, which exchanges guanosine diphosphate (GDP)/RAS for active guanosine triphosphate (GTP)/RAS. In the in vivo study, miR-143#12 exhibited a marked anti-tumor activity by either systemic or intravesical administration with polyionic copolymer (PIC) as the carrier, compared with the activity obtained by use of lipofection. These findings raised the possibility that the chemically modified miR-143#12 would be a candidate of microRNA (miRNA) medicine for BC delivered by intravesical infusion.
Collapse
Affiliation(s)
- Yuki Yoshikawa
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Department of Urology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Kohei Taniguchi
- Translational Research Program, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Takuya Tsujino
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Department of Urology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Kazuki Heishima
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Teruo Inamoto
- Department of Urology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Tomoaki Takai
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Department of Urology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Koichiro Minami
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Department of Urology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Haruhito Azuma
- Department of Urology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kotaro Hayashi
- Inovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Kazunori Kataoka
- Inovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan.,Policy Alternatives Research Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
43
|
Yi Y, Kim HJ, Zheng M, Mi P, Naito M, Kim BS, Min HS, Hayashi K, Perche F, Toh K, Liu X, Mochida Y, Kinoh H, Cabral H, Miyata K, Kataoka K. Glucose-linked sub-50-nm unimer polyion complex-assembled gold nanoparticles for targeted siRNA delivery to glucose transporter 1-overexpressing breast cancer stem-like cells. J Control Release 2019; 295:268-277. [PMID: 30639386 DOI: 10.1016/j.jconrel.2019.01.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/18/2018] [Accepted: 01/07/2019] [Indexed: 02/05/2023]
Abstract
Cancer stem-like cells (CSCs) treatment is a plausible strategy for enhanced cancer therapy. Here we report a glucose-installed sub-50-nm nanocarrier for the targeted delivery of small interfering RNA (siRNA) to CSCs through selective recognition of the glucose ligand to the glucose transporter 1 (GLUT1) overexpressed on the CSC surface. The siRNA nanocarrier was constructed via a two-step assembling process. First, a glucose-installed poly(ethylene glycol)-block-poly(l-lysine) modified with lipoic acid (LA) at the ω-end (Glu-PEG-PLL-LA) was associated with a single siRNA to form a unimer polyion complex (uPIC). Second, a 20 nm gold nanoparticle (AuNP) was decorated with ~65 uPICs through AuS bonding. The glucose-installed targeted nanoparticles (Glu-NPs) exhibited higher cellular uptake of siRNA payloads in a spheroid breast cancer (MBA-MB-231) cell culture compared with glucose-unconjugated control nanoparticles (MeO-NPs). Notably, the Glu-NPs became more efficiently internalized into the CSC fraction, which was defined by aldehyde dehydrogenase (ALDH) activity assay, than the other fractions, probably due to the higher GLUT1 expression level on the CSCs. The Glu-NPs elicited significantly enhanced gene silencing in a CSC-rich orthotopic MDA-MB-231 tumor tissue following systemic administration to tumor-bearing mice. Ultimately, the repeated administrations of polo-like kinase 1 (PLK1) siRNA-loaded Glu-NPs significantly suppressed the growth of orthotopic MDA-MB-231 tumors. These results demonstrate that Glu-NP is a promising nanocarrier design for CSC-targeted cancer treatment.
Collapse
Affiliation(s)
- Yu Yi
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Hyun Jin Kim
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Meng Zheng
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Peng Mi
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; Department of Radiology, Center for Medical Imaging, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Mitsuru Naito
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Beob Soo Kim
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hyun Su Min
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kotaro Hayashi
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Federico Perche
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron - CS 80054, 45071 Orléans Cedex 2, France
| | - Kazuko Toh
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Xueying Liu
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Yuki Mochida
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Hiroaki Kinoh
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; Policy Alternatives Research Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
44
|
Kim BS, Chuanoi S, Suma T, Anraku Y, Hayashi K, Naito M, Kim HJ, Kwon IC, Miyata K, Kishimura A, Kataoka K. Self-Assembly of siRNA/PEG-b-Catiomer at Integer Molar Ratio into 100 nm-Sized Vesicular Polyion Complexes (siRNAsomes) for RNAi and Codelivery of Cargo Macromolecules. J Am Chem Soc 2019; 141:3699-3709. [DOI: 10.1021/jacs.8b13641] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Beob Soo Kim
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Sayan Chuanoi
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomoya Suma
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yasutaka Anraku
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kotaro Hayashi
- Innovation Center of NanoMedicne, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Mitsuru Naito
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hyun Jin Kim
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akihiro Kishimura
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicne, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
- Policy Alternatives Research Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
45
|
Lueckheide M, Vieregg JR, Bologna AJ, Leon L, Tirrell MV. Structure-Property Relationships of Oligonucleotide Polyelectrolyte Complex Micelles. NANO LETTERS 2018; 18:7111-7117. [PMID: 30339032 DOI: 10.1021/acs.nanolett.8b03132] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Polyelectrolyte complex micelles (PCMs), nanoparticles formed by electrostatic self-assembly of charged polymers with charged-neutral hydrophilic block copolymers, offer a potential solution to the challenging problem of delivering therapeutic nucleic acids into cells and organisms. Promising results have been reported in vitro and in animal models but basic structure-property relationships are largely lacking, and some reports have suggested that double-stranded nucleic acids cannot form PCMs due to their high bending rigidity. This letter reports a study of PCMs formed by DNA oligonucleotides of varied length and hybridization state and poly(l)lysine-poly(ethylene glycol) block copolymers with varying block lengths. We employ a multimodal characterization strategy combining small-angle X-ray scattering (SAXS), multiangle light scattering (MALS), and cryo-electron microscopy (cryo-TEM) to simultaneously probe the morphology and internal structure of the micelles. Over a wide range of parameters, we find that nanoparticle shape is controlled primarily by the hybridization state of the oligonucleotides with single-stranded oligonucleotides forming spheroidal micelles and double-stranded oligonucleotides forming wormlike micelles. The length of the charged block controls the radius of the nanoparticle, while oligonucleotide length appears to have little impact on either size or shape. At smaller length scales, we observe parallel packing of DNA helices inside the double-stranded nanoparticles, consistent with results from condensed genomic DNA. We also describe salt- and thermal-annealing protocols for preparing PCMs with high repeatability and low polydispersity. Together, these results provide a capability to rationally design PCMs with desired sizes and shapes that should greatly assist development of this promising delivery technology.
Collapse
Affiliation(s)
- Michael Lueckheide
- Department of Chemistry , University of Chicago , Chicago , Illinois 60637 , United States
| | - Jeffrey R Vieregg
- Institute for Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
| | - Alex J Bologna
- Institute for Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
| | - Lorraine Leon
- Department of Materials Science and Engineering , University of Central Florida , Orlando , Florida 32816 , United States
| | - Matthew V Tirrell
- Institute for Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
- Institute for Molecular Engineering , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| |
Collapse
|
46
|
Polyester-based nanoparticles for nucleic acid delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:983-994. [DOI: 10.1016/j.msec.2018.07.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 12/14/2022]
|
47
|
Cabral H, Miyata K, Osada K, Kataoka K. Block Copolymer Micelles in Nanomedicine Applications. Chem Rev 2018; 118:6844-6892. [PMID: 29957926 DOI: 10.1021/acs.chemrev.8b00199] [Citation(s) in RCA: 780] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polymeric micelles are demonstrating high potential as nanomedicines capable of controlling the distribution and function of loaded bioactive agents in the body, effectively overcoming biological barriers, and various formulations are engaged in intensive preclinical and clinical testing. This Review focuses on polymeric micelles assembled through multimolecular interactions between block copolymers and the loaded drugs, proteins, or nucleic acids as translationable nanomedicines. The aspects involved in the design of successful micellar carriers are described in detail on the basis of the type of polymer/payload interaction, as well as the interplay of micelles with the biological interface, emphasizing on the chemistry and engineering of the block copolymers. By shaping these features, polymeric micelles have been propitious for delivering a wide range of therapeutics through effective sensing of targets in the body and adjustment of their properties in response to particular stimuli, modulating the activity of the loaded drugs at the targeted sites, even at the subcellular level. Finally, the future perspectives and imminent challenges for polymeric micelles as nanomedicines are discussed, anticipating to spur further innovations.
Collapse
Affiliation(s)
| | | | | | - Kazunori Kataoka
- Innovation Center of NanoMedicine , Kawasaki Institute of Industrial Promotion , 3-25-14, Tonomachi , Kawasaki-ku , Kawasaki 210-0821 , Japan.,Policy Alternatives Research Institute , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| |
Collapse
|
48
|
Kim HJ, Yi Y, Kim A, Miyata K. Small Delivery Vehicles of siRNA for Enhanced Cancer Targeting. Biomacromolecules 2018; 19:2377-2390. [PMID: 29864287 DOI: 10.1021/acs.biomac.8b00546] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Small interfering RNA (siRNA) drugs have been considered to treat various diseases in major organs. However, siRNA drugs developed for cancer therapy are hindered from proceeding to the clinic. To date, various delivery formulations have been developed from cationic lipids, polymers, and/or inorganic nanoparticles for systemic siRNA delivery to solid tumors. Most of these delivery vehicles do not generate small particle sizes and pharmacokinetics required for accumulation in target cancer cells compared with clinically tested anticancer drug-loaded polymeric micelles. This review describes the significance of small, long-circulating vehicles for efficient delivery of siRNA to cancer tissues via the enhanced permeability and retention (EPR) effect. We summarize recent biological evidence that supports the size effect of delivery vehicles in tumor microenvironments and introduce promising strategies for the construction of small vehicles with sizes of 10-50 nm. We then discuss the feasibility of these delivery vehicles with respect to translation to clinical trials.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Yu Yi
- Department of Materials Engineering, Graduate School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan.,CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety , National Center for Nanosciecne and Technology , No. 11 Beiyitiao , Zhongguancun, Beijing 100190 , China
| | - Ahram Kim
- Department of Materials Science, Graduate School of Pure and Applied Sciences , University of Tsukuba , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8573 , Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan
| |
Collapse
|
49
|
Vieregg JR, Lueckheide M, Marciel AB, Leon L, Bologna AJ, Rivera JR, Tirrell MV. Oligonucleotide-Peptide Complexes: Phase Control by Hybridization. J Am Chem Soc 2018; 140:1632-1638. [PMID: 29314832 DOI: 10.1021/jacs.7b03567] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
When oppositely charged polymers are mixed, counterion release drives phase separation; understanding this process is a key unsolved problem in polymer science and biophysical chemistry, particularly for nucleic acids, polyanions whose biological functions are intimately related to their high charge density. In the cell, complexation by basic proteins condenses DNA into chromatin, and membraneless organelles formed by liquid-liquid phase separation of RNA and proteins perform vital functions and have been linked to disease. Electrostatic interactions are also the primary method used for assembly of nanoparticles to deliver therapeutic nucleic acids into cells. This work describes complexation experiments with oligonucleotides and cationic peptides spanning a wide range of polymer lengths, concentrations, and structures, including RNA and methylphosphonate backbones. We find that the phase of the complexes is controlled by the hybridization state of the nucleic acid, with double-stranded nucleic acids forming solid precipitates while single-stranded oligonucleotides form liquid coacervates, apparently due to their lower charge density. Adding salt "melts" precipitates into coacervates, and oligonucleotides in coacervates remain competent for sequence-specific hybridization and phase change, suggesting the possibility of environmentally responsive complexes and nanoparticles for therapeutic or sensing applications.
Collapse
Affiliation(s)
- Jeffrey R Vieregg
- Institute for Molecular Engineering, University of Chicago , Chicago, Illinois 60637, United States
| | - Michael Lueckheide
- Department of Chemistry, University of Chicago , Chicago, Illinois 60637, United States
| | - Amanda B Marciel
- Institute for Molecular Engineering, University of Chicago , Chicago, Illinois 60637, United States
| | - Lorraine Leon
- Department of Materials Science & Engineering, University of Central Florida , Orlando, Florida 32816, United States
| | - Alex J Bologna
- Institute for Molecular Engineering, University of Chicago , Chicago, Illinois 60637, United States
| | - Josean Reyes Rivera
- Departamento de Ciencias Biológicas, University of Puerto Rico at Rio Piedras , San Juan, Puerto Rico 00925, United States
| | - Matthew V Tirrell
- Institute for Molecular Engineering, University of Chicago , Chicago, Illinois 60637, United States.,Institute for Molecular Engineering, Argonne National Laboratory , Argonne, Illinois 60439, United States
| |
Collapse
|
50
|
Fliervoet LAL, Engbersen JFJ, Schiffelers RM, Hennink WE, Vermonden T. Polymers and hydrogels for local nucleic acid delivery. J Mater Chem B 2018; 6:5651-5670. [DOI: 10.1039/c8tb01795f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focusses on the rational design of materials (from polymers to hydrogel materials) to achieve successful local delivery of therapeutic nucleic acids.
Collapse
Affiliation(s)
- Lies A. L. Fliervoet
- Department of Pharmaceutics
- Utrecht Institute for Pharmaceutical Sciences
- Utrecht University
- 3508 TB Utrecht
- The Netherlands
| | - Johan F. J. Engbersen
- Department of Controlled Drug Delivery
- MIRA Institute for Biomedical Technology and Technical Medicine
- Faculty of Science and Technology
- University of Twente
- Enschede
| | - Raymond M. Schiffelers
- Department of Clinical Chemistry and Haematology
- University Medical Center Utrecht
- 3584 CX Utrecht
- The Netherlands
| | - Wim E. Hennink
- Department of Pharmaceutics
- Utrecht Institute for Pharmaceutical Sciences
- Utrecht University
- 3508 TB Utrecht
- The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics
- Utrecht Institute for Pharmaceutical Sciences
- Utrecht University
- 3508 TB Utrecht
- The Netherlands
| |
Collapse
|