1
|
Xu Y, Tang L, Nok-iangthong C, Wagner M, Baumann G, Feist F, Bismarck A, Jiang Q. Functionally Gradient Macroporous Polymers: Emulsion Templating Offers Control over Density, Pore Morphology, and Composition. ACS APPLIED POLYMER MATERIALS 2024; 6:5150-5162. [PMID: 38752018 PMCID: PMC11091853 DOI: 10.1021/acsapm.4c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
Gradient macroporous polymers were produced by polymerization of emulsion templates comprising a continuous monomer phase and an internal aqueous template phase. To produce macroporous polymers with gradient composition, pore size, and foam density, we varied the template formulation, droplet size, and internal phase ratio of emulsion templates continuously and stacked those prior to polymerization. Using the outlined approach, it is possible to vary one property along the resulting macroporous polymer while retaining the other properties. The elastic moduli and crush strengths change along the gradient of the macroporous polymers; their mechanical properties are dominated by those of the weakest layers in the gradient. Macroporous polymers with gradient chemical composition and thus stiffness provide both high impact load and energy adsorption, rendering the gradient foam suitable for impact protective applications. We show that dual-dispensing and simultaneous blending of two different emulsion formulations in various ratios results in a fine, bidirectional change of the template composition, enabling the production of true gradient macroporous polymers with a high degree of design freedom.
Collapse
Affiliation(s)
- Yufeng Xu
- Institute
of Material Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Le Tang
- Institute
of Material Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Chanokporn Nok-iangthong
- Institute
of Material Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Markus Wagner
- Institute
for Vehicle Safety, Graz University of Technology, Inffeldgasse 13 VI, 8010 Graz, Austria
| | - Georg Baumann
- Institute
for Vehicle Safety, Graz University of Technology, Inffeldgasse 13 VI, 8010 Graz, Austria
| | - Florian Feist
- Institute
for Vehicle Safety, Graz University of Technology, Inffeldgasse 13 VI, 8010 Graz, Austria
| | - Alexander Bismarck
- Institute
of Material Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
- Department
of Chemical Engineering, Imperial College
London, South Kensington
Campus, London SW7 2AZ, U.K.
| | - Qixiang Jiang
- Institute
of Material Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| |
Collapse
|
2
|
Xiao T, Wang J, Guo J, Zhao X, Yan Y. Magnetic-field-controlled counterion migration within polyionic liquid micropores enables nano-energy harvest. NANOSCALE HORIZONS 2022; 7:1523-1532. [PMID: 36274634 DOI: 10.1039/d2nh00323f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Efficient separation of positive and negative charges is essential for developing high-performance nanogenerators. In this article, we describe a method that was not previously demonstrated to separate charges which enables us to fabricate a magnetic energy harvesting device. The magnetic field induces the migration of the mobile magnetic counterions (Dy(NO3)4-) which establishes anion gradients within a layer of polyionic liquid micropores (PLM). The PLM is covalently cross-linked on which the positive charges are fixed on the matrix, that is, immobile. In a device with a structure of Au/dielectric//mag-PLM//dielectric/Au, the charge gradient is subsequently transformed into the output voltage through electrostatic induction. Removing the magnetic field leads to the backflow of magnetic anions which produces a voltage with a similar magnitude but reversed polarity. The parameters in fabricating the magnetic PLM such as photoinitiator concentration, UV irradiation time, water treatment time, and temperature are found to dramatically influence the size of micropores and the effective concentration of magnetic anions. Under optimized conditions, an output voltage with an amplitude of approximately 4 V is finally achieved. We expect this new method could find practical applications in further improving the output performance.
Collapse
Affiliation(s)
- Tao Xiao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyu Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiahui Guo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Yong Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
3
|
Thiol-ene click synthesis of adsorption functionalized poly(ionic liquid)s: influence of the mole fraction of pendant enes. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Durmaz EN, Sahin S, Virga E, de Beer S, de Smet LCPM, de Vos WM. Polyelectrolytes as Building Blocks for Next-Generation Membranes with Advanced Functionalities. ACS APPLIED POLYMER MATERIALS 2021; 3:4347-4374. [PMID: 34541543 PMCID: PMC8438666 DOI: 10.1021/acsapm.1c00654] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 05/06/2023]
Abstract
The global society is in a transition, where dealing with climate change and water scarcity are important challenges. More efficient separations of chemical species are essential to reduce energy consumption and to provide more reliable access to clean water. Here, membranes with advanced functionalities that go beyond standard separation properties can play a key role. This includes relevant functionalities, such as stimuli-responsiveness, fouling control, stability, specific selectivity, sustainability, and antimicrobial activity. Polyelectrolytes and their complexes are an especially promising system to provide advanced membrane functionalities. Here, we have reviewed recent work where advanced membrane properties stem directly from the material properties provided by polyelectrolytes. This work highlights the versatility of polyelectrolyte-based membrane modifications, where polyelectrolytes are not only applied as single layers, including brushes, but also as more complex polyelectrolyte multilayers on both porous membrane supports and dense membranes. Moreover, free-standing membranes can also be produced completely from aqueous polyelectrolyte solutions allowing much more sustainable approaches to membrane fabrication. The Review demonstrates the promise that polyelectrolytes and their complexes hold for next-generation membranes with advanced properties, while it also provides a clear outlook on the future of this promising field.
Collapse
Affiliation(s)
- Elif Nur Durmaz
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
| | - Sevil Sahin
- Laboratory
of Organic Chemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Ettore Virga
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
- Wetsus, European
Centre of Excellence for Sustainable Water
Technology, Oostergoweg
9, 8911 MA Leeuwarden, The Netherlands
| | - Sissi de Beer
- Sustainable
Polymer Chemistry Group, Department of Molecules and Materials MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Louis C. P. M. de Smet
- Laboratory
of Organic Chemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Wiebe M. de Vos
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
| |
Collapse
|
5
|
Song Y, He J, Zhang Y. Controllable, Bidirectional Water/Organic Vapors Responsive Actuators Fabricated by One-Step Thiol-Ene Click Polymerization. Macromol Rapid Commun 2020; 41:e2000456. [PMID: 33196123 DOI: 10.1002/marc.202000456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/28/2020] [Indexed: 11/11/2022]
Abstract
It is challenging to synthesize stimuli-responsive materials with the well-balanced performance of fast stimulus-response speed, good mechanical strength, multi-functionality, and deformation diversity as well. This work reports a facile, one-step thiol-ene click polymerization strategy for preparation of water/acetone vapor-responsive hierarchical films, by using diallyl terephthalate (P) as hydrophobic ene-monomer, 1,4-diallyl-1,4-diazabicyclo [2.2.2]octane-1,4-diium bromide (B) as hydrophilic ene-monomer, and pentaerythritol tetra(3-mercaptopropionate) (PETMP) as thiol monomer. Besides, by taking advantage of the specific hydrophilic/hydrophobic induction effect of substrate and adjusting the molar ratio of P to B, P60 B40 -HPI film is fabricated on hydrophilic substrate "with plasma treatment" whereas P80 B20 -HPO film is obtained on hydrophobic substrate "without plasma treatment". Their "upper-dense and lower-porous" structural feature ensured the excellent combination of fast stimuli-response speed endowed by the porous structure and good mechanical strength enhanced by the upper dense surface. Both films are bidirectional water/acetone vapor-responsive materials, but their bending directions responding to the stimuli factors are completely opposite. This strategy showed great potential in the development of smart stimuli-responsive materials.
Collapse
Affiliation(s)
- Yanjiao Song
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| |
Collapse
|
6
|
Wang A, Liu Z, Xu L, Lou N, Li M, Liu L. Controllable click synthesis of poly(ionic liquid)s by surfactant-free ionic liquid microemulsions for selective dyes reduction. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Jiang Z, Liu Y, Shao Y, Zhao P, Yuan J, Wang H. Fine tuning the hydrophobicity of counter‐anions to tailor pore size in porous all‐poly(ionic liquid) membranes. POLYM INT 2019. [DOI: 10.1002/pi.5764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zhiping Jiang
- Key Laboratory of Functional Polymer Materials (Ministry of Education)College of Chemistry, Institute of Polymer Chemistry, Nankai University Tianjin China
| | - Yu‐ping Liu
- Key Laboratory of Biosensing and Molecular Recognition (Tianjin), and Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)College of Chemistry, Nankai University Tianjin China
| | - Yue Shao
- Key Laboratory of Functional Polymer Materials (Ministry of Education)College of Chemistry, Institute of Polymer Chemistry, Nankai University Tianjin China
| | - Peng Zhao
- Key Laboratory of Functional Polymer Materials (Ministry of Education)College of Chemistry, Institute of Polymer Chemistry, Nankai University Tianjin China
| | - Jiayin Yuan
- Department of Materials and Environmental ChemistryStockholm University Stockholm Sweden
| | - Hong Wang
- Key Laboratory of Functional Polymer Materials (Ministry of Education)College of Chemistry, Institute of Polymer Chemistry, Nankai University Tianjin China
| |
Collapse
|
8
|
Wang B, Sheng X, Zhou Y, Zhu Z, Liu Y, Sha X, Zhang C, Gao H. Functional mesoporous poly (ionic liquid) derived from P123: From synthesis to catalysis and alkylation of styrene and
o
‐xylene. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Beibei Wang
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 People's Republic of China
| | - Xiaoli Sheng
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 People's Republic of China
| | - Yuming Zhou
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 People's Republic of China
| | - Zhiying Zhu
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 People's Republic of China
| | - Yonghui Liu
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 People's Republic of China
| | - Xiao Sha
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 People's Republic of China
| | - Chao Zhang
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 People's Republic of China
| | - Huaying Gao
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 People's Republic of China
| |
Collapse
|
9
|
Marcinkowska A, Zgrzeba A, Lota G, Kopczyński K, Andrzejewska E. Ionogels by thiol-ene photopolymerization in ionic liquids: Formation, morphology and properties. POLYMER 2019. [DOI: 10.1016/j.polymer.2018.11.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|