1
|
Jia X, Li Y, Cao X, Bi X, Zhao W, Yao Z, Long G, Kan B, Guo Y, Li C, Wan X, Chen Y. Delicate Regulation of Central Substituents Boosts Organic Photovoltaic Performance of Dimeric Acceptors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405925. [PMID: 39225373 DOI: 10.1002/smll.202405925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Dimeric acceptors are expected to satisfy both excellent power conversion efficiency (PCE) and operational stability of organic solar cells (OSCs). However, comparing to highly planar and symmetrical monomer-like acceptors, the quite different steric/spatial configurations of dimeric acceptors affect device outcomes greatly. Herein, on basis of the same dimeric molecular platform that constructed by bridging central units of two monomer-like acceptor, diverse substituents (─OCH3 for D1, ─CH3 for D2, and ─CF3 for D3) are grafted on central units to regulate the three dimensions (3D) geometries of dimeric acceptors delicately. A systematic investigation reveals the substituent-dependent variation of energy level, absorption, and molecular packing behavior. Consequently, D2 acceptor, characteristic of more favorable configuration, affords a superior film morphology and charge transfer/transport dynamics in resulting OSCs, thus yielding an excellent PCE of 17.50% along with a good long-term stability. This work manifests the crucially important role of central substituents in constructing high-performance dimeric acceptors.
Collapse
Affiliation(s)
- Xinyuan Jia
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiangjian Cao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xingqi Bi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wenkai Zhao
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Zhaoyang Yao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Guankui Long
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Bin Kan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Yaxiao Guo
- State Key Laboratory of Separation Membranes and Membrane Processes and Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE), School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Chenxi Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiangjian Wan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yongsheng Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Impact of end-group modifications and planarity on BDP-based non-fullerene acceptors for high-performance organic solar cells by using DFT approach. J Mol Model 2022; 28:397. [PMID: 36416987 DOI: 10.1007/s00894-022-05382-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022]
Abstract
With the aim to enhance the photovoltaic properties of organic solar cells (OSCs), seven new non-fullerene acceptors (K1-K7) have been designed by end-group modifications of benzo[2,1-b:3,4-b']bis(4H-dithieno[3,2-b:2',3'-d]pyrrole) (BDP)-based small molecule "MH" (which is taken as our reference R) using computational techniques. To investigate their various optoelectronic parameters, DFT studies were applied using the B3LYP functional at 6-31G (d, p) basis set. The measurement of molecular planarity parameter (MPP) and span of deviation from plane (SDP) confirmed the planar geometries of these structures resulting in enhanced conjugation. Frontier molecular orbital (FMO) and density of states (DOS) analyses confirmed shorter band gaps of K1-K7 as compared to R, which promotes charge transfer in them. Optical properties demonstrated that these compounds have absorption range from 692 to 711 nm, quite better than the 684 nm of reference R. Molecular electrostatic potential (MEP) and Mulliken' charge distribution analysis also revealed the presence of epic charge separation in these structures. K1-K7 showed enhanced LHE values as compared to R putting emphasis on their better abilities to produce charge carrier by absorption of light. Reorganization energies showed that all newly designed compound could have better rate of charge carrier mobility (except K4) than R. Calculations of open-circuit voltage (Voc) and fill factor (FF) revealed its highest values for K3 and K4. Among newly designed molecules, K3 showed betterment in all its investigated parameters, making it a strong candidate to get enhanced power conversion efficiencies of OSCs.
Collapse
|
3
|
Zhang Y, Zhang C, Zhang A, Wu H, Ran G, Zhou Y, Wang X, Li C, Liu Y, Yang C, Tang Z, Zhang W, Bo Z. Designing High-Performance Nonfused Ring Electron Acceptors via Synergistically Adjusting Side Chains and Electron-Withdrawing End-Groups. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21287-21294. [PMID: 35484865 DOI: 10.1021/acsami.2c01190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Three nonfused ring electron acceptors, Hexyl-0F, Isopropyl-0F, and Isopropyl-2F, are designed and synthesized. Unlike Hexyl-0F, Isopropyl-0F with two sterically hindered 2,4,6-triisopropyl-phenyl groups is highly soluble, which provides a good opportunity for solution processability. Compared with Isopropyl-0F, Isopropyl-2F with fluorinated end-groups exhibits red-shifted absorption. Due to these synergistic adjustment, Isopropyl-2F-based devices displayed a high power conversion efficiency of 12.55%, higher than that of Isopropyl-0F (9.49%). The result demonstrates that the introduction of large steric substituents in the π-bridge units and electron-withdrawing end-groups plays a positive role in the construction of high-efficiency nonfused ring electron acceptors.
Collapse
Affiliation(s)
- Yan Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Cai'e Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Andong Zhang
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Hongbo Wu
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Yuanyuan Zhou
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaodong Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Cuihong Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yahui Liu
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Chuluo Yang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|
4
|
Zhang X, Qin L, Li L, Liu X, Wei Y, Huang H. A New Noncovalently Fused-Ring Electron Acceptor Based on 3,7-Dialkyloxybenzo[1,2-b:4,5-b']dithiophene for Low-Cost and High-Performance Organic Solar Cells. Macromol Rapid Commun 2022; 43:e2200085. [PMID: 35298056 DOI: 10.1002/marc.202200085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Indexed: 11/11/2022]
Abstract
The innovation of high-performance fused-ring electron acceptors (FREAs) has carried the field of organic solar cells (OSCs) towards a new stage of development. However, due to high synthetic complexity and production costs, FREAs may be not the most promising candidates for future commercialization applications. To address these disadvantages of FREAs, a series of low-cost acceptors, named as noncovalently fused-ring electron acceptors (NFREAs), has been successfully constructed by employing the strategy of noncovalently conformational locks (NoCLs). Herein, a novel NFREA (BDTO-4F) based on 3,7-dialkyloxybenzo[1,2-b:4,5-b']dithiophene is synthesized and fully characterized. Benefiting from the complementary absorption of the donor and acceptor, balanced charge transport, and favorable film morphology, J52:BDTO-4F based OSCs afforded a satisfied power conversion efficiency (PCE) of 12.09%, much higher than PBDB-T:BDTO-4F-based devices (8.30%). It is worth mentioning that BDTO-4F possesses a higher figure-of-merit (FOM) value of 55.65 in comparison with several representative FREAs based on a cost-efficiency evaluation. This work demonstrates the potential of the novel BDT derivative for constructing low-cost and high-performance NFREAs, providing a valuable insight on the materials design. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xin Zhang
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physic, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linqing Qin
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physic, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Laiyang Li
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physic, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingzheng Liu
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physic, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanan Wei
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physic, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physic, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Song X, Xu Y, Tao X, Gao X, Wu Y, Yu R, He Y, Tao Y. BODIPY Cored A-D-A'-D-A Type Nonfused-Ring Electron Acceptor for Efficient Polymer Solar Cells. Macromol Rapid Commun 2022; 43:e2100828. [PMID: 35032076 DOI: 10.1002/marc.202100828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Indexed: 11/11/2022]
Abstract
In this work, boron dipyrromethene (BODIPY) is for the first time employed as electron-deficient core (A') to construct an A-D-A'-D-A type nonfused-ring electron acceptor (NFREA) for polymer solar cells (PSCs). Among, cyclopentadithiophene (CPDT) and fluorinated dicyanoindanone (DFIC) are involved as electron-donating (D) bridges and terminal A groups, respectively. Bearing with the steric BODIPY core, tMBCIC exhibits twisted configuration with dihedral angles >45o between BODIPY and CPDT bridges. Thus, compared with the BODIPY-free planar A-D-D-A structured bCIC, reduced aggregation, weakened intramolecular D-A interactions with up-shifted LUMO by 0.4 eV as well as blue-shifted absorption by up to 150 nm is observed in tMBCIC. Moreover, owing to the intrinsic large molar extinction coefficient from BODIPY, promoted light-harvest ability is achieved for tMBCIC, particularly in its blend films. Therefore, PSCs by using PBDB-T as donor, tMBCIC as NFREA afford superior power conversion efficiency (PCE) of 9.22% and higher open-circuit voltage (Voc ) of 0.954 V compared to 4.47% and 0.739 V from bCIC-devices. Moreover, compared to other BODIPY-flanked electron acceptors (<5%) reported so far, BODIPY-cored tMBCIC realizes a remarkable progress in PCE. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaochen Song
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yuanyuan Xu
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xianwang Tao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xuyu Gao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yijing Wu
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Ruitao Yu
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yinming He
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Youtian Tao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| |
Collapse
|
6
|
Duncan DA, Blowey PJ, Lee TL, Allegretti F, Nielsen CB, Rochford LA. Quantitative Insights into the Adsorption Structure of Diindeno[1,2- a;1',2'- c]fluorene-5,10,15-trione (Truxenone) on a Cu(111) Surface Using X-ray Standing Waves. ACS OMEGA 2021; 6:34525-34531. [PMID: 34963937 PMCID: PMC8697368 DOI: 10.1021/acsomega.1c04799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
The adsorption structure of truxenone on Cu(111) was determined quantitatively using normal-incidence X-ray standing waves. The truxenone molecule was found to chemisorb on the surface, with all adsorption heights of the dominant species on the surface less than ∼2.5 Å. The phenyl backbone of the molecule adsorbs mostly parallel to the underlying surface, with an adsorption height of 2.32 ± 0.08 Å. The C atoms bound to the carbonyl groups are located closer to the surface at 2.15 ± 0.10 Å, a similar adsorption height to that of the chemisorbed O species; however, these O species were found to adsorb at two different adsorption heights, 1.96 ± 0.08 and 2.15 ± 0.06 Å, at a ratio of 1:2, suggesting that on average, one O atom per adsorbed truxenone molecule interacts more strongly with the surface. The adsorption geometry determined herein is an important benchmark for future theoretical calculations concerning both the interaction with solid surfaces and the electronic properties of a molecule with electron-accepting properties for applications in organic electronic devices.
Collapse
Affiliation(s)
- David A. Duncan
- Diamond
Light Source, Harwell Science and Innovation
Campus, Didcot OX11 0DE, U.K.
| | - Philip J. Blowey
- Diamond
Light Source, Harwell Science and Innovation
Campus, Didcot OX11 0DE, U.K.
- Physics
Department, University of Warwick, Coventry CV4 7AL, U.K.
| | - Tien-Lin Lee
- Diamond
Light Source, Harwell Science and Innovation
Campus, Didcot OX11 0DE, U.K.
| | - Francesco Allegretti
- Physics
Department E20, Technical University of
Munich, James Franck
Straße 1, D-85748 Garching, Germany
| | - Christian B. Nielsen
- Department
of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Luke A. Rochford
- Diamond
Light Source, Harwell Science and Innovation
Campus, Didcot OX11 0DE, U.K.
- Chemistry
Department, University of Warwick, Coventry CV4 7AL, U.K.
- Chemistry
Department, University of Birmingham, University Road, Birmingham B15 2TT, U.K.
| |
Collapse
|
7
|
Tuning the optoelectronic properties of ZOPTAN core-based derivatives by varying acceptors to increase efficiency of organic solar cell. J Mol Model 2021; 27:316. [PMID: 34628569 DOI: 10.1007/s00894-021-04922-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
In this theoretical study, quantum chemical analysis of five novel non-fullerene donor molecules designed from recently reported highly efficient (11.5%) donor molecule P2TBR, containing non-fused ring central thiophene-benzene-thiophene core, 2-D benzodithiophene donors, and end capped 3-methylrhodanine acceptors, has been performed to evaluate the photovoltaic parameters and their application in organic solar cells. These donor molecules consist of centrally introduced acrylonitrile acceptors in between thiophene-benzene-thiophene core of P2TBR, namely M1. Compounds M2-M5 were designed from M1 containing ZOPTAN core, through peripheral acceptor group modification by 2-methylenemalononitrile (M2), methyl 2-cyanoacrylate (M3), 2-(5,6-difluoro-2-methylene-3-oxo-2,3-dihydroinden-1-ylidene) malononitrile (M4), and 2-(3-methyl-5-methylene-4-oxothiazolidin-2-ylidene) malononitrile (M5). DFT and TD-DFT simulations of all molecules including reference were carried out using MPW1PW91 functional in conjunction with 6-31G (d, p) basis set. Optoelectronic properties, exciton dynamics, electron density distribution pattern, and charge mobility were further analyzed by absorption spectra, TDM plots, frontier molecular orbitals (FMO) analysis, and calculation of reorganization energies, respectively. Results reveal that central addition and end capped modification of acceptors in designed molecules proved to be effective strategy to finely tune the electronic and optical characteristics. Amongst all designed molecules, M4 exhibited improved opto-electronic parameters such as highest maximum absorption (695 nm) in chloroform, least band gap (2.24 eV), lowest values of λh (0.0034 eV), and λe (0.0054 eV) and lowermost binding energy (0.46 eV), because of mutual effect of extended pi-conjugation and significant electron pulling nature of terminal acceptors. Moreover, higher dipole moment, lower values of hole reorganization energy, and improved Voc of designed molecules than reference (R) make them efficient donors to enhance PCE of photovoltaic materials.
Collapse
|
8
|
|
9
|
Soultati A, Verykios A, Panagiotakis S, Armadorou KK, Haider MI, Kaltzoglou A, Drivas C, Fakharuddin A, Bao X, Yang C, Yusoff ARBM, Evangelou EK, Petsalakis I, Kennou S, Falaras P, Yannakopoulou K, Pistolis G, Argitis P, Vasilopoulou M. Suppressing the Photocatalytic Activity of Zinc Oxide Electron-Transport Layer in Nonfullerene Organic Solar Cells with a Pyrene-Bodipy Interlayer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21961-21973. [PMID: 32364365 DOI: 10.1021/acsami.0c03147] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic solar cells based on nonfullerene acceptors have recently witnessed a significant rise in their power conversion efficiency values. However, they still suffer from severe instability issues, especially in an inverted device architecture based on the zinc oxide bottom electron transport layers. In this work, we insert a pyrene-bodipy donor-acceptor dye as a thin interlayer at the photoactive layer/zinc oxide interface to suppress the degradation reaction of the nonfullerene acceptor caused by the photocatalytic activity of zinc oxide. In particular, the pyrene-bodipy-based interlayer inhibits the direct contact between the nonfullerene acceptor and zinc oxide hence preventing the decomposition of the former by zinc oxide under illumination with UV light. As a result, the device photostability was significantly improved. The π-π interaction between the nonfullerene acceptor and the bodipy part of the interlayer facilitates charge transfer from the nonfullerene acceptor toward pyrene, which is followed by intramolecular charge transfer to bodipy part and then to zinc oxide. The bodipy-pyrene modified zinc oxide also increased the degree of crystallization of the photoactive blend and the face-on stacking of the polymer donor molecules within the blend hence contributing to both enhanced charge transport and increased absorption of the incident light. Furthermore, it decreased the surface work function as well as surface energy of the zinc oxide film all impacting in improved power conversion efficiency values of the fabricated cells with champion devices reaching values up to 9.86 and 11.80% for the fullerene and nonfullerene-based devices, respectively.
Collapse
Affiliation(s)
- Anastasia Soultati
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, Agia Paraskevi, Athens15310, Greece
| | - Apostolis Verykios
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, Agia Paraskevi, Athens15310, Greece
- Department of Physics, University of Patras, Patras 26504, Greece
| | - Stylianos Panagiotakis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, Agia Paraskevi, Athens15310, Greece
| | - Konstantina-Kalliopi Armadorou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, Agia Paraskevi, Athens15310, Greece
- Department of Chemistry, National and Kapodestrian University of Athens, Zografos 15771, Greece
| | - Muhammad Irfan Haider
- Department of Physics, University of Konstanz, Konstanz 78457, Germany
- Department of Chemistry, University of Wah, Wah 47040, Pakistan
| | - Andreas Kaltzoglou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, Agia Paraskevi, Athens15310, Greece
| | - Charalampos Drivas
- Department of Chemical Engineering University of Patras, Patras 26504, Greece
| | - Azhar Fakharuddin
- Department of Physics, University of Konstanz, Konstanz 78457, Germany
| | - Xichang Bao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Chunming Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Abd Rashid Bin Mohd Yusoff
- Department of Physics, Vivian Tower, Singleton Park, Swansea University, Swansea SA2 8PP , United Kingdom
| | | | - Ioannis Petsalakis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Vas. Constantinou Avenue 48, Athens 11635, Greece
| | - Stella Kennou
- Department of Chemical Engineering University of Patras, Patras 26504, Greece
| | - Polycarpos Falaras
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, Agia Paraskevi, Athens15310, Greece
| | - Konstantina Yannakopoulou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, Agia Paraskevi, Athens15310, Greece
| | - George Pistolis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, Agia Paraskevi, Athens15310, Greece
| | - Panagiotis Argitis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, Agia Paraskevi, Athens15310, Greece
| | - Maria Vasilopoulou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, Agia Paraskevi, Athens15310, Greece
| |
Collapse
|
10
|
Zhang J, Peng S, Wei Y, Zheng S. A theoretical study of the absorption spectra of electron-deficient pentacene derivatives using DFT and TDDFT. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 225:117480. [PMID: 31479915 DOI: 10.1016/j.saa.2019.117480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Non-fullerene acceptor based organic bulk heterojunction solar cells have been a hot topic because their power conversion efficiencies have been up to 16.35%. Functionalized 6,13‑bis (trimethylsilyl alkynyl) pentacenes with strong electron withdrawing groups, which can be easily modified to improve charge transport properties and film morphology, seem to be promising soluble non-fullerene pentacene-based organic acceptors. But how the substitutions of electron withdrawing groups influence their electronic structures, then change the absorption spectra and power conversion efficiencies, is still not clear. In this paper, we utilize density functional theory and time-dependent density functional theory to study the effects of substitutions of different electron withdrawing groups (CN, CF3, NO2) and different positions of these groups in 6,13‑bis (trimethylsilyl alkyl) pentacene molecule on their physical and optical properties. We find that the experimental power conversion efficiencies are positively/negatively correlated with calculated dipole moments/exciton binding energies of these functionalized molecules. The computed results indicate that the molecules substituted with CN group have much larger dipole moment than the others. For the same electron withdrawing group, the dipole moment at the R2 position is generally larger than that at the R1 position. Furthermore, we find that the calculated exciton binding energy of these molecules functionalized at the R2 position is lower than that at the R1 position. In addition, the result of absorption spectra confirm that these functionalized 6,13‑bis (trimethylsilyl alkynyl) pentacenes have stronger absorption strength than C60 in the both visible and the ultraviolet regions.
Collapse
Affiliation(s)
- Jie Zhang
- School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, China
| | - Suoping Peng
- School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, China
| | - Yucong Wei
- School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, China
| | - Shaohui Zheng
- School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, China.
| |
Collapse
|
11
|
Wang X, Zhang Z, Guo J, Liu C, Hu Y, Xiao H, Xie S, Wu J, Zeng Z. Ring-expansion approach towards extended asymmetric benzopentafulvalenes: overcrowded olefinic structure and chain length-dependent properties. Org Chem Front 2020. [DOI: 10.1039/d0qo00602e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A strain energy-induced ring-expansion is described to construct novel asymmetric benzopentafulvalenes precisely, which show chain length-dependent physical properties and air-stable ambipolar carrier transport.
Collapse
Affiliation(s)
- Xinhao Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- P. R. China
| | - Zihong Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- P. R. China
| | - Jing Guo
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education
- School of Physics and Electronics
- Hunan University
- Changsha 410082
- P. R. China
| | - Chunyan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- P. R. China
| | - Yuanyuan Hu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education
- School of Physics and Electronics
- Hunan University
- Changsha 410082
- P. R. China
| | - Huiping Xiao
- School of Materials Science and Engineering
- Nanchang Hangkong University
- Nanchang 330063
- P. R. China
| | - Sheng Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- P. R. China
| | - Jishan Wu
- Department of Chemistry
- National University of Singapore
- Singapore
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- P. R. China
| |
Collapse
|
12
|
Wienhold KS, Körstgens V, Grott S, Jiang X, Schwartzkopf M, Roth SV, Müller-Buschbaum P. Effect of Solvent Additives on the Morphology and Device Performance of Printed Nonfullerene Acceptor Based Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42313-42321. [PMID: 31644257 DOI: 10.1021/acsami.9b16784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Printing of active layers of high-efficiency organic solar cells and morphology control by processing with varying solvent additive concentrations are important to realize real-world use of bulk-heterojunction photovoltaics as it enables both up-scaling and optimization of the device performance. In this work, active layers of the conjugated polymer with benzodithiophene units PBDB-T-SF and the nonfullerene small molecule acceptor IT-4F are printed using meniscus guided slot-die coating. 1,8-Diiodooctane (DIO) is added to optimize the power conversion efficiency (PCE). The effect on the inner nanostructure and surface morphology of the material is studied for different solvent additive concentrations with grazing incidence small-angle X-ray scattering (GISAXS), grazing incidence wide-angle X-ray scattering (GIWAXS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Optical properties are studied with photoluminescence (PL), UV/vis absorption spectroscopy, and external quantum efficiency (EQE) measurements and correlated to the corresponding PCEs. The addition of 0.25 vol % DIO enhances the average PCE from 3.5 to 7.9%, whereas at higher concentrations the positive effect is less pronounced. A solar cell performance of 8.95% is obtained for the best printed device processed with an optimum solvent additive concentration. Thus, with the large-scale preparation method printing similarly well working solar cells can be realized as with the spin-coating method.
Collapse
Affiliation(s)
- Kerstin S Wienhold
- Physik-Department, Lehrstuhl für Funktionelle Materialien , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Volker Körstgens
- Physik-Department, Lehrstuhl für Funktionelle Materialien , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Sebastian Grott
- Physik-Department, Lehrstuhl für Funktionelle Materialien , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Xinyu Jiang
- Physik-Department, Lehrstuhl für Funktionelle Materialien , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
| | | | - Stephan V Roth
- Deutsches Elektronen-Synchrotron (DESY) , Notkestraße 85 , 22607 Hamburg , Germany
- Department of Fibre and Polymer Technology , KTH , Teknikringen 56-58 , SE-100 44 Stockholm , Sweden
| | - Peter Müller-Buschbaum
- Physik-Department, Lehrstuhl für Funktionelle Materialien , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
- Heinz Maier-Leibnitz-Zentrum , Lichtenbergstr. 1 , 85748 Garching , Germany
| |
Collapse
|
13
|
Pan QQ, Zhao ZW, Wu Y, Geng Y. Insight into the optoelectronic characteristics of diimide-based acceptors in organic solar cells by performing DFT calculation and molecular dynamics simulation. J Mol Graph Model 2019; 94:107488. [PMID: 31707196 DOI: 10.1016/j.jmgm.2019.107488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022]
Abstract
In order to compare the main difference of two diimide derivatives on the modulation of electronic and optical properties of P3HT-based organic solar cell, the density functional theory and molecular dynamics simulations were implemented to achieve elementary data on geometrical structure, molecular orbital, open-circuit voltage, absorption spectra, energetic driving force, and interface parameter of P3HT/D1 and P3HT/D2 systems. According to the investigation, P3HT/D1 system not only exhibits higher open circuit voltage and enough energetic driving force than P3HT/D2 system, but also possesses low-lying LUMO +1 orbital which can favor the exciton separation efficiency. Moreover, on the basis of some typical interface models choose from MD simulation, the estimation of the interface rate manifests that the P3HT/D1 interface possesses the smaller charge recombination rates and larger charge separation rates than those of the P3HT/D2 interface. It is expect that this work can provide certain guidelines for the further develop the performance of organic solar cell. We hope this work can further study on non-fullerene acceptor materials as a certain guides.
Collapse
Affiliation(s)
- Qing-Qing Pan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Collaborative Innovation Center of Optical Materials and Chemistry, Weixing Road, Jilin, China
| | - Zhi-Wen Zhao
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Chang Chun, 130024, Jilin, China
| | - Yong Wu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, China
| | - Yun Geng
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Chang Chun, 130024, Jilin, China.
| |
Collapse
|
14
|
Zhu R, Wang Z, Gao Y, Zheng Z, Guo F, Gao S, Lu K, Zhao L, Zhang Y. Chain Engineering of Benzodifuran‐Based Wide‐Bandgap Polymers for Efficient Non‐Fullerene Polymer Solar Cells. Macromol Rapid Commun 2019; 40:e1900227. [DOI: 10.1002/marc.201900227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/20/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Ruoxi Zhu
- School of Materials Science and EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Zhen Wang
- CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
| | - Yueyue Gao
- School of Materials Science and EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Zhi Zheng
- School of Materials Science and EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Fengyun Guo
- School of Materials Science and EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Shiyong Gao
- School of Materials Science and EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Kun Lu
- CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
| | - Liancheng Zhao
- School of Materials Science and EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Yong Zhang
- School of Materials Science and EngineeringHarbin Institute of Technology Harbin 150001 China
- School of Materials Science and EngineeringZhengzhou University Zhengzhou 450001 China
| |
Collapse
|
15
|
Chen J, Wang L, Yang J, Yang K, Uddin MA, Tang Y, Zhou X, Liao Q, Yu J, Liu B, Woo HY, Guo X. Backbone Conformation Tuning of Carboxylate-Functionalized Wide Band Gap Polymers for Efficient Non-Fullerene Organic Solar Cells. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02360] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jianhua Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Jie Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Kun Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | | | - Yumin Tang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Xin Zhou
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Qiaogan Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Jianwei Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Bin Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul 136-713, Republic of Korea
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| |
Collapse
|
16
|
Shivanna R, Rajaram S, Narayan KS. Role of Charge-Transfer State in Perylene-Based Organic Solar Cells. ChemistrySelect 2018. [DOI: 10.1002/slct.201801134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ravichandran Shivanna
- Chemistry and Physics of Materials Unit; Jawaharlal Nehru Centre for Advanced Scientific Research; Bangalore 560064 India
- Optoelectronics Group; Cavendish Laboratory; University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE; U.K
| | - Sridhar Rajaram
- International Centre for Materials Science; Jawaharlal Nehru Centre for Advanced Scientific Research; Bangalore 560064 India
| | - K. S. Narayan
- Chemistry and Physics of Materials Unit; Jawaharlal Nehru Centre for Advanced Scientific Research; Bangalore 560064 India
- School of Advanced Materials; Jawaharlal Nehru Centre for Advanced Scientific Research; Bangalore 560064 India
| |
Collapse
|
17
|
You F, Zhou X, Huang H, Liu Y, Liu S, Shao J, Zhao B, Qin T, Huang W. N-Annulated perylene diimide derivatives as non-fullerene acceptors for solution-processed solar cells with an open-circuit voltage of up to 1.14 V. NEW J CHEM 2018. [DOI: 10.1039/c8nj02566e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three different non-fullerene small molecular acceptors containing N-annulated perylene diimide, named di-PNR, TPA-PNR and EDOT-PNR, were successfully designed and synthesized for photovoltaic applications.
Collapse
Affiliation(s)
- Fei You
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing 211816
- China
| | - Xingbao Zhou
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing 211816
- China
| | - Hongyan Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing 211816
- China
| | - You Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing 211816
- China
| | - Sizhou Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing 211816
- China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing 211816
- China
| | - Baomin Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications
- Nanjing 210023
| | - Tianshi Qin
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing 211816
- China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing 211816
- China
| |
Collapse
|