1
|
Wu B, He X, Guo X, Deng F, Sun H, Pan Y, Duan Y, Zhao Z. Double-Helix Electrode Ion Funnel: A New Ion Funnel Design with an Extended Mass Range. Anal Chem 2025; 97:1612-1619. [PMID: 39801207 DOI: 10.1021/acs.analchem.4c04414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The development of an atmospheric pressure interface (API) with a high ion transfer efficiency and wide mass range is advantageous for the performance improvement of mass spectrometry (MS) instruments. In this work, a novel ion guide, namely, the double-helix electrode ion funnel (DHE-IF), has been developed to enhance the ion transmission over a wide mass range in the rough vacuum region. The DHE-IF consists of two funnel-shaped helix electrodes. There are almost no potential "traps" along the central axis of DHE-IF due to the continuous double-helix electrode structure compared to the stacked ring ion funnel. The electrode design of the DHE-IF assembly was guided by ion trajectory simulations. After being fabricated, DHE-IF was integrated into an ESI-TOF-MS platform for tests. A conventional stacked ring ion funnel (IF) was also tested for comparison. The experimental results showed that DHE-IF extended the transmission window of the IF and improved the efficiency of the simultaneous transferring of low and medium m/z ions. In addition, the intensities of caffeine ions (m/z = 195) and reserpine ions (m/z = 609) were enhanced by more than 50% and 10%, respectively. These values were compared with the results obtained by the IF. The DHE-IF is expected to be widely used as an ion import device in MS instruments, which is due to its improved performance and advantages in, e.g., integration and power supply design.
Collapse
Affiliation(s)
- Bin Wu
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xingliang He
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xing Guo
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Fulong Deng
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Hongen Sun
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yi Pan
- Institute of Chemistry, National Institute of Measurement and Testing Technology, Chengdu 610021, People's Republic of China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
- Aliben Science & Technology, Chengdu 611930, People's Republic of China
| | - Zhongjun Zhao
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
- Aliben Science & Technology, Chengdu 611930, People's Republic of China
| |
Collapse
|
2
|
Mase C, Sueur M, Lavanant H, Rüger CP, Giusti P, Afonso C. Ion Source Complementarity for Characterization of Complex Organic Mixtures Using Fourier Transform Mass Spectrometry: A Review. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39400408 DOI: 10.1002/mas.21910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
Complex organic mixtures are found in many areas of research, such as energy, environment, health, planetology, and cultural heritage, to name but a few. However, due to their complex chemical composition, which holds an extensive potential of information at the molecular level, their molecular characterization is challenging. In mass spectrometry, the ionization step is the key step, as it determines which species will be detected. This review presents an overview of the main ionization sources employed to characterize these kinds of samples in Fourier transform mass spectrometry (FT-MS), namely electrospray (ESI), atmospheric pressure photoionization (APPI), atmospheric pressure chemical ionization (APCI), atmospheric pressure laser ionization (APLI), and (matrix-assisted) laser desorption ionization ((MA)LDI), and their complementarity in the characterization of complex organic mixtures. First, the ionization techniques are examined in the common direct introduction (DI) usage. Second, these approaches are discussed in the context of coupling chromatographic techniques such as gas chromatography, liquid chromatography, and supercritical fluid chromatography.
Collapse
Affiliation(s)
- Charlotte Mase
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, Rouen, France
- International Joint Laboratory-iC2MC: Complex Matrices Molecular Characterization, TRTG, Harfleur, France
- TotalEnergies OneTech, TotalEnergies Research & Technology Gonfreville, Harfleur, France
| | - Maxime Sueur
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, Rouen, France
- International Joint Laboratory-iC2MC: Complex Matrices Molecular Characterization, TRTG, Harfleur, France
| | - Hélène Lavanant
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, Rouen, France
- International Joint Laboratory-iC2MC: Complex Matrices Molecular Characterization, TRTG, Harfleur, France
| | - Christopher Paul Rüger
- International Joint Laboratory-iC2MC: Complex Matrices Molecular Characterization, TRTG, Harfleur, France
- Joint Mass Spectrometry Centre, University of Rostock, Rostock, Germany
| | - Pierre Giusti
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, Rouen, France
- International Joint Laboratory-iC2MC: Complex Matrices Molecular Characterization, TRTG, Harfleur, France
- TotalEnergies OneTech, TotalEnergies Research & Technology Gonfreville, Harfleur, France
| | - Carlos Afonso
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, Rouen, France
- International Joint Laboratory-iC2MC: Complex Matrices Molecular Characterization, TRTG, Harfleur, France
| |
Collapse
|
3
|
Gupta I, Badrzadeh F, Tsentalovich Y, Gaykalova DA. Connecting the dots: investigating the link between environmental, genetic, and epigenetic influences in metabolomic alterations in oral squamous cell carcinoma. J Exp Clin Cancer Res 2024; 43:239. [PMID: 39169426 PMCID: PMC11337877 DOI: 10.1186/s13046-024-03141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) accounts for around 90% of all oral cancers and is the eighth most common cancer worldwide. Despite progress in managing OSCC, the overall prognosis remains poor, with a survival rate of around 50-60%, largely due to tumor size and recurrence. The challenges of late-stage diagnosis and limitations in current methods emphasize the urgent need for less invasive techniques to enable early detection and treatment, crucial for improving outcomes in this aggressive form of oral cancer. Research is currently aimed at unraveling tumor-specific metabolite profiles to identify candidate biomarkers as well as discover underlying pathways involved in the onset and progression of cancer that could be used as new targets for diagnostic and therapeutic purposes. Metabolomics is an advanced technological approach to identify metabolites in different sample types (biological fluids and tissues). Since OSCC promotes metabolic reprogramming influenced by a combination of genetic predisposition and environmental factors, including tobacco and alcohol consumption, and viral infections, the identification of distinct metabolites through screening may aid in the diagnosis of this condition. Moreover, studies have shown the use of metabolites during the catalysis of epigenetic modification, indicating a link between epigenetics and metabolism. In this review, we will focus on the link between environmental, genetic, and epigenetic influences in metabolomic alterations in OSCC. In addition, we will discuss therapeutic targets of tumor metabolism, which may prevent oral tumor growth, metastasis, and drug resistance.
Collapse
Affiliation(s)
- Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Fariba Badrzadeh
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Yuri Tsentalovich
- International tomography center CB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
- Institute for Genome Sciences, 670 West Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
4
|
Hu S, Habib A, Xiong W, Chen L, Bi L, Wen L. Mass Spectrometry Imaging Techniques: Non-Ambient and Ambient Ionization Approaches. Crit Rev Anal Chem 2024:1-54. [PMID: 38889072 DOI: 10.1080/10408347.2024.2362703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Molecular information can be acquired from sample surfaces in real time using a revolutionary molecular imaging technique called mass spectrometry imaging (MSI). The technique can concurrently provide high spatial resolution information on the spatial distribution and relative proportion of many different compounds. Thus, many scientists have been drawn to the innovative capabilities of the MSI approach, leading to significant focus in various fields during the past few decades. This review describes the sampling protocol, working principle and applications of a few non-ambient and ambient ionization mass spectrometry imaging techniques. The non-ambient techniques include secondary ionization mass spectrometry and matrix-assisted laser desorption ionization, while the ambient techniques include desorption electrospray ionization, laser ablation electrospray ionization, probe electro-spray ionization, desorption atmospheric pressure photo-ionization and femtosecond laser desorption ionization. The review additionally addresses the advantages and disadvantages of ambient and non-ambient MSI techniques in relation to their suitability, particularly for biological samples used in tissue diagnostics. Last but not least, suggestions and conclusions are made regarding the challenges and future prospects of MSI.
Collapse
Affiliation(s)
- Shundi Hu
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Ahsan Habib
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Wei Xiong
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - La Chen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Lei Bi
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Luhong Wen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| |
Collapse
|
5
|
Argamino CRA, Sebben BG, da Costa G, Towers S, Bogush A, Stevanovic S, Godoi RHM, Kourtchev I. Development and validation of a GC Orbitrap-MS method for the analysis of phthalate esters (PAE) and bis(2-ethylhexyl)adipate (DEHA) in atmospheric particles and its application for screening PM 2.5 from Curitiba, Brazil. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1579-1592. [PMID: 38407576 DOI: 10.1039/d3ay02197a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Phthalates or phthalic acid esters (PAE) and bis(2-ethylhexyl)adipate (DEHA) are ubiquitous chemicals often used as plasticisers and additives in many industrial products and are classified as both persistent organic pollutants (POPs) and new emerging pollutants (NEPs). Exposure to these chemicals, especially through inhalation, is linked to a wide range of negative health effects, including endocrine disruption. Air particulate matter (PM) with an aerodynamic diameter ≤ 2.5 μm can be enriched with PAEs and DEHA and if inhaled can cause multi-system human toxicity. Therefore, proper monitoring of PAEs and DEHA in PM is required to assess human exposure to these pollutants. In this work, we developed and validated a new and sensitive gas-chromatography high-resolution mass spectrometry (GC-HRMS) method for targeted analysis of PAEs including dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), bis(2-ethylhexyl)adipate (DEHA), bis(2-ethylhexyl)phthalate (DEHP), di-n-octyl phthalate (DOP), in PM. Analytical aspects including sample preparation steps and GC-HRMS parameters, e.g., quadrupole isolation window, to enhance method sensitivity have been assessed. The estimated limit of detection (LODs) of target PAEs and DEHA ranged from 5.5 to 17 pg μL-1, allowing their trace-level detection in PM. Extraction efficiencies of 78-101% were obtained for the target compounds. Low DMP and DEP extraction efficiencies from the spiked filter substrates indicated that significant losses of higher volatility PAEs can occur during the sample collection when filter-based techniques are used. This work is the first targeted method based on GC-Orbitrap MS for PAEs and DEHA in environmental samples. The validated method was successfully applied for the targeted analysis of PAEs and DEHA in PM2.5 samples from the eighth most populous city in Brazil, Curitiba. This work is the first to report DBP, DEHA, DEHP, and DOP in urban PM from Brazil. The observed concentrations of PAEs (up to 29 ng m-3) in PM2.5 from Curitiba may not represent the extent of pollution by these toxic compounds since the analysed samples were collected during a COVID-19 restriction when anthropogenic activities were reduced.
Collapse
Affiliation(s)
- Cristian Ryan A Argamino
- Centre for Agroecology, Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton-on-Dunsmore, CV8 3LG, UK.
- School of Engineering, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3220, Australia
| | - Bruna G Sebben
- Environmental Engineering Department, Federal University of Parana (UFPR), Curitiba, PR, Brazil
| | - Gabriela da Costa
- Environmental Engineering Department, Federal University of Parana (UFPR), Curitiba, PR, Brazil
| | - Sam Towers
- Centre for Agroecology, Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton-on-Dunsmore, CV8 3LG, UK.
| | - Anna Bogush
- Centre for Agroecology, Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton-on-Dunsmore, CV8 3LG, UK.
| | - Svetlana Stevanovic
- School of Engineering, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3220, Australia
| | - Ricardo H M Godoi
- Environmental Engineering Department, Federal University of Parana (UFPR), Curitiba, PR, Brazil
| | - Ivan Kourtchev
- Centre for Agroecology, Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton-on-Dunsmore, CV8 3LG, UK.
| |
Collapse
|
6
|
Goracci L, Tiberi P, Di Bona S, Bonciarelli S, Passeri GI, Piroddi M, Moretti S, Volpi C, Zamora I, Cruciani G. MARS: A Multipurpose Software for Untargeted LC-MS-Based Metabolomics and Exposomics. Anal Chem 2024; 96:1468-1477. [PMID: 38236168 PMCID: PMC10831794 DOI: 10.1021/acs.analchem.3c03620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
Untargeted metabolomics is a growing field, in which recent advances in high-resolution mass spectrometry coupled with liquid chromatography (LC-MS) have facilitated untargeted approaches as a result of improvements in sensitivity, mass accuracy, and resolving power. However, a very large amount of data are generated. Consequently, using computational tools is now mandatory for the in-depth analysis of untargeted metabolomics data. This article describes MetAbolomics ReSearch (MARS), an all-in-one vendor-agnostic graphical user interface-based software applying LC-MS analysis to untargeted metabolomics. All of the analytical steps are described (from instrument data conversion and processing to statistical analysis, annotation/identification, quantification, and preliminary biological interpretation), and tools developed to improve annotation accuracy (e.g., multiple adducts and in-source fragmentation detection, trends across samples, and the MS/MS validator) are highlighted. In addition, MARS allows in-house building of reference databases, to bypass the limits of freely available MS/MS spectra collections. Focusing on the flexibility of the software and its user-friendliness, which are two important features in multipurpose software, MARS could provide new perspectives in untargeted metabolomics data analysis.
Collapse
Affiliation(s)
- Laura Goracci
- Department
of Chemistry, Biology and Biotechnology, Universita degli Studi di Perugia, via Elce di Sotto 8, Perugia 06123, Italy
| | - Paolo Tiberi
- Molecular
Discovery Ltd., Centennial
Park, Borehamwood, Hertfordshire WD6 4PJ, U.K.
| | - Stefano Di Bona
- Molecular
Horizon, Via Montelino,
30, Bettona (PG) 06084, Italy
| | - Stefano Bonciarelli
- Molecular
Discovery Ltd., Centennial
Park, Borehamwood, Hertfordshire WD6 4PJ, U.K.
| | | | - Marta Piroddi
- Molecular
Horizon, Via Montelino,
30, Bettona (PG) 06084, Italy
| | - Simone Moretti
- Molecular
Horizon, Via Montelino,
30, Bettona (PG) 06084, Italy
| | - Claudia Volpi
- Department
of Medicine and Surgery, P.le Gambuli 1, Perugia 06129, Italy
| | - Ismael Zamora
- Mass
Analytica, Rambla de
celler 113, Sant Cugat del Vallés 08173, Spain
| | - Gabriele Cruciani
- Department
of Chemistry, Biology and Biotechnology, Universita degli Studi di Perugia, via Elce di Sotto 8, Perugia 06123, Italy
| |
Collapse
|
7
|
Calabrese V, Schmitz-Afonso I, Riah-Anglet W, Trinsoutrot-Gattin I, Pawlak B, Afonso C. Direct introduction MALDI FTICR MS based on dried droplet deposition applied to non-targeted metabolomics on Pisum Sativum root exudates. Talanta 2023; 253:123901. [PMID: 36088848 DOI: 10.1016/j.talanta.2022.123901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/13/2022]
Abstract
Non-targeted metabolomic approaches based on direct introduction (DI) through a soft ionization source are nowadays used for large-scale analysis and wide cover-up of metabolites in complex matrices. When coupled with ultra-high-resolution Fourier-Transform ion cyclotron resonance (FTICR MS), DI is generally performed through electrospray (ESI), which, despite the great analytical throughput, can suffer of matrix effects due to residual salts or charge competitors. In alternative, matrix assisted laser desorption ionization (MALDI) coupled with FTICR MS offers relatively high salt tolerance but it is mainly used for imaging of small molecule within biological tissues. In this study, we report a systematic evaluation on the performance of direct introduction ESI and MALDI coupled with FTICR MS applied to the analysis of root exudates (RE), a complex mixture of metabolites released from plant root tips and containing a relatively high salt concentration. Classic dried droplet deposition followed by screening of best matrices and ratio allowed the selection of high ranked conditions for non-targeted metabolomics on RE. Optimization of MALDI parameters led to improved reproducibility and precision. A RE desalted sample was used for comparison on ionization efficiency of the two sources and ion enhancement at high salinity was highlighted in MALDI by spiking desalted solution with inorganic salts. Application of a true lyophilized RE sample exhibited the complementarity of the two sources and the ability of MALDI in the detection of undisclosed metabolites suffering of matrix effects in ESI mode.
Collapse
Affiliation(s)
- Valentina Calabrese
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 Rue Tesnières, 76821, Mont-Saint-Aignan, Cedex, France
| | - Isabelle Schmitz-Afonso
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 Rue Tesnières, 76821, Mont-Saint-Aignan, Cedex, France.
| | - Wassila Riah-Anglet
- UniLaSalle, AGHYLE Research Unit UP 2018.C101, Rouen Team, 76134 Mont-Saint Aignan, SFR Normandie Végétal FED 4277, 76000, Rouen, France
| | - Isabelle Trinsoutrot-Gattin
- UniLaSalle, AGHYLE Research Unit UP 2018.C101, Rouen Team, 76134 Mont-Saint Aignan, SFR Normandie Végétal FED 4277, 76000, Rouen, France
| | - Barbara Pawlak
- Laboratoire GlycoMEV UR 4358, Université de Rouen Normandie, SFR Normandie Végétal FED 4277, 76000, Rouen, France
| | - Carlos Afonso
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 Rue Tesnières, 76821, Mont-Saint-Aignan, Cedex, France
| |
Collapse
|
8
|
Liu Q, Du J, Li Y, Peng G, Wang X, Zhong Y, Du R. Uncovering nasopharyngeal carcinoma from chronic rhinosinusitis and healthy subjects using routine medical tests via machine learning. PLoS One 2022; 17:e0274263. [PMID: 36083977 PMCID: PMC9462828 DOI: 10.1371/journal.pone.0274263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common types of cancers in South China and Southeast Asia. Clinical data has shown that early detection is essential for improving treatment effectiveness and survival rate. Unfortunately, because the early symptoms of NPC are rather minor and similar to that of diseases such as Chronic Rhinosinusitis (CRS), early detection is a challenge. This paper proposes using machine learning methods to detect NPC using routine medical test data, namely Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN), k-Nearest-Neighbor (KNN) and Logistic Regression (LR). We collected a dataset containing 523 newly diagnosed NPC patients before treatment, 501 newly diagnosed CRS patients before treatment as well as 600 healthy controls. The routine medical test data including age, gender, blood test features, liver function test features, and urine sediment test features. For comparison, we also used data from Epstein-Barr Virus (EBV) antibody tests, which is a specialized test not included among routine medical tests. In our first test, all four methods were tested on classifying NPC vs CRS vs controls; RF gives the best overall performance. Using only routine medical test data, it gives an accuracy of 83.1%, outperforming LR by 12%. In our second test, using only routine medical test data, when classifying NPC vs non-NPC (i.e. CRS or controls), RF achieves an accuracy of 88.2%. In our third test, when classifying NPC vs. controls, RF using only routine test data achieves an accuracy significantly better than RF using only EBV antibody data. Finally, in our last test, RF trained with NPC vs controls, using routine test data only, continued to perform well on an entirely separate dataset. This is a promising result because preliminary NPC detection using routine medical data is easy and inexpensive to implement. We believe this approach will play an important role in the detection and treatment of NPC in the future.
Collapse
Affiliation(s)
- Qi Liu
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Jinyang Du
- Dept. of Statistics, Chinese University of Hong Kong, Guangzhou, Hong Kong SAR, China
| | - Yuge Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Guiyuan Peng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuefang Wang
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Yong Zhong
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Ruxu Du
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Barco S, Lavarello C, Cangelosi D, Morini M, Eva A, Oneto L, Uva P, Tripodi G, Garaventa A, Conte M, Petretto A, Cangemi G. Untargeted LC-HRMS Based-Plasma Metabolomics Reveals 3-O-Methyldopa as a New Biomarker of Poor Prognosis in High-Risk Neuroblastoma. Front Oncol 2022; 12:845936. [PMID: 35756625 PMCID: PMC9231354 DOI: 10.3389/fonc.2022.845936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial malignant tumor in children. Although the survival rate of NB has improved over the years, the outcome of NB still remains poor for over 30% of cases. A more accurate risk stratification remains a key point in the study of NB and the availability of novel prognostic biomarkers of "high-risk" at diagnosis could help improving patient stratification and predicting outcome. In this paper we show a biomarker discovery approach applied to the plasma of 172 NB patients. Plasma samples from a first cohort of NB patients and age-matched healthy controls were used for untargeted metabolomics analysis based on high-resolution mass spectrometry (HRMS). Differential expression analysis highlighted a number of metabolites annotated with a high degree of identification. Among them, 3-O-methyldopa (3-O-MD) was validated in a second cohort of NB patients using a targeted metabolite profiling approach and its prognostic potential was also analyzed by survival analysis on patients with 3 years follow-up. High expression of 3-O-MD was associated with worse prognosis in the subset of patients with stage M tumor (log-rank p < 0.05) and, among them, it was confirmed as a prognostic factor able to stratify high-risk patients older than 18 months. 3-O-MD might be thus considered as a novel prognostic biomarker of NB eligible to be included at diagnosis among catecholamine metabolite panels in prospective clinical studies. Further studies are warranted to exploit other potential biomarkers highlighted using our approach.
Collapse
Affiliation(s)
- Sebastiano Barco
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Chiara Lavarello
- Core Facilities Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Davide Cangelosi
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Martina Morini
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Luca Oneto
- DIBRIS, University of Genoa, Genoa, Italy
| | - Paolo Uva
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gino Tripodi
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alberto Garaventa
- Department of Pediatric Oncology and Hematology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Massimo Conte
- Department of Pediatric Oncology and Hematology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Petretto
- Core Facilities Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giuliana Cangemi
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
10
|
Carlo MJ, Patrick AL. Infrared multiple photon dissociation (IRMPD) spectroscopy and its potential for the clinical laboratory. J Mass Spectrom Adv Clin Lab 2022; 23:14-25. [PMID: 34993503 PMCID: PMC8713122 DOI: 10.1016/j.jmsacl.2021.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022] Open
Abstract
Infrared multiple photon dissociation (IRMPD) spectroscopy is a powerful tool used to probe the vibrational modes-and, by extension, the structure-of an ion within an ion trap mass spectrometer. Compared to traditional FTIR spectroscopy, IRMPD spectroscopy has advantages including its sensitivity and its relative ability to handle complex mixtures. While IRMPD has historically been a technique for fundamental analyses, it is increasingly being applied in a more analytical fashion. Notable recent demonstrations pertinent to the clinical laboratory and adjacent interests include analysis of modified amino acids/residues and carbohydrates, structural elucidation (including isomeric differentiation) of metabolites, identification of novel illicit drugs, and structural studies of various biomolecules and pharmaceuticals. Improvements in analysis time, coupling to commercial instruments, and integration with separations methods are all drivers toward the realization of these analytical applications. Additional improvements in these areas, along with advances in benchtop tunable IR sources and increased cross-discipline collaboration, will continue to drive innovation and widespread adoption. The goal of this tutorial article is to briefly present the fundamentals and instrumentation of IRMPD spectroscopy, as an overview of the utility of this technique for helping to answer questions relevant to clinical analysis, and to highlight limitations to widespread adoption, as well as promising directions in which the field may be heading.
Collapse
Key Words
- 2-AEP, 2-aminoethylphosphonic acid
- 2P1EA, 2-phenyl-1-ethanolamine
- CIVP, cryogenic ion vibrational predissociation spectroscopy
- CLIO, Centre Laser Infrarouge d’Orsay
- DFT, density functional theory
- FA, fluoroamphetamine
- FEL, free electron laser
- FELIX, Free Electron Laser for Infrared eXperiments
- FMA, fluoromethamphetamine
- FTICR, Fourier transform ion cyclotron resonance
- GC–MS, gas chromatography-mass spectrometry
- GSNO, S- nitro glutathione
- GlcNAc, n-Acetylglucosamine
- IR, infrared
- IR2MS3, infrared-infrared double-resonance multi-stage mass spectrometry
- IRMPD, infrared multiple photon dissociation (IRMPD)
- IRMPD-MS, infrared multiple photon dissociation spectroscopy mass spectrometry
- IRPD, infrared predissociation spectroscopy
- IVR, intramolecular vibrational redistribution
- Infrared multiple photon dissociation spectroscopy
- LC, liquid chromatography
- LC-MS, liquid chromatography-mass spectrometry
- LC-MS/MS, liquid chromatography-tandem mass spectrometry
- MDA, methylenedioxyamphetamine
- MDMA, methylenedioxymethamphetamine
- MMC, methylmethcathinone
- MS/MS, tandem mass spectrometry
- MSn, multi-stage mass spectrometry
- Mass spectrometry
- Metabolites
- NANT, N-acetyl-N-nitrosotryptophan
- OPO/A, optical parametric oscillator/amplifier
- PTM, post-translational modification
- Pharmaceuticals
- Post-translational modifications
- SNOCys, S-nitrosocysteine
- UV, ultraviolet
- UV-IR, ultraviolet-infrared
- Vibrational spectroscopy
- cw, continuous wave
- α-PVP, alpha-pyrrolidinovalerophenone
Collapse
Affiliation(s)
- Matthew J. Carlo
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Amanda L. Patrick
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
11
|
Huang D, Bouza M, Gaul DA, Leach FE, Amster IJ, Schroeder FC, Edison AS, Fernández FM. Comparison of High-Resolution Fourier Transform Mass Spectrometry Platforms for Putative Metabolite Annotation. Anal Chem 2021; 93:12374-12382. [PMID: 34460220 PMCID: PMC8590398 DOI: 10.1021/acs.analchem.1c02224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fourier transform ion cyclotron resonance (FT-ICR) and Orbitrap mass spectrometry (MS) are among the highest-performing analytical platforms used in metabolomics. Non-targeted metabolomics experiments, however, yield extremely complex datasets that make metabolite annotation very challenging and sometimes impossible. The high-resolution accurate mass measurements of the leading MS platforms greatly facilitate this process by reducing mass errors and spectral overlaps. When high resolution is combined with relative isotopic abundance (RIA) measurements, heuristic rules, and constraints during searches, the number of candidate elemental formula(s) can be significantly reduced. Here, we evaluate the performance of Orbitrap ID-X and 12T solariX FT-ICR mass spectrometers in terms of mass accuracy and RIA measurements and how these factors affect the assignment of the correct elemental formulas in the metabolite annotation pipeline. Quality of the mass measurements was evaluated under various experimental conditions (resolution: 120, 240, 500 K; automatic gain control: 5 × 104, 1 × 105, 5 × 105) for the Orbitrap MS platform. High average mass accuracy (<1 ppm for UPLC-Orbitrap MS and <0.2 ppm for direct infusion FT-ICR MS) was achieved and allowed the assignment of correct elemental formulas for over 90% (m/z 75-466) of the 104 investigated metabolites. 13C1 and 18O1 RIA measurements further improved annotation certainty by reducing the number of candidates. Overall, our study provides a systematic evaluation for two leading Fourier transform (FT)-based MS platforms utilized in metabolite annotation and provides the basis for applying these, individually or in combination, to metabolomics studies of biological systems.
Collapse
Affiliation(s)
- Danning Huang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Marcos Bouza
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - David A Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Franklin E Leach
- Department of Environmental Health Science, University of Georgia, Athens, Georgia 30602, United States
| | - I Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Frank C Schroeder
- Boyce Thompson Institute and Department to Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Arthur S Edison
- Departments of Genetics and Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
12
|
Feng E, Ma X, Kenttämaa HI. Characterization of Protonated Substituted Ureas by Using Diagnostic Gas-Phase Ion-Molecule Reactions Followed by Collision-Activated Dissociation in Tandem Mass Spectrometry Experiments. Anal Chem 2021; 93:7851-7859. [PMID: 34028247 DOI: 10.1021/acs.analchem.1c00326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Substituted ureas correspond to a class of organic compounds commonly used in agricultural and chemical fields. However, distinguishing between different ureas and differentiating substituted ureas from other compounds with similar structures, such as amides, N-oxides, and carbamates, are challenging. In this paper, a four-stage tandem mass spectrometry method (MS4) is introduced for this purpose. This method is based on gas-phase ion-molecule reactions of isolated, protonated analytes ([M + H]+) with tris(dimethylamino)borane (TDMAB) (MS2) followed by subjecting a diagnostic product ion to two steps of collision-activated dissociation (CAD) (MS3 and MS4). All the analyte ions reacted with TDMAB to form a product ion [M + H + TDMAB - HN(CH3)2]+. The product ion formed for substituted ureas and amides eliminated another HN(CH3)2 molecule upon CAD to generate a fragment ion [M + H + TDMAB - 2HN(CH3)2]+, which was not observed for many other analytes, such as N-oxides, sulfoxides, and pyridines (studied previously). When the [M + H + TDMAB - 2HN(CH3)2]+ fragment ion was subjected to CAD, different fragment ions were generated for ureas, amides, and carbamates. Fragment ions diagnostic for the ureas were formed via elimination of R-N═C═O (R = hydrogen atom or a substituent), which enabled the differentiation of ureas from amides and carbamates. Furthermore, these fragment ions can be utilized to classify differently substituted ureas. Quantum chemical calculations were employed to explore the mechanisms of the reactions. The limit of detection for the diagnostic ion-molecule reaction product ion in HPLC/MS2 experiments was found to range from 20 to 100 nM.
Collapse
Affiliation(s)
- Erlu Feng
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xin Ma
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hilkka I Kenttämaa
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
13
|
Rodríguez-Moro G, Ramírez-Acosta S, Callejón-Leblic B, Arias-Borrego A, García-Barrera T, Gómez-Ariza JL. Environmental metal toxicity assessment by the combined application of metallomics and metabolomics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25014-25034. [PMID: 33782823 DOI: 10.1007/s11356-021-13507-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
The growing interest of our society for the environment, climate change, and the assurance of the quality of life and health has been the motor of new methodological proposals that allow a more comprehensive knowledge of the problems to be solved. In this sense, the potential of omic methodologies to study these problems from a global perspective represents a milestone in environmental studies. Therefore, the study of essential and toxic metals has a special interest, particularly in relation to toxicity issues and their association to biological interactions, transport, binding to biomolecules, and behavior in biological interfaces. These studies have promoted new instrumental platforms and methodological approaches that allow addressing these problems. Furthermore, to encompass the reality of molecule-atoms interactions in their completeness, combinations of omics have been tried, focusing on environment, food, and health issues. In this sense, the present work is situated, with the objective of reviewing the most recent methodological proposals in the field of the environment and their applications, considering not only the analytical approaches but also how they have to be applied, the use of bioindicators' exposure experiments in the laboratory, and the potential transfer of the findings from the laboratory to the field. This latter point is a true touchstone, which makes these new analytical methodologies in the necessary tools for understanding the environment and the consequences of its imbalance.
Collapse
Affiliation(s)
- Gema Rodríguez-Moro
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Huelva, Spain
- International Agrofood Campus of Excellence International ceiA3, University of Huelva, Huelva, Spain
- Research Center of Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain
| | - Sara Ramírez-Acosta
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Huelva, Spain
- International Agrofood Campus of Excellence International ceiA3, University of Huelva, Huelva, Spain
- Research Center of Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain
| | - Belén Callejón-Leblic
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Huelva, Spain
- International Agrofood Campus of Excellence International ceiA3, University of Huelva, Huelva, Spain
- Research Center of Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain
| | - Ana Arias-Borrego
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Huelva, Spain
- International Agrofood Campus of Excellence International ceiA3, University of Huelva, Huelva, Spain
- Research Center of Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain
| | - Tamara García-Barrera
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Huelva, Spain.
- International Agrofood Campus of Excellence International ceiA3, University of Huelva, Huelva, Spain.
- Research Center of Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain.
| | - José-Luis Gómez-Ariza
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Huelva, Spain.
- International Agrofood Campus of Excellence International ceiA3, University of Huelva, Huelva, Spain.
- Research Center of Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain.
| |
Collapse
|
14
|
He K, Chen C, Deng J, Hou YJ, Xiang Z, Yang Y. In situ detection and imaging of lysophospholipids in zebrafish using matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4637. [PMID: 32789983 DOI: 10.1002/jms.4637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
In this paper, a matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) (MALDI-FTICR-MS) imaging method was developed to rapid and in situ detect the spatial distribution of lysophospholipids (LPLs) in zebrafish. The combination of MALDI with ultrahigh-resolution FTICR-MS achieves the MS imaging of LPLs with a mass resolution up to 50 000, which allows accurate identification and clear spatial visualization of LPLs in complex biological tissues. A series of lysophosphatidylcholines (LPCs) was detected using positive ion detection mode, and their concentration differences and spatial distributions were clearly visualized in different parts of zebrafish tissue. The method is rapid, simple, and efficient, being a desirable way to understand the spatial distribution of LPLs in biosome.
Collapse
Affiliation(s)
- Kaili He
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou, 510070, China
- Shenyang University of Technology, Shenyang, 110870, China
| | - Chao Chen
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou, 510070, China
| | - Jiewei Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou, 510006, China
| | - Ya-Jun Hou
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou, 510070, China
| | - Zhangmin Xiang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou, 510070, China
| | - Yunyun Yang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou, 510070, China
| |
Collapse
|
15
|
Bader CD, Haack PA, Panter F, Krug D, Müller R. Expanding the Scope of Detectable Microbial Natural Products by Complementary Analytical Methods and Cultivation Systems. JOURNAL OF NATURAL PRODUCTS 2021; 84:268-277. [PMID: 33449690 DOI: 10.1021/acs.jnatprod.0c00942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent advances in genome sequencing have unveiled a large discrepancy between the genome-encoded capacity of microorganisms to produce secondary metabolites and the number detected. In this work, a two-platform mass spectrometry analysis for the comprehensive secondary metabolomics characterization of nine myxobacterial strains, focusing on extending the range of detectable secondary metabolites by diversifying analytical methods and cultivation conditions, is presented. Direct infusion measurements of crude extracts on a Fourier transform ion cyclotron resonance mass spectrometer are compared to a time-of-flight device coupled to liquid chromatography measurements. Both methods are successful in detecting known metabolites, whereas statistical analysis of unknowns highlights their complementarity: Strikingly, 82-99% of molecular features detected with one setup were not detectable with the other. Metabolite profile differences from our set of strains grown in liquid culture versus their swarming colonies on agar plates were evaluated. The detection of up to 96% more molecular features when both liquid and plate cultures were analyzed translates into increased chances to identify new secondary metabolites. Discrimination between primary and secondary metabolism in combination with GNPS molecular networking revealed strain Mx3 as particularly promising for the isolation of novel secondary metabolites among the nine strains investigated in this study.
Collapse
Affiliation(s)
- Chantal D Bader
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), German Center for Infection Research (DZIF, Partnersite Hannover-Braunschweig), and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Patrick A Haack
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), German Center for Infection Research (DZIF, Partnersite Hannover-Braunschweig), and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Fabian Panter
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), German Center for Infection Research (DZIF, Partnersite Hannover-Braunschweig), and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Daniel Krug
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), German Center for Infection Research (DZIF, Partnersite Hannover-Braunschweig), and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), German Center for Infection Research (DZIF, Partnersite Hannover-Braunschweig), and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
16
|
McCann A, Rappe S, La Rocca R, Tiquet M, Quinton L, Eppe G, Far J, De Pauw E, Kune C. Mass shift in mass spectrometry imaging: comprehensive analysis and practical corrective workflow. Anal Bioanal Chem 2021; 413:2831-2844. [PMID: 33517478 DOI: 10.1007/s00216-021-03174-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/22/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022]
Abstract
MALDI mass spectrometry imaging (MSI) allows the mapping and the tentative identification of compounds based on their m/z value. In typical MSI, a spectrum is taken at incremental 2D coordinates (pixels) across a sample surface. Single pixel mass spectra show the resolving power of the mass analyzer. Mass shift, i.e., variations of the m/z of the same ion(s), may occur from one pixel to another. The superposition of shifted masses from individual pixels peaks apparently degrades the resolution and the mass accuracy in the average spectrum. This leads to low confidence annotations and biased localization in the image. Besides the intrinsic performances of the analyzer, the sample properties (local composition, thickness, matrix deposition) and the calibration method are sources of mass shift. Here, we report a critical analysis and recommendations to mitigate these sources of mass shift. Mass shift 2D distributions were mapped to illustrate its effect and explore systematically its origin. Adapting the sample preparation, carefully selecting the data acquisition settings, and wisely applying post-processing methods (i.e., m/z realignment or individual m/z recalibration pixel by pixel) are key factors to lower the mass shift and to improve image quality and annotations. A recommended workflow, resulting from a comprehensive analysis, was successfully applied to several complex samples acquired on both MALDI ToF and MALDI FT-ICR instruments.
Collapse
Affiliation(s)
- Andréa McCann
- Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000, Liège, Belgium
| | - Sophie Rappe
- Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000, Liège, Belgium
| | - Raphaël La Rocca
- Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000, Liège, Belgium
| | - Mathieu Tiquet
- Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000, Liège, Belgium
| | - Loïc Quinton
- Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000, Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000, Liège, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000, Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000, Liège, Belgium
| | - Christopher Kune
- Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000, Liège, Belgium.
| |
Collapse
|
17
|
Hauser JR, Bergström ET, Kulak AN, Warriner SL, Thomas-Oates J, Bon RS. Pyrene Tags for the Detection of Carbohydrates by Label-Assisted Laser Desorption/Ionisation Mass Spectrometry*. Chembiochem 2021; 22:1430-1439. [PMID: 33296552 DOI: 10.1002/cbic.202000721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/08/2020] [Indexed: 12/15/2022]
Abstract
Matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS) is widely used for the analysis of biomolecules. Label-assisted laser desorption/ionisation mass spectrometry (LALDI-MS) is a matrix-free variant of MALDI-MS, in which only analytes covalently attached to a laser desorption/ionisation (LDI) enhancer are detected. LALDI-MS has shown promise in overcoming the limitations of MALDI-MS in terms of sample preparation and MS analysis. In this work, we have developed a series of pyrene-based LDI reagents (LALDI tags) that can be used for labelling and LALDI-MS analysis of reducing carbohydrates from complex (biological) samples without the need for additional chemical derivatisation or purification. We have systematically explored the suitability of four pyrene-based LDI enhancers and three aldehyde-reactive handles, optimised sample preparation, and demonstrated the use of LALDI tags for the detection of lactose. We have also exemplified the potential of LALDI tags for labelling carbohydrates in biological samples by direct detection of lactose in cow's milk. These results demonstrate that LALDI-MS is a promising technique for the analysis of reducing carbohydrates in biological samples, and pave the way for the development of LALDI-MS for glycomics and diagnostics.
Collapse
Affiliation(s)
- Jacob R Hauser
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Edmund T Bergström
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.,Centre of Excellence in Mass Spectrometry, University of York, Heslington, York, YO10 5DD, UK
| | - Alexander N Kulak
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Stuart L Warriner
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Jane Thomas-Oates
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.,Centre of Excellence in Mass Spectrometry, University of York, Heslington, York, YO10 5DD, UK
| | - Robin S Bon
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.,Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
18
|
Sommella E, Carrizzo A, Merciai F, Di Sarno V, Carbone D, De Lucia M, Musella S, Vecchione C, Campiglia P. Analysis of the metabolic switch induced by the spirulina peptide SP6 in high fat diet ApoE -/- mice model: A direct infusion FT-ICR-MS based approach. J Pharm Biomed Anal 2020; 195:113865. [PMID: 33387838 DOI: 10.1016/j.jpba.2020.113865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 10/22/2022]
Abstract
Atherosclerosis, dyslipidemia and hypertension are comorbid diseases often found in combination. Among different pharmacological approaches the employment of natural multifunctional peptides is an attractive option as side therapy. Mass spectrometry-based metabolomics provide valuable information on metabolic changes and can be useful to elucidate peptide pharmacodynamics. In this this work we performed a preliminary investigation on the potential effect of a recently characterized Spirulina platensis peptide named SP6 (GIVAGDVTPI) on the modulation of metabolism in a high fat diet ApoE-/- mice atherosclerotic model. A direct infusion Fourier transform ion cyclotron resonance mass spectrometry (DI-FT-ICR-MS) approach was used to elucidate polar and non-polar metabolites extracted by mice plasma following four weeks SP6 treatment. The method delivered fast analysis time, repeatability, high mass accuracy and resolution for unambiguous molecular formula assignment. Multivariate statistical analysis (PLS-DA) highlighted a clear class separation, revealing the alteration of numerous metabolites levels belonging to different classes. In particular sphingolipids, glycerophospholipids, TCA cycle intermediates, and amino acids, which are key players in the atherosclerotic process and progression, were upregulated in saline alone HFD ApoE-/- group, while were sensibly decreased after treatment with SP6 peptide. These results could open the way to further, large-scale, investigation of SP6 peptide effects in the regulation of atherosclerotic disease development and progression, and show the potential of DI-FT-ICR as fast analytical tool to take snaphshots of metabolic changes before moving to targeted MS-based approaches.
Collapse
Affiliation(s)
- Eduardo Sommella
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Albino Carrizzo
- Department of Medicine and Surgery (A.C., C.V.), University of Salerno, Baronissi SA, Italy; IRCCS Neuromed, Loc. Camerelle, Pozzilli, IS, Italy
| | - Fabrizio Merciai
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, SA, Italy
| | | | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | | | - Simona Musella
- European Biomedical Research Institute of Salerno, Via De Renzi 50, I-84125 Salerno, Italy
| | - Carmine Vecchione
- Department of Medicine and Surgery (A.C., C.V.), University of Salerno, Baronissi SA, Italy; IRCCS Neuromed, Loc. Camerelle, Pozzilli, IS, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy; European Biomedical Research Institute of Salerno, Via De Renzi 50, I-84125 Salerno, Italy
| |
Collapse
|
19
|
Correia RM, Andrade R, Tosato F, Nascimento MT, Pereira LL, Araújo JB, Pinto FE, Endringer DC, Padovan MP, Castro EV, Partelli FL, Filgueiras PR, Lacerda V, Romão W. Analysis of Robusta coffee cultivated in agroforestry systems (AFS) by ESI-FT-ICR MS and portable NIR associated with sensory analysis. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Zhu Y, Wancewicz B, Schaid M, Tiambeng TN, Wenger K, Jin Y, Heyman H, Thompson CJ, Barsch A, Cox ED, Davis DB, Brasier AR, Kimple ME, Ge Y. Ultrahigh-Resolution Mass Spectrometry-Based Platform for Plasma Metabolomics Applied to Type 2 Diabetes Research. J Proteome Res 2020; 20:463-473. [PMID: 33054244 DOI: 10.1021/acs.jproteome.0c00510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Metabolomics-the endpoint of the omics cascade-is increasingly recognized as a preferred method for understanding the ultimate responses of biological systems to stress. Flow injection electrospray (FIE) mass spectrometry (MS) has advantages for untargeted metabolic fingerprinting due to its simplicity and capability for high-throughput screening but requires a high-resolution mass spectrometer to resolve metabolite features. In this study, we developed and validated a high-throughput and highly reproducible metabolomics platform integrating FIE with ultrahigh-resolution Fourier transform ion cyclotron resonance (FTICR) MS for analysis of both polar and nonpolar metabolite features from plasma samples. FIE-FTICR MS enables high-throughput detection of hundreds of metabolite features in a single mass spectrum without a front-end separation step. Using plasma samples from genetically identical obese mice with or without type 2 diabetes (T2D), we validated the intra and intersample reproducibility of our method and its robustness for simultaneously detecting alterations in both polar and nonpolar metabolite features. Only 5 min is needed to acquire an ultra-high resolution mass spectrum in either a positive or negative ionization mode. Approximately 1000 metabolic features were reproducibly detected and annotated in each mouse plasma group. For significantly altered and highly abundant metabolite features, targeted tandem MS (MS/MS) analyses can be applied to confirm their identity. With this integrated platform, we successfully detected over 300 statistically significant metabolic features in T2D mouse plasma as compared to controls and identified new T2D biomarker candidates. This FIE-FTICR MS-based method is of high throughput and highly reproducible with great promise for metabolomics studies toward a better understanding and diagnosis of human diseases.
Collapse
Affiliation(s)
- Yanlong Zhu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Benjamin Wancewicz
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Michael Schaid
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Timothy N Tiambeng
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kent Wenger
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Yutong Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Heino Heyman
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | | | | | - Elizabeth D Cox
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin 53792, United States
| | - Dawn B Davis
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Allan R Brasier
- Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Michelle E Kimple
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
21
|
Zhang Q, Zhu Y, Tian Y, Yu Q, Wang X. Induced Self-aspiration Electrospray Ionization Mass Spectrometry for Flexible Sampling and Analysis. Anal Chem 2020; 92:4600-4606. [PMID: 32096631 DOI: 10.1021/acs.analchem.0c00143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrospray ionization (ESI) operating in pulse mode can enhance the utilization efficiency of the electrospray ions by a mass spectrometer. Herein, a novel ionization technique called induced self-aspiration-electrospray ionization (ISA-ESI) was developed based on self-aspiration sampling and capacitive induction. The sample solution polarized in a strong electric field was pulsed drawn into a capillary that was connected to a subambient chamber. The sample solution with polarized ions forms a charged liquid column, which can initiate an electrospray when reaching the capillary outlet. In addition to the self-aspiration ability, the use of a constant high voltage supply and no electrical contact with the solution can also simplify the sampling and ionization operation, enabling a convenient ESI mass spectrometry analysis. The developed ISA-ESI source has been used for multidimensional monitoring of chemical reactions as well as liquid extraction surface analysis of plant tissues. It was expected that this special ionization method could be extended to automated high-throughput ESI-MS analysis.
Collapse
Affiliation(s)
- Qian Zhang
- Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.,State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yanping Zhu
- Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Yuan Tian
- Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Quan Yu
- Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Xiaohao Wang
- Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.,State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Park SG, Anderson GA, Bruce JE. Parallel Detection of Fundamental and Sixth Harmonic Signals Using an ICR Cell with Dipole and Sixth Harmonic Detectors. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:719-726. [PMID: 31967815 PMCID: PMC7970440 DOI: 10.1021/jasms.9b00144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is a powerful instrument for high-resolution analysis of biomolecules. However, relatively long signal acquisition periods are needed to achieve mass spectra with high resolution. The use of multiple detector electrodes for detection of harmonic frequencies has been introduced as one approach to increase scan rate for a given resolving power or to obtain increased resolving power for a given detection period. The achieved resolving power and scan rate increase linearly with the order of detected harmonic signals. In recent years, ICR cell geometries have been investigated to increase the order of the harmonic frequencies and enhance harmonic signal intensities. In this study, we demonstrated PCB-based ICR cell designs with dipole and sixth harmonic detectors for parallel detection of fundamental and harmonic (6f) signals. The sixth harmonic signals from the sixth harmonic detector showed an expected 6 times higher resolving power with (M + 3H)3+ charge state insulin ions as compared with that from fundamental signals from the dipole detector. Moreover, the insulin isotopic peaks with sixth harmonic frequency signals acquired with the sixth harmonic detector were resolved for a 40 ms data acquisition period but unresolved with the same duration dipole detector signals, corresponding to a 6-fold improvement in achievable spectral acquisition rates for a given resolving power.
Collapse
Affiliation(s)
- Sung-Gun Park
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Gordon A Anderson
- GAA Custom Engineering, LLC, Benton City, Washington 99320, United States
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| |
Collapse
|
23
|
Gotthardt M, Kanawati B, Schmidt F, Asam S, Hammerl R, Frank O, Hofmann T, Schmitt‐Kopplin P, Rychlik M. Comprehensive Analysis of the
Alternaria
Mycobolome Using Mass Spectrometry Based Metabolomics. Mol Nutr Food Res 2020; 64:e1900558. [DOI: 10.1002/mnfr.201900558] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/05/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Marina Gotthardt
- Chair of Analytical Food ChemistryTechnical University of Munich Maximus‐von‐Imhof Forum 2 85354 Freising Germany
| | - Basem Kanawati
- HelmholtzZentrum München Ingolstädter Landstraβe 1 85764 Neuherberg Germany
| | - Frank Schmidt
- Chair of Analytical Food ChemistryTechnical University of Munich Maximus‐von‐Imhof Forum 2 85354 Freising Germany
| | - Stefan Asam
- Chair of Analytical Food ChemistryTechnical University of Munich Maximus‐von‐Imhof Forum 2 85354 Freising Germany
| | - Richard Hammerl
- Chair of Food Chemistry and Molecular SensoryTechnical University of Munich Lise‐Meitner‐Straβe 34 85354 Freising Germany
| | - Oliver Frank
- Chair of Food Chemistry and Molecular SensoryTechnical University of Munich Lise‐Meitner‐Straβe 34 85354 Freising Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular SensoryTechnical University of Munich Lise‐Meitner‐Straβe 34 85354 Freising Germany
| | - Philippe Schmitt‐Kopplin
- Chair of Analytical Food ChemistryTechnical University of Munich Maximus‐von‐Imhof Forum 2 85354 Freising Germany
- HelmholtzZentrum München Ingolstädter Landstraβe 1 85764 Neuherberg Germany
| | - Michael Rychlik
- Chair of Analytical Food ChemistryTechnical University of Munich Maximus‐von‐Imhof Forum 2 85354 Freising Germany
| |
Collapse
|
24
|
High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyl substances (PFASs) in environmental and human samples. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.021] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Azad RK, Shulaev V. Metabolomics technology and bioinformatics for precision medicine. Brief Bioinform 2019; 20:1957-1971. [PMID: 29304189 PMCID: PMC6954408 DOI: 10.1093/bib/bbx170] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/29/2017] [Indexed: 12/14/2022] Open
Abstract
Precision medicine is rapidly emerging as a strategy to tailor medical treatment to a small group or even individual patients based on their genetics, environment and lifestyle. Precision medicine relies heavily on developments in systems biology and omics disciplines, including metabolomics. Combination of metabolomics with sophisticated bioinformatics analysis and mathematical modeling has an extreme power to provide a metabolic snapshot of the patient over the course of disease and treatment or classifying patients into subpopulations and subgroups requiring individual medical treatment. Although a powerful approach, metabolomics have certain limitations in technology and bioinformatics. We will review various aspects of metabolomics technology and bioinformatics, from data generation, bioinformatics analysis, data fusion and mathematical modeling to data management, in the context of precision medicine.
Collapse
Affiliation(s)
| | - Vladimir Shulaev
- Corresponding author: Vladimir Shulaev, Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX 76210, USA. Tel.: 940-369-5368; Fax: 940-565-3821; E-mail:
| |
Collapse
|
26
|
MolFind 2: A Protocol for Acquiring and Integrating MS 3 Data to Improve In Silico Chemical Structure Elucidation for Metabolomics. Methods Mol Biol 2019. [PMID: 31729668 DOI: 10.1007/978-1-0716-0030-6_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Structure elucidation of metabolites (<1000 Da) in biofluids is extremely challenging due to the diversity and complexity of chemical structure space. Generally, due to lack of reference tandem mass data (MS2), in silico fragmenters are used to rank candidates acquired from chemical databases as a function on how well they explain an experimental collision-induced dissociation spectrum. However, multistage fragmentation data (i.e., MS3) have not been adequately utilized in current metabolomics structure elucidation pipelines. To address this shortcoming, here we describe an experimental (nontargeted direct infusion ion mobility-mass spectrometry-based) and computational workflow to acquire and utilize multistage mass (MS3) spectrometry data for database-assisted structure elucidation.
Collapse
|
27
|
Palacio Lozano DC, Gavard R, Arenas-Diaz JP, Thomas MJ, Stranz DD, Mejía-Ospino E, Guzman A, Spencer SEF, Rossell D, Barrow MP. Pushing the analytical limits: new insights into complex mixtures using mass spectra segments of constant ultrahigh resolving power. Chem Sci 2019; 10:6966-6978. [PMID: 31588263 PMCID: PMC6764280 DOI: 10.1039/c9sc02903f] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 01/03/2023] Open
Abstract
A new strategy has been developed for characterization of the most challenging complex mixtures to date, using a combination of custom-designed experiments and a new data pre-processing algorithm. In contrast to traditional methods, the approach enables operation of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with constant ultrahigh resolution at hitherto inaccessible levels (approximately 3 million FWHM, independent of m/z). The approach, referred to as OCULAR, makes it possible to analyze samples that were previously too complex, even for high field FT-ICR MS instrumentation. Previous FT-ICR MS studies have typically spanned a broad mass range with decreasing resolving power (inversely proportional to m/z) or have used a single, very narrow m/z range to produce data of enhanced resolving power; both methods are of limited effectiveness for complex mixtures spanning a broad mass range, however. To illustrate the enhanced performance due to OCULAR, we show how a record number of unique molecular formulae (244 779 elemental compositions) can be assigned in a single, non-distillable petroleum fraction without the aid of chromatography or dissociation (MS/MS) experiments. The method is equally applicable to other areas of research, can be used with both high field and low field FT-ICR MS instruments to enhance their performance, and represents a step-change in the ability to analyze highly complex samples.
Collapse
Affiliation(s)
- Diana Catalina Palacio Lozano
- Department of Chemistry , University of Warwick , Coventry , CV4 7AL , UK .
- Department of Chemistry , Universidad Industrial de Santander , Bucaramanga , Colombia
| | - Remy Gavard
- Molecular Analytical Science Centre of Doctoral Training , University of Warwick , Coventry , CV4 7AL , UK
| | - Juan P Arenas-Diaz
- Department of Chemistry , Universidad Industrial de Santander , Bucaramanga , Colombia
| | - Mary J Thomas
- Department of Chemistry , University of Warwick , Coventry , CV4 7AL , UK .
- Molecular Analytical Science Centre of Doctoral Training , University of Warwick , Coventry , CV4 7AL , UK
| | | | - Enrique Mejía-Ospino
- Department of Chemistry , Universidad Industrial de Santander , Bucaramanga , Colombia
| | - Alexander Guzman
- Instituto Colombiano del Petróleo , Ecopetrol , Piedecuesta , Colombia
| | - Simon E F Spencer
- Department of Statistics , University of Warwick , Coventry , CV4 7AL , UK
| | - David Rossell
- Department of Economics & Business , Universitat Pompeu Fabra , Barcelona 08005 , Spain
| | - Mark P Barrow
- Department of Chemistry , University of Warwick , Coventry , CV4 7AL , UK .
| |
Collapse
|
28
|
Davis AL, Reinecke T, Morrison KA, Clowers BH. Optimized Reconstruction Techniques for Multiplexed Dual-Gate Ion Mobility Mass Spectrometry Experiments. Anal Chem 2019; 91:1432-1440. [PMID: 30561982 DOI: 10.1021/acs.analchem.8b04175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
When coupling drift-tube gas-phase ion mobility separations with ion trapping mass analyzers an integrative, stepped approach to spectral reconstruction is a logical, yet highly inefficient means to determine gas-phase mobility coefficients. This experimental mode is largely predicated on the respective time scales of the two techniques each requiring tens of milliseconds to complete under routine conditions. Multiplexing techniques, such as Fourier and Hadamard based techniques, are a potential solution but still require extended experimental times that are not fully compatible with modern front-end separation schemes. Using a basis pursuit denoising (BPDN) approach to deconvolute Fourier transform ion mobility mass spectrometry (FT-IMMS) drift time spectra, we demonstrate significant time savings while maintaining a high degree of spectral resolution and signal-to-noise ratio. Under ideal conditions, the FT-IMMS operates with increased ion transmission (up to 25%); however, the linear chirp that spans into the kHz range often leads to significant levels of ion gate depletion, which limit both resolving power and ion transmission. The method proposed in this manuscript demonstrates the potential to reduce IMS acquisition time while simultaneously maximizing spectral resolution at longer effective gate pulse widths compared to the traditional set of multiplexing and signal averaging experiments.
Collapse
Affiliation(s)
- Austen L Davis
- Department of Chemistry , Washington State University , Pullman , Washington 99164 , United States
| | - Tobias Reinecke
- Department of Chemistry , Washington State University , Pullman , Washington 99164 , United States
| | - Kelsey A Morrison
- Department of Chemistry , Washington State University , Pullman , Washington 99164 , United States
| | - Brian H Clowers
- Department of Chemistry , Washington State University , Pullman , Washington 99164 , United States
| |
Collapse
|
29
|
Marchand CR, Farshidfar F, Rattner J, Bathe OF. A Framework for Development of Useful Metabolomic Biomarkers and Their Effective Knowledge Translation. Metabolites 2018; 8:E59. [PMID: 30274369 PMCID: PMC6316283 DOI: 10.3390/metabo8040059] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 12/24/2022] Open
Abstract
Despite the significant advantages of metabolomic biomarkers, no diagnostic tests based on metabolomics have been introduced to clinical use. There are many reasons for this, centered around substantial obstacles in developing clinically useful metabolomic biomarkers. Most significant is the need for interdisciplinary teams with expertise in metabolomics, analysis of complex clinical and metabolomic data, and clinical care. Importantly, the clinical need must precede biomarker discovery, and the experimental design for discovery and validation must reflect the purpose of the biomarker. Standard operating procedures for procuring and handling samples must be developed from the beginning, to ensure experimental integrity. Assay design is another challenge, as there is not much precedent informing this. Another obstacle is that it is not yet clear how to protect any intellectual property related to metabolomic biomarkers. Viewing a metabolomic biomarker as a natural phenomenon would inhibit patent protection and potentially stifle commercial interest. However, demonstrating that a metabolomic biomarker is actually a derivative of a natural phenomenon that requires innovation would enhance investment in this field. Finally, effective knowledge translation strategies must be implemented, which will require engagement with end users (clinicians and lab physicians), patient advocate groups, policy makers, and payer organizations. Addressing each of these issues comprises the framework for introducing a metabolomic biomarker to practice.
Collapse
Affiliation(s)
- Calena R Marchand
- Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Farshad Farshidfar
- Department of Oncology, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Jodi Rattner
- Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Oliver F Bathe
- Department of Oncology, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Department of Surgery, University of Calgary, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
30
|
Sommella E, Conte GM, Salviati E, Pepe G, Bertamino A, Ostacolo C, Sansone F, Prete FD, Aquino RP, Campiglia P. Fast Profiling of Natural Pigments in Different Spirulina (Arthrospira platensis) Dietary Supplements by DI-FT-ICR and Evaluation of their Antioxidant Potential by Pre-Column DPPH-UHPLC Assay. Molecules 2018; 23:molecules23051152. [PMID: 29751637 PMCID: PMC6099715 DOI: 10.3390/molecules23051152] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 01/10/2023] Open
Abstract
Arthrospira platensis, better known as Spirulina, is one of the most important microalgae species. This cyanobacterium possesses a rich metabolite pattern, including high amounts of natural pigments. In this study, we applied a combined strategy based on Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and Ultra High-Performance Liquid Chromatography (UHPLC) for the qualitative/quantitative characterization of Spirulina pigments in three different commercial dietary supplements. FT-ICR was employed to elucidate the qualitative profile of Spirulina pigments, in both direct infusion mode (DIMS) and coupled to UHPLC. DIMS showed to be a very fast (4 min) and accurate (mass accuracy ≤ 0.01 ppm) tool. 51 pigments were tentatively identified. The profile revealed different classes, such as carotenes, xanthophylls and chlorophylls. Moreover, the antioxidant evaluation of the major compounds was assessed by pre-column reaction with the DPPH radical followed by fast UHPLC-PDA separation, highlighting the contribution of single analytes to the antioxidant potential of the entire pigment fraction. β-carotene, diadinoxanthin and diatoxanthin showed the highest scavenging activity. The method took 40 min per sample, comprising reaction. This strategy could represent a valid tool for the fast and comprehensive characterization of Spirulina pigments in dietary supplements, as well as in other microalgae-based products.
Collapse
Affiliation(s)
- Eduardo Sommella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy.
| | - Giulio Maria Conte
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy.
- PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy.
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy.
- PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy.
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy.
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy.
| | - Carmine Ostacolo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Napoli, Italy.
| | - Francesca Sansone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy.
| | - Francesco Del Prete
- Department of Biology, University of Naples Federico II, Via Mezzocannone 16, I-80131 Napoli, Italy.
| | - Rita Patrizia Aquino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy.
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy.
- European Biomedical Research Institute of Salerno, Via De Renzi 50, I-84125 Salerno, Italy.
| |
Collapse
|
31
|
Rivas-Ubach A, Liu Y, Bianchi TS, Tolić N, Jansson C, Paša-Tolić L. Moving beyond the van Krevelen Diagram: A New Stoichiometric Approach for Compound Classification in Organisms. Anal Chem 2018; 90:6152-6160. [PMID: 29671593 DOI: 10.1021/acs.analchem.8b00529] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
van Krevelen diagrams (O/C vs H/C ratios of elemental formulas) have been widely used in studies to obtain an estimation of the main compound categories present in environmental samples. However, the limits defining a specific compound category based solely on O/C and H/C ratios of elemental formulas have never been accurately listed or proposed to classify metabolites in biological samples. Furthermore, while O/C vs H/C ratios of elemental formulas can provide an overview of the compound categories, such classification is inefficient because of the large overlap among different compound categories along both axes. We propose a more accurate compound classification for biological samples analyzed by high-resolution mass spectrometry based on an assessment of the C/H/O/N/P stoichiometric ratios of over 130 000 elemental formulas of compounds classified in 6 main categories: lipids, peptides, amino sugars, carbohydrates, nucleotides, and phytochemical compounds (oxy-aromatic compounds). Our multidimensional stoichiometric compound classification (MSCC) constraints showed a highly accurate categorization of elemental formulas to the main compound categories in biological samples with over 98% of accuracy representing a substantial improvement over any classification based on the classic van Krevelen diagram. This method represents a signficant step forward in environmental research, especially ecological stoichiometry and eco-metabolomics studies, by providing a novel and robust tool to improve our understanding of the ecosystem structure and function through the chemical characterization of biological samples.
Collapse
Affiliation(s)
- Albert Rivas-Ubach
- Environmental Molecular Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Yina Liu
- Environmental Molecular Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States.,Geochemical and Environmental Research Group , Texas A&M University , College Station , Texas 77845 , United States
| | - Thomas S Bianchi
- Department of Geological Sciences , University of Florida , Gainesville , Florida 32611-2120 , United States
| | - Nikola Tolić
- Environmental Molecular Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Christer Jansson
- Environmental Molecular Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| |
Collapse
|
32
|
Gender-related metabolomics and lipidomics: From experimental animal models to clinical evidence. J Proteomics 2018; 178:82-91. [DOI: 10.1016/j.jprot.2017.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/16/2017] [Accepted: 11/01/2017] [Indexed: 02/06/2023]
|
33
|
Sommella E, Pagano F, Salviati E, Chieppa M, Bertamino A, Manfra M, Sala M, Novellino E, Campiglia P. Chemical profiling of bioactive constituents in hop cones and pellets extracts by online comprehensive two-dimensional liquid chromatography with tandem mass spectrometry and direct infusion Fourier transform ion cyclotron resonance mass spectrometry. J Sep Sci 2018; 41:1548-1557. [DOI: 10.1002/jssc.201701242] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Eduardo Sommella
- Department of Pharmacy; University of Salerno; Fisciano SA Italy
| | | | - Emanuela Salviati
- Department of Pharmacy; University of Salerno; Fisciano SA Italy
- PhD Program in Drug Discovery and Development; University of Salerno; Fisciano SA Italy
| | - Marcello Chieppa
- National Institute of Gastroenterology “S. de Bellis”; Institute of Research; Castellana Grotte; BA Italy
- European Biomedical Research Institute of Salerno; Salerno Italy
| | | | - Michele Manfra
- Department of Science; University of Basilicata; Potenza Italy
| | - Marina Sala
- Department of Pharmacy; University of Salerno; Fisciano SA Italy
| | - Ettore Novellino
- Department of Pharmacy; University of Naples Federico II; Napoli Italy
| | - Pietro Campiglia
- Department of Pharmacy; University of Salerno; Fisciano SA Italy
- European Biomedical Research Institute of Salerno; Salerno Italy
| |
Collapse
|
34
|
Moore RE, Kirwan J, Doherty MK, Whitfield PD. Biomarker Discovery in Animal Health and Disease: The Application of Post-Genomic Technologies. Biomark Insights 2017. [DOI: 10.1177/117727190700200040] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The causes of many important diseases in animals are complex and multifactorial, which present unique challenges. Biomarkers indicate the presence or extent of a biological process, which is directly linked to the clinical manifestations and outcome of a particular disease. Identifying biomarkers or biomarker profiles will be an important step towards disease characterization and management of disease in animals. The emergence of post-genomic technologies has led to the development of strategies aimed at identifying specific and sensitive biomarkers from the thousands of molecules present in a tissue or biological fluid. This review will summarize the current developments in biomarker discovery and will focus on the role of transcriptomics, proteomics and metabolomics in biomarker discovery for animal health and disease.
Collapse
Affiliation(s)
- Rowan E. Moore
- Proteomics and Functional Genomics Research Group, Faculty of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Jennifer Kirwan
- Proteomics and Functional Genomics Research Group, Faculty of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Mary K. Doherty
- Proteomics and Functional Genomics Research Group, Faculty of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Phillip D. Whitfield
- Proteomics and Functional Genomics Research Group, Faculty of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
35
|
Kihara M, Matsuo-Tezuka Y, Noguchi-Sasaki M, Yorozu K, Kurasawa M, Shimonaka Y, Hirata M. Visualization of 57Fe-Labeled Heme Isotopic Fine Structure and Localization of Regions of Erythroblast Maturation in Mouse Spleen by MALDI FTICR-MS Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2469-2475. [PMID: 28819889 PMCID: PMC5645437 DOI: 10.1007/s13361-017-1768-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/28/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
Epoetin beta pegol (continuous erythropoiesis receptor activator; C.E.R.A.), or methoxy-polyethylene glycol-modified epoetin beta, is a long-acting erythropoiesis stimulating agent (ESA) that effectively maintains hemoglobin levels. It promotes proliferation of erythroid progenitor cells in hematopoietic organs and leads to increased reticulocyte and hemoglobin levels. However, the detailed erythropoietic effects of various ESAs on their target organs have yet to be clarified, and new approaches are needed to analyze tissue iron localization with structural information. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) techniques are widely used in basic pharmaceutical research. High-resolution Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) imaging enables the spatial mapping and identification of biomolecules. In this study, mice administered with C.E.R.A. were fed a diet containing the stable iron isotope 57Fe. The 57Fe-heme+ isotopic fine structure peak (m/z 617.1772) was separated from the non-labeled heme+ isotopic peak (Δ0.0029) by FTICR-MS with a resolving power of more than 500,000. We optimized the platform to analyze the distribution of 57Fe-heme in the spleen using MALDI FTICR-MS imaging. The combination of the ultrahigh resolution power of FTICR-MS and a stable isotope labeling technique has the potential to be very effective in basic pharmaceutical research. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Makoto Kihara
- Product Research Department, Medical Affairs Division, Chugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan.
| | - Yukari Matsuo-Tezuka
- Product Research Department, Medical Affairs Division, Chugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Mariko Noguchi-Sasaki
- Product Research Department, Medical Affairs Division, Chugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Keigo Yorozu
- Product Research Department, Medical Affairs Division, Chugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Mitsue Kurasawa
- Product Research Department, Medical Affairs Division, Chugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Yasushi Shimonaka
- Product Research Department, Medical Affairs Division, Chugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Michinori Hirata
- Product Research Department, Medical Affairs Division, Chugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| |
Collapse
|
36
|
Andjelković U, Šrajer Gajdošik M, Gašo-Sokač D, Martinović T, Josić D. Foodomics and Food Safety: Where We Are. Food Technol Biotechnol 2017; 55:290-307. [PMID: 29089845 PMCID: PMC5654429 DOI: 10.17113/ftb.55.03.17.5044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 05/31/2017] [Indexed: 12/21/2022] Open
Abstract
The power of foodomics as a discipline that is now broadly used for quality assurance of food products and adulteration identification, as well as for determining the safety of food, is presented. Concerning sample preparation and application, maintenance of highly sophisticated instruments for both high-performance and high-throughput techniques, and analysis and data interpretation, special attention has to be paid to the development of skilled analysts. The obtained data shall be integrated under a strong bioinformatics environment. Modern mass spectrometry is an extremely powerful analytical tool since it can provide direct qualitative and quantitative information about a molecule of interest from only a minute amount of sample. Quality of this information is influenced by the sample preparation procedure, the type of mass spectrometer used and the analyst's skills. Technical advances are bringing new instruments of increased sensitivity, resolution and speed to the market. Other methods presented here give additional information and can be used as complementary tools to mass spectrometry or for validation of obtained results. Genomics and transcriptomics, as well as affinity-based methods, still have a broad use in food analysis. Serious drawbacks of some of them, especially the affinity-based methods, are the cross-reactivity between similar molecules and the influence of complex food matrices. However, these techniques can be used for pre-screening in order to reduce the large number of samples. Great progress has been made in the application of bioinformatics in foodomics. These developments enabled processing of large amounts of generated data for both identification and quantification, and for corresponding modeling.
Collapse
Affiliation(s)
- Uroš Andjelković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, RS-11000 Belgrade, Serbia
| | - Martina Šrajer Gajdošik
- Department of Chemistry, J. J. Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia
| | - Dajana Gašo-Sokač
- Faculty of Food Technology, J. J. Strossmayer University of Osijek, Franje Kuhača 20, HR-31000 Osijek, Croatia
| | - Tamara Martinović
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Djuro Josić
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
- Warren Alpert Medical School, Brown University, 222 Richmond St, Providence, RI 02903, USA
| |
Collapse
|
37
|
Kumar R, Bohra A, Pandey AK, Pandey MK, Kumar A. Metabolomics for Plant Improvement: Status and Prospects. FRONTIERS IN PLANT SCIENCE 2017; 8:1302. [PMID: 28824660 PMCID: PMC5545584 DOI: 10.3389/fpls.2017.01302] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/11/2017] [Indexed: 05/12/2023]
Abstract
Post-genomics era has witnessed the development of cutting-edge technologies that have offered cost-efficient and high-throughput ways for molecular characterization of the function of a cell or organism. Large-scale metabolite profiling assays have allowed researchers to access the global data sets of metabolites and the corresponding metabolic pathways in an unprecedented way. Recent efforts in metabolomics have been directed to improve the quality along with a major focus on yield related traits. Importantly, an integration of metabolomics with other approaches such as quantitative genetics, transcriptomics and genetic modification has established its immense relevance to plant improvement. An effective combination of these modern approaches guides researchers to pinpoint the functional gene(s) and the characterization of massive metabolites, in order to prioritize the candidate genes for downstream analyses and ultimately, offering trait specific markers to improve commercially important traits. This in turn will improve the ability of a plant breeder by allowing him to make more informed decisions. Given this, the present review captures the significant leads gained in the past decade in the field of plant metabolomics accompanied by a brief discussion on the current contribution and the future scope of metabolomics to accelerate plant improvement.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Plant Sciences, University of Hyderabad (UoH)Hyderabad, India
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India
| | - Abhishek Bohra
- Crop Improvement Division, Indian Institute of Pulses Research (IIPR)Kanpur, India
| | - Arun K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India
| | - Anirudh Kumar
- Department of Botany, Indira Gandhi National Tribal University (IGNTU)Amarkantak, India
| |
Collapse
|
38
|
Zhdanova E, Kostyukevich Y, Nikolaev E. Static harmonization of dynamically harmonized Fourier transform ion cyclotron resonance cell. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2017; 23:197-201. [PMID: 29028404 DOI: 10.1177/1469066717718369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Static harmonization in the Fourier transform ion cyclotron resonance cell improves the resolving power of the cell and prevents dephasing of the ion cloud in the case of any trajectory of the charged particle, not necessarily axisymmetric cyclotron (as opposed to dynamic harmonization). We reveal that the Fourier transform ion cyclotron resonance cell with dynamic harmonization (paracell) is proved to be statically harmonized. The volume of the statically harmonized potential distribution increases with an increase in the number of trap segments.
Collapse
Affiliation(s)
- Ekaterina Zhdanova
- 1 Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- 2 Moscow Institute of Physics and Technology, Moscow Region, Russia
| | - Yury Kostyukevich
- 1 Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- 2 Moscow Institute of Physics and Technology, Moscow Region, Russia
- 3 Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
- 4 Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Eugene Nikolaev
- 1 Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- 2 Moscow Institute of Physics and Technology, Moscow Region, Russia
- 3 Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
- 4 Skolkovo Institute of Science and Technology, Skolkovo, Russia
| |
Collapse
|
39
|
Liu FJ, Fan M, Wei XY, Zong ZM. Application of mass spectrometry in the characterization of chemicals in coal-derived liquids. MASS SPECTROMETRY REVIEWS 2017; 36:543-579. [PMID: 27074547 DOI: 10.1002/mas.21504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
Coal-derived liquids (CDLs) are primarily generated from pyrolysis, carbonization, gasification, direct liquefaction, low-temperature extraction, thermal dissolution, and mild oxidation. CDLs are important feedstocks for producing value-added chemicals and clean liquid fuels as well as high performance carbon materials. Accordingly, the compositional characterization of chemicals in CDLs at the molecular level with advanced analytical techniques is significant for the efficient utilization of CDLs. Although reviews on advancements have been rarely reported, great progress has been achieved in this area by using gas chromatography/mass spectrometry (GC/MS), two-dimensional GC-time of flight mass spectrometry (GC × GC-TOFMS), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). This review focuses on characterizing hydrocarbon, oxygen-containing, nitrogen-containing, sulfur-containing, and halogen-containing chemicals in various CDLs with these three mass spectrometry techniques. Small molecular (< 500 u), volatile and semi-volatile, and less polar chemicals in CDLs have been identified with GC/MS and GC × GC-TOFMS. By equipped with two-dimensional GC, GC × GC-TOFMS can achieve a clearly chromatographic separation of complex chemicals in CDLs without prior fractionation, and thus can overcome the disadvantages of co-elution and serious peak overlap in GC/MS analysis, providing much more compositional information. With ultrahigh resolving power and mass accuracy, FT-ICR MS reveals a huge number of compositionally distinct compounds assigned to various chemical classes in CDLs. It shows excellent performance in resolving and characterizing higher-molecular, less volatile, and polar chemicals that cannot be detected by GC/MS and GC × GC-TOFMS. The application of GC × GC-TOFMS and FT-ICR MS to chemical characterization of CDLs is not as prevalent as that of petroleum and largely remains to be developed in many respects. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:543-579, 2017.
Collapse
Affiliation(s)
- Fang-Jing Liu
- Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY 82071
- Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
| | - Maohong Fan
- Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY 82071
- School of Energy Resources, University of Wyoming, Laramie, WY 82071
| | - Xian-Yong Wei
- Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
| | - Zhi-Min Zong
- Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
40
|
A Diet Diverse in Bamboo Parts is Important for Giant Panda (Ailuropoda melanoleuca) Metabolism and Health. Sci Rep 2017; 7:3377. [PMID: 28611401 PMCID: PMC5469786 DOI: 10.1038/s41598-017-03216-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/11/2017] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to determine the metabolic response in giant pandas (Ailuropoda melanoleuca) to the consumption of certain parts of bamboo above ground growth. Giant pandas were provisioned with three species of bamboo: Phyllostachys bissetii, of which they only consume the culm (culm group); Bashania fargesii, of which they only consume the leaves (leaf group); and Qiongzhuea opienensis, of which they only consume the shoots (shoot group). The “culm” group absorbed the highest amount of calories and fiber, but was in short energy supply (depressed tricarboxylic acid cycle activity), and high fiber level diet might reduce the digestibility of protein. The “culm” and “leaf” groups absorbed less protein, and had a lower rate of body mass growth than the “shoot” group. Digestion of fiber requires energy input and yields low caloric extraction from the culm and leaf, and protein intake is important for increasing body mass. However, long-term consumption of shoots may have a potentially negative effect on the health because of high protein composition. Therefore, a balanced diet consisting of diverse plant parts of bamboo is important for the overall metabolic function and health of captive giant pandas.
Collapse
|
41
|
Shulaev V, Chapman KD. Plant lipidomics at the crossroads: From technology to biology driven science. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:786-791. [PMID: 28238862 DOI: 10.1016/j.bbalip.2017.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/19/2017] [Accepted: 02/21/2017] [Indexed: 12/25/2022]
Abstract
The identification and quantification of lipids from plant tissues have become commonplace and many researchers now incorporate lipidomics approaches into their experimental studies. Plant lipidomics research continues to involve technological developments such as those in mass spectrometry imaging, but in large part, lipidomics approaches have matured to the point of being accessible to the novice. Here we review some important considerations for those planning to apply plant lipidomics to their biological questions, and offer suggestions for appropriate tools and practices. This article is part of a Special Issue entitled: BBALIP_Lipidomics Opinion Articles edited by Sepp Kohlwein.
Collapse
Affiliation(s)
- Vladimir Shulaev
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, United States.
| | - Kent D Chapman
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, United States.
| |
Collapse
|
42
|
Metabolomics: A Primer. Trends Biochem Sci 2017; 42:274-284. [PMID: 28196646 DOI: 10.1016/j.tibs.2017.01.004] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/13/2016] [Accepted: 01/12/2017] [Indexed: 02/08/2023]
Abstract
Metabolomics generates a profile of small molecules that are derived from cellular metabolism and can directly reflect the outcome of complex networks of biochemical reactions, thus providing insights into multiple aspects of cellular physiology. Technological advances have enabled rapid and increasingly expansive data acquisition with samples as small as single cells; however, substantial challenges in the field remain. In this primer we provide an overview of metabolomics, especially mass spectrometry (MS)-based metabolomics, which uses liquid chromatography (LC) for separation, and discuss its utilities and limitations. We identify and discuss several areas at the frontier of metabolomics. Our goal is to give the reader a sense of what might be accomplished when conducting a metabolomics experiment, now and in the near future.
Collapse
|
43
|
Jorge TF, Rodrigues JA, Caldana C, Schmidt R, van Dongen JT, Thomas-Oates J, António C. Mass spectrometry-based plant metabolomics: Metabolite responses to abiotic stress. MASS SPECTROMETRY REVIEWS 2016; 35:620-49. [PMID: 25589422 DOI: 10.1002/mas.21449] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/02/2014] [Accepted: 10/14/2014] [Indexed: 05/08/2023]
Abstract
Metabolomics is one omics approach that can be used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include analysis of a wide range of chemical species with diverse physical properties, from ionic inorganic compounds to biochemically derived hydrophilic carbohydrates, organic and amino acids, and a range of hydrophobic lipid-related compounds. This complexitiy brings huge challenges to the analytical technologies employed in current plant metabolomics programs, and powerful analytical tools are required for the separation and characterization of this extremely high compound diversity present in biological sample matrices. The use of mass spectrometry (MS)-based analytical platforms to profile stress-responsive metabolites that allow some plants to adapt to adverse environmental conditions is fundamental in current plant biotechnology research programs for the understanding and development of stress-tolerant plants. In this review, we describe recent applications of metabolomics and emphasize its increasing application to study plant responses to environmental (stress-) factors, including drought, salt, low oxygen caused by waterlogging or flooding of the soil, temperature, light and oxidative stress (or a combination of them). Advances in understanding the global changes occurring in plant metabolism under specific abiotic stress conditions are fundamental to enhance plant fitness and increase stress tolerance. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 35:620-649, 2016.
Collapse
Affiliation(s)
- Tiago F Jorge
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier-Universidade Nova de Lisboa (ITQB-UNL), Avenida República, 2780-157, Oeiras, Portugal
| | - João A Rodrigues
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Camila Caldana
- Max-Planck-partner group at the Brazilian Bioethanol Science and Technology Laboratory/CNPEM, 13083-970, Campinas-SP, Brazil
| | - Romy Schmidt
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Joost T van Dongen
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Jane Thomas-Oates
- Jane Thomas-Oates, Centre of Excellence in Mass Spectrometry, and Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Carla António
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier-Universidade Nova de Lisboa (ITQB-UNL), Avenida República, 2780-157, Oeiras, Portugal
| |
Collapse
|
44
|
Gorrochategui E, Jaumot J, Lacorte S, Tauler R. Data analysis strategies for targeted and untargeted LC-MS metabolomic studies: Overview and workflow. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.07.004] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Tang H, Wang X, Xu L, Ran X, Li X, Chen L, Zhao X, Deng H, Liu X. Establishment of local searching methods for orbitrap-based high throughput metabolomics analysis. Talanta 2016; 156-157:163-171. [DOI: 10.1016/j.talanta.2016.04.051] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/21/2016] [Accepted: 04/24/2016] [Indexed: 01/28/2023]
|
46
|
Ghaste M, Mistrik R, Shulaev V. Applications of Fourier Transform Ion Cyclotron Resonance (FT-ICR) and Orbitrap Based High Resolution Mass Spectrometry in Metabolomics and Lipidomics. Int J Mol Sci 2016; 17:ijms17060816. [PMID: 27231903 PMCID: PMC4926350 DOI: 10.3390/ijms17060816] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/14/2016] [Accepted: 05/17/2016] [Indexed: 02/02/2023] Open
Abstract
Metabolomics, along with other "omics" approaches, is rapidly becoming one of the major approaches aimed at understanding the organization and dynamics of metabolic networks. Mass spectrometry is often a technique of choice for metabolomics studies due to its high sensitivity, reproducibility and wide dynamic range. High resolution mass spectrometry (HRMS) is a widely practiced technique in analytical and bioanalytical sciences. It offers exceptionally high resolution and the highest degree of structural confirmation. Many metabolomics studies have been conducted using HRMS over the past decade. In this review, we will explore the latest developments in Fourier transform mass spectrometry (FTMS) and Orbitrap based metabolomics technology, its advantages and drawbacks for using in metabolomics and lipidomics studies, and development of novel approaches for processing HRMS data.
Collapse
Affiliation(s)
- Manoj Ghaste
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203, USA.
| | | | - Vladimir Shulaev
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203, USA.
| |
Collapse
|
47
|
Metabolite extraction for high-throughput FTICR-MS-based metabolomics of grapevine leaves. EUPA OPEN PROTEOMICS 2016; 12:4-9. [PMID: 29900113 PMCID: PMC5988515 DOI: 10.1016/j.euprot.2016.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/28/2016] [Accepted: 03/02/2016] [Indexed: 12/13/2022]
Abstract
An improved metabolite extraction method for DI-FTICR metabolomics was developed. The number of identified metabolites from grapevine leaves was maximized. The extraction method allowed the extraction of polar and non-polar compounds. Identified metabolites covered all major classes found in plants.
In metabolomics there is an ever-growing need for faster and more comprehensive analysis methods to cope with the increase of biological studies. Direct infusion Fourier-transform ion cyclotron-resonance mass spectrometry (DI-FTICR-MS) is used in non-targeted metabolomics to obtain high-resolution snapshots of the metabolic state of a system. In any metabolic profiling study, the establishment of an effective metabolite extraction protocol is paramount. We developed an improved metabolite extraction method, compatible with DI-FTICR-MS-based metabolomics, using grapevine leaves. This extraction protocol allowed the extraction of polar and non-polar compounds, covering all major classes found in plants and increasing metabolome coverage.
Collapse
|
48
|
Kim SJ, Kim SH, Kim JH, Hwang S, Yoo HJ. Understanding Metabolomics in Biomedical Research. Endocrinol Metab (Seoul) 2016; 31:7-16. [PMID: 26676338 PMCID: PMC4803564 DOI: 10.3803/enm.2016.31.1.7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/03/2015] [Accepted: 11/10/2015] [Indexed: 02/06/2023] Open
Abstract
The term "omics" refers to any type of specific study that provides collective information on a biological system. Representative omics includes genomics, proteomics, and metabolomics, and new omics is constantly being added, such as lipidomics or glycomics. Each omics technique is crucial to the understanding of various biological systems and complements the information provided by the other approaches. The main strengths of metabolomics are that metabolites are closely related to the phenotypes of living organisms and provide information on biochemical activities by reflecting the substrates and products of cellular metabolism. The transcriptome does not always correlate with the proteome, and the translated proteome might not be functionally active. Therefore, their changes do not always result in phenotypic alterations. Unlike the genome or proteome, the metabolome is often called the molecular phenotype of living organisms and is easily translated into biological conditions and disease states. Here, we review the general strategies of mass spectrometry-based metabolomics. Targeted metabolome or lipidome analysis is discussed, as well as nontargeted approaches, with a brief explanation of the advantages and disadvantages of each platform. Biomedical applications that use mass spectrometry-based metabolomics are briefly introduced.
Collapse
Affiliation(s)
- Su Jung Kim
- Biomedical Research Center, Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Su Hee Kim
- Biomedical Research Center, Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji Hyun Kim
- Biomedical Research Center, Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Shin Hwang
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun Ju Yoo
- Biomedical Research Center, Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
49
|
Antonowicz S, Kumar S, Wiggins T, Markar SR, Hanna GB. Diagnostic Metabolomic Blood Tests for Endoluminal Gastrointestinal Cancer--A Systematic Review and Assessment of Quality. Cancer Epidemiol Biomarkers Prev 2015; 25:6-15. [PMID: 26598534 DOI: 10.1158/1055-9965.epi-15-0524] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/29/2015] [Indexed: 11/16/2022] Open
Abstract
Advances in analytics have resulted in metabolomic blood tests being developed for the detection of cancer. This systematic review aims to assess the diagnostic accuracy of blood-based metabolomic biomarkers for endoluminal gastrointestinal (GI) cancer. Using endoscopic diagnosis as a reference standard, methodologic and reporting quality was assessed using validated tools, in addition to pathway-based informatics to biologically contextualize discriminant features. Twenty-nine studies (15 colorectal, 9 esophageal, 3 gastric, and 2 mixed) with data from 10,835 participants were included. All reported significant differences in hematologic metabolites. In pooled analysis, 246 metabolites were found to be significantly different after multiplicity correction. Incremental metabolic flux with disease progression was frequently reported. Two promising candidates have been validated in independent populations (both colorectal biomarkers), and one has been approved for clinical use. Networks analysis suggested modulation of elements of up to half of Edinburgh Human Metabolic Network subdivisions, and that the poor clinical applicability of commonly modulated metabolites could be due to extensive molecular interconnectivity. Methodologic and reporting quality was assessed as moderate-to-poor. Serum metabolomics holds promise for GI cancer diagnostics; however, future efforts must adhere to consensus standardization initiatives, utilize high-resolution discovery analytics, and compare candidate biomarkers with peer nonendoscopic alternatives.
Collapse
Affiliation(s)
- Stefan Antonowicz
- Division of Surgery, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Sacheen Kumar
- Division of Surgery, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Tom Wiggins
- Division of Surgery, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Sheraz R Markar
- Division of Surgery, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - George B Hanna
- Division of Surgery, Department of Surgery and Cancer, Imperial College London, London, United Kingdom.
| |
Collapse
|
50
|
Athersuch T. Metabolome analyses in exposome studies: Profiling methods for a vast chemical space. Arch Biochem Biophys 2015; 589:177-86. [PMID: 26494045 DOI: 10.1016/j.abb.2015.10.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/30/2015] [Accepted: 10/09/2015] [Indexed: 12/14/2022]
Abstract
Metabolic profiling (metabonomics/metabolomics) is now used routinely as a tool to provide information-rich datasets for biomarker discovery, prompting and augmenting detailed mechanistic studies. The experimental design and focus of any individual study will be reflected in the types of biomarkers that can be detected; toxicological studies will likely focus on markers of response to insult, whereas clinical case-control studies may yield diagnostic markers of disease. Population studies can make use of omics analyses, including metabonomics, to provide mechanistically-relevant markers that link environmental exposures to chronic disease endpoints. In this article, examples of how metabolic profiling has played a key role in molecular epidemiological analyses of chronic disease are presented, and how these reflect different aspects of the causal pathway. A commentary on the nature of metabolome analysis as a complex mixture problem as opposed to a coded, sequence or template problem is provided, alongside an overview of current and future analytical platforms that are being applied to meet this analytical challenge. Epidemiological studies are an important nexus for integrating various measures of the human exposome, and the ubiquity, diversity and functions of small molecule metabolites, represent an important way to link individual exposures, genetics and phenotype.
Collapse
Affiliation(s)
- Toby Athersuch
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; MRC-PHE Centre for Environment and Health, Imperial College London, London W2 1PG, UK.
| |
Collapse
|