1
|
Senini I, Tengattini S, Rinaldi F, Massolini G, Gstöttner C, Reusch D, Donini M, Marusic C, van Veelen PA, Domínguez-Vega E, Wuhrer M, Temporini C, Nicolardi S. Direct glycosylation analysis of intact monoclonal antibodies combining ESI MS of glycoforms and MALDI-in source decay MS of glycan fragments. Commun Chem 2024; 7:203. [PMID: 39261598 PMCID: PMC11390885 DOI: 10.1038/s42004-024-01297-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
Monoclonal antibody (mAb) glycoengineering has the potential to improve the efficacy of biopharmaceuticals by fine-tuning specific biological properties. Glycosylation analysis is key to monitoring the glycoengineering process. Various mass spectrometry (MS)-based methods are available to characterize mAb glycosylation at different structural levels, but comprehensive analysis is typically time-consuming and costly. Here, we present an approach that combines conventional intact mass measurement of glycoforms by direct infusion ESI-MS with an advanced MALDI-in-source decay FT-ICR MS method for direct analysis of glycans in intact mAbs, without the need for enzymatic release and separation. Using a sodium-doped MALDI matrix, glycans were directly released as ISD fragment ions from the intact mAbs during the ionization process. Measurement of 0,2A fragment signals yielded reproducible glycan profiles that were consistent with conventional methods, yet was achieved with unprecedented speed, providing complementary information to that obtained through intact mass measurement. The methods were applied to standard and glycoengineered trastuzumab and rituximab, allowing rapid glycosylation profiling and structural analysis of glycans by tandem MS of selected ISD fragment ions. This fast approach can facilitate the early-phase development of glycoengineering processes by constraining further in-depth analyses. We envision a broader applicability in studies focused on glycosylation changes in mAbs.
Collapse
Affiliation(s)
- Isabella Senini
- University of Pavia, via Taramelli 12, Pavia, Italy
- Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands
| | | | | | | | | | - Dietmar Reusch
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Marcello Donini
- Laboratory of Biotechnology, ENEA Casaccia Research Center, Via Anguillarese 301, Roma, Italy
| | - Carla Marusic
- Laboratory of Biotechnology, ENEA Casaccia Research Center, Via Anguillarese 301, Roma, Italy
| | - Peter A van Veelen
- Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands
| | | | - Manfred Wuhrer
- Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands
| | | | - Simone Nicolardi
- Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands.
| |
Collapse
|
2
|
Wang CR, McFarlane LO, Pukala TL. Exploring snake venoms beyond the primary sequence: From proteoforms to protein-protein interactions. Toxicon 2024; 247:107841. [PMID: 38950738 DOI: 10.1016/j.toxicon.2024.107841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Snakebite envenomation has been a long-standing global issue that is difficult to treat, largely owing to the flawed nature of current immunoglobulin-based antivenom therapy and the complexity of snake venoms as sophisticated mixtures of bioactive proteins and peptides. Comprehensive characterisation of venom compositions is essential to better understanding snake venom toxicity and inform effective and rationally designed antivenoms. Additionally, a greater understanding of snake venom composition will likely unearth novel biologically active proteins and peptides that have promising therapeutic or biotechnological applications. While a bottom-up proteomic workflow has been the main approach for cataloguing snake venom compositions at the toxin family level, it is unable to capture snake venom heterogeneity in the form of protein isoforms and higher-order protein interactions that are important in driving venom toxicity but remain underexplored. This review aims to highlight the importance of understanding snake venom heterogeneity beyond the primary sequence, in the form of post-translational modifications that give rise to different proteoforms and the myriad of higher-order protein complexes in snake venoms. We focus on current top-down proteomic workflows to identify snake venom proteoforms and further discuss alternative or novel separation, instrumentation, and data processing strategies that may improve proteoform identification. The current higher-order structural characterisation techniques implemented for snake venom proteins are also discussed; we emphasise the need for complementary and higher resolution structural bioanalytical techniques such as mass spectrometry-based approaches, X-ray crystallography and cryogenic electron microscopy, to elucidate poorly characterised tertiary and quaternary protein structures. We envisage that the expansion of the snake venom characterisation "toolbox" with top-down proteomics and high-resolution protein structure determination techniques will be pivotal in advancing structural understanding of snake venoms towards the development of improved therapeutic and biotechnology applications.
Collapse
Affiliation(s)
- C Ruth Wang
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Lewis O McFarlane
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Tara L Pukala
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia.
| |
Collapse
|
3
|
Takayama M. Transient Conformations Leading to Peptide Fragment Ion [c + 2H] + via Intramolecular Hydrogen Bonding Using MALDI In-source Decay Mass Spectrometry of Serine-, Threonine-, and/or Cysteine-Containing Peptides. Molecules 2023; 28:7700. [PMID: 38067431 PMCID: PMC10708033 DOI: 10.3390/molecules28237700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The formation of a peptide fragment ion [c + 2H]+ was examined using ultraviolet matrix-assisted laser desorption/ionization in-source decay mass spectrometry (UV/MALDI-ISD MS). Unusually, an ISD experiment with a hydrogen-abstracting oxidative matrix 4-nitro-1-naphthol (4,1-NNL) resulted in a [c + 2H]+ ion when the analyte peptides contained serine (Ser), threonine (Thr), and/or cysteine (Cys) residues, although the ISD with 4,1-NNL merely resulted in [a]+ and [d]+ ions. The [c + 2H]+ ion observed could be rationalized through intramolecular hydrogen atom transfer (HAT), like a Type-II reaction via a seven-membered conformation involving intramolecular hydrogen bonding (HB) between the active hydrogens (-OH and -SH) of the Ser/Thr/Cys residues and the backbone carbonyl oxygen at the adjacent amino (N)-terminal side residue. The ISD of the Cys-containing peptide resulted in the [c + 2H]+ ions, which originated from cleavage at the backbone N-Cα bonds far from the Cys residue, suggesting that the peptide molecule formed 16- and 22-membered transient conformations in the gas phase. The time-dependent density functional theory (TDDFT) calculations of the model structures of the Ser and Cys residues indicated that the Cys residue did not show a constructive bond interaction between the donor thiol (-SH) and carbonyl oxygen (=CO), while the Ser residue formed a distinct intramolecular HB.
Collapse
Affiliation(s)
- Mitsuo Takayama
- Graduate School in Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
4
|
Meier-Credo J, Preiss L, Wüllenweber I, Resemann A, Nordmann C, Zabret J, Suckau D, Michel H, Nowaczyk MM, Meier T, Langer JD. Top-Down Identification and Sequence Analysis of Small Membrane Proteins Using MALDI-MS/MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1293-1302. [PMID: 35758524 PMCID: PMC9264385 DOI: 10.1021/jasms.2c00102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Identification and sequence determination by mass spectrometry have become routine analyses for soluble proteins. Membrane proteins, however, remain challenging targets due to their hydrophobicity and poor annotation. In particular small membrane proteins often remain unnoticed as they are largely inaccessible to Bottom-Up proteomics. Recent advances in structural biology, though, have led to multiple membrane protein complex structures being determined at sufficiently high resolution to detect uncharacterized, small subunits. In this work we offer a guide for the mass spectrometric characterization of solvent extraction-based purifications of small membrane proteins isolated from protein complexes and cellular membranes. We first demonstrate our Top-Down MALDI-MS/MS approach on a Photosystem II preparation, analyzing target protein masses between 2.5 and 9 kDa with high accuracy and sensitivity. Then we apply our technique to purify and sequence the mycobacterial ATP synthase c subunit, the molecular target of the antibiotic drug bedaquiline. We show that our approach can be used to directly track and pinpoint single amino acid mutations that lead to antibiotic resistance in only 4 h. While not applicable as a high-throughput pipeline, our MALDI-MS/MS and ISD-based approach can identify and provide valuable sequence information on small membrane proteins, which are inaccessible to conventional Bottom-Up techniques. We show that our approach can be used to unambiguously identify single-point mutations leading to antibiotic resistance in mycobacteria.
Collapse
Affiliation(s)
- Jakob Meier-Credo
- Proteomics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
- Proteomics, Max
Planck Institute for Brain Research, Max-von-Laue-Strasse 4, 60438 Frankfurt am Main, Germany
| | - Laura Preiss
- Structural
Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Imke Wüllenweber
- Proteomics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
- Proteomics, Max
Planck Institute for Brain Research, Max-von-Laue-Strasse 4, 60438 Frankfurt am Main, Germany
| | - Anja Resemann
- Bruker
Daltonics GmbH & Co. KG, Fahrenheitstrasse 4, 28359 Bremen, Germany
| | - Christoph Nordmann
- Bruker
Daltonics GmbH & Co. KG, Fahrenheitstrasse 4, 28359 Bremen, Germany
| | - Jure Zabret
- Department
of Plant Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany
| | - Detlev Suckau
- Bruker
Daltonics GmbH & Co. KG, Fahrenheitstrasse 4, 28359 Bremen, Germany
| | - Hartmut Michel
- Molecular
Membrane Biology, Max Planck Institute of
Biophysics, Max-von-Laue-Strasse
3, 60438 Frankfurt
am Main, Germany
| | - Marc M. Nowaczyk
- Department
of Plant Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany
| | - Thomas Meier
- Department
of Life Sciences, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Julian D. Langer
- Proteomics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
- Proteomics, Max
Planck Institute for Brain Research, Max-von-Laue-Strasse 4, 60438 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Asakawa D, Hosokai T, Nakayama Y. Experimental and Theoretical Investigation of MALDI In-Source Decay of Peptides with a Reducing Matrix: What Is the Initial Fragmentation Step? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1011-1021. [PMID: 35587880 DOI: 10.1021/jasms.2c00066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) with a reducing matrix is believed to be initiated by hydrogen transfer from the matrix to the peptide. Several new matrices have recently been developed to achieve more efficient MALDI-ISD. In particular, the use of matrices containing aniline groups facilitates MALDI-ISD to a greater extent than that of matrices containing phenol groups, although the N-H bond in aniline is stronger than the O-H bond in phenol. In this study, photoelectron yield spectroscopy of matrix solids revealed that conversion of the phenol group to the aniline group decreased the ionization energy of the matrix solids. Crucially, the use of a matrix with lower ionization energy has been found to result in efficient cleavage at N-Cα and disulfide bonds by MALDI-ISD. Therefore, electron association with the peptide rather than the fragmentation mechanism involving hydrogen atom attachment is proposed as the initial step of the MALDI-ISD process. In this mechanism, electron transfer from the reducing matrix to the peptide produces a peptide anion radical, which provides either a [cn + H]/[zm]• or [an]•/[ym + H] fragment pair. Fragmentation of the peptide anion radical strongly depends on the gas-phase acidity of the matrix used. Subsequently, the resultant fragments/radicals underwent a reaction in the MALDI plume, producing observable even-electron ions. Consequently, MALDI-ISD fragments are observed as both positive and negative ions, even though MALDI-ISD with a reducing matrix involves fragmentation of peptide anion radicals. The proposed mechanism is suitable for obtaining a better understanding of the MALDI-ISD process.
Collapse
Affiliation(s)
- Daiki Asakawa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Takuya Hosokai
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
- Department of Pure and Applied Chemistry, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yasuo Nakayama
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
- Department of Pure and Applied Chemistry; Division of Colloid and Interface Science; Research Group for Advanced Energy Conversion, Tokyo University of Science, Noda 278-8510, Japan
| |
Collapse
|
6
|
Nicolardi S, Danuser R, Dotz V, Domínguez-Vega E, Al Kaabi A, Beurret M, Anish C, Wuhrer M. Glycan and Protein Analysis of Glycoengineered Bacterial E. coli Vaccines by MALDI-in-Source Decay FT-ICR Mass Spectrometry. Anal Chem 2022; 94:4979-4987. [PMID: 35293727 PMCID: PMC8969423 DOI: 10.1021/acs.analchem.1c04690] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/07/2022] [Indexed: 01/28/2023]
Abstract
Bacterial glycoconjugate vaccines have a major role in preventing microbial infections. Immunogenic bacterial glycans, such as O-antigen polysaccharides, can be recombinantly expressed and combined with specific carrier proteins to produce effective vaccines. O-Antigen polysaccharides are typically polydisperse, and carrier proteins can have multiple glycosylation sites. Consequently, recombinant glycoconjugate vaccines have a high structural heterogeneity, making their characterization challenging. Since development and quality control processes rely on such characterization, novel strategies are needed for faster and informative analysis. Here, we present a novel approach employing minimal sample preparation and ultrahigh-resolution mass spectrometry analysis for protein terminal sequencing and characterization of the oligosaccharide repeat units of bacterial glycoconjugate vaccines. Three glycoconjugate vaccine candidates, obtained from the bioconjugation of the O-antigen polysaccharides from E. coli serotypes O2, O6A, and O25B with the genetically detoxified exotoxin A from Pseudomonas aeruginosa, were analyzed by MALDI-in-source decay (ISD) FT-ICR MS. Protein and glycan ISD fragment ions were selectively detected using 1,5-diaminonaphtalene and a 2,5-dihydroxybenzoic acid/2-hydroxy-5-methoxybenzoic acid mixture (super-DHB) as a MALDI matrix, respectively. The analysis of protein fragments required the absence of salts in the samples, while the presence of salt was key for the detection of sodiated glycan fragments. MS/MS analysis of O-antigen ISD fragments allowed for the detection of specific repeat unit signatures. The developed strategy requires minute sample amounts, avoids the use of chemical derivatizations, and comes with minimal hands-on time allowing for fast corroboration of key structural features of bacterial glycoconjugate vaccines during early- and late-stage development.
Collapse
Affiliation(s)
- Simone Nicolardi
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Renzo Danuser
- Janssen
Vaccines AG (Branch of Cilag GmbH International), Rehhagstrasse 79, CH-3018 Bern, Switzerland
| | - Viktoria Dotz
- Bacterial
Vaccine Discovery & Early Development, Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Elena Domínguez-Vega
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Ali Al Kaabi
- Janssen
Vaccines AG (Branch of Cilag GmbH International), Rehhagstrasse 79, CH-3018 Bern, Switzerland
| | - Michel Beurret
- Bacterial
Vaccine Discovery & Early Development, Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Chakkumkal Anish
- Bacterial
Vaccine Discovery & Early Development, Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Manfred Wuhrer
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
7
|
Takayama M. Sensitive and resistant of the homologous disulfide-bridged proteins α-lactalbumin and lysozyme to attack of hydrogen-atoms, dithiothreitol and trifluoroacetic acid, examined by matrix-assisted laser desorption/ionization mass spectrometry. Biochem Biophys Rep 2022; 29:101212. [PMID: 35111980 PMCID: PMC8790284 DOI: 10.1016/j.bbrep.2022.101212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/26/2021] [Accepted: 01/13/2022] [Indexed: 12/03/2022] Open
Abstract
Background Evolutionarily homologous proteins bovine α-lactoalbumin (αLA) and hen egg-white lysozyme (HEL) are very similar in primary, secondary and tertiary structures involving the location of disulfide-bridges (S–S), and are resistant to the action of hydrolytic enzymes and reagents. It is of interest to examine and compare the difference in backbone cleavage characteristics, by using reductive and hydrolytic reagents. Methods In-source decay (ISD) combined with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS), reductive treatment of αLA and HEL with dithiothreitol (DTT) and acid hydrolysis with trifluoroacetic acid (TFA) were employed to examine the difference in the backbone cleavage characteristics of αLA and HEL. Results The treatment of αLA and HEL with DTT/AcOHNH3 resulted in similar cleavage behaviors of the backbone N-Cα and S–S bonds, i.e., the enhancements of the intensity and m/z range of sequence-reflected fragment ions were very similar. However, the treatment of αLA with DTT/TFA resulted in unexpected residue-specific degradation at the peptide bond of the Asp-Xxx, Xxx-Ser/Thr, Gln-Xxx, Xxx-Gly and Gly-Xxx residues, while HEL did not occur such degradation. Conclusions The results obtained above indicate that acidic αLA is very sensitive to acidic additive such as TFA, while basic HEL is resistance to acidic additives. General significance The study demonstrates the sensitive and resistant of evolutionary homologous proteins αLA and HEL to the acid hydrolysis and these characters come from acidic and basic nature of the proteins. Evolutionary homologous proteins bovine alpha-lactoalbumin and hen egg-white lysozyme are quite different in the protection from acidic reagents. Alpha-lactoalbumin is easily hydrolyzed with acidic reagents at the specific Asp, Gly, Thr and Ser residues owing to the acidic protein with pI4.53 Lysozyme is perfectly resistant to acidic reagents due to the presence of strong basic Arg residues owing to the basic protein with pI10.7 Degradation characteristics at the backbone S–S and N-Cα bonds of both proteins are very similar.
Collapse
|
8
|
Birukou I, Zawadzki M, Graser G, Young S. Protein Characterization by MALDI In-Source Decay Mass Spectrometry in Support of Safety Assessments of Genetically Modified Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10358-10370. [PMID: 34428040 DOI: 10.1021/acs.jafc.1c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The advancement of mass spectrometry provides advantages for transgenic protein characterization in support of safety assessments of genetically modified crops. Here, we describe how matrix-assisted laser desorption ionization in-source decay (ISD) mass spectrometry (MS) in combination with intact mass and bottom-up analyses can be applied to achieve high confidence in the sequences of transgenic proteins expressed in plants and establish the biochemical equivalence of microbially produced protein surrogates. ISD confirmed 40-60 near terminal residues regardless of the protein size, including the improvement of the coverage of cysteine-rich proteins by the reduction/alkylation of disulfide bonds. Negative ISD significantly improved spectral quality and sequence coverage of acidic proteins. Various post-translational modifications, such as terminal truncations and N-terminal methionine excision and acetylation, were identified in plant-produced proteins by top-down MS. Finally, we demonstrated that a combination of top-down and bottom-up analyses provides high confidence in sequence equivalence of plant and microbially produced proteins.
Collapse
Affiliation(s)
- Ivan Birukou
- Syngenta Crop Protection, LLC, P.O. Box 12257, 9 Davis Drive, Durham, North Carolina 27709, United States
| | - Michal Zawadzki
- Jealott's Hill International Research Centre, Syngenta Ltd., Bracknell, Berkshire RG42 6EY, U.K
| | - Gerson Graser
- Syngenta Crop Protection, LLC, P.O. Box 12257, 9 Davis Drive, Durham, North Carolina 27709, United States
| | - Scott Young
- Syngenta Crop Protection, LLC, P.O. Box 12257, 9 Davis Drive, Durham, North Carolina 27709, United States
| |
Collapse
|
9
|
De Benedittis S, Gaspari M, Magariello A, Spadafora P, Citrigno L, Romeo N, Qualtieri A. LC-MALDI-TOF ISD MS analysis is an effective, simple and rapid method of investigation for histones characterization: Application to EBV lymphoblastoid cell lines. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4712. [PMID: 33851762 DOI: 10.1002/jms.4712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
This contribution is the result of our progressive engagement to develop and to apply a top-down liquid chromatography (LC) matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) (LC-MALDI-TOF) analysis for the histone post-translational modifications (PTMs) and variants characterization, mainly in order to provide comprehensive and fast results. The histone post-translational modifications and the differential expression of the histone variants play an essential role both in the DNA packaging mechanism in chromosomes and in the regulation of gene expression in different cellular processes, also in response to molecular agents of environmental origin. This epigenetic mechanism is widely studied in different field such as cellular differentiation, development and in the understanding of mechanisms underlying diseases. The characterization of histone PTMs has traditionally performed by antibodies-based assay, but immunological methods have significant limits, and today systems that use mass spectrometry are increasingly employed. We evaluated an in-source decay (ISD) analysis for the histone investigation on human lymphoblastoid cells, and by this approach, we were able to identify and quantify several PTMs such as the di-methylation in the lysine 20 and the acetylation in the lysine 16 in H4 and the mono-methylation, di-methylation and trimethylations at K9 of the histone H3.1. Moreover, we detected and quantified in the same H2B spectrum the prevalent H2B 1C/2E type but also the minor H2B 1D, 1M and 1B/1L/1N, 1O/2F, 1J/1K variants. In this work, we show that MALDI-ISD represents an excellent methodology to obtain global information on histone PTMs and variants from cells in culture, with rapidity and simplicity of execution. Finally, this is a useful approach to get label-free relative quantitative data of histone variants and PTMs.
Collapse
Affiliation(s)
- Selene De Benedittis
- National Research Council, Institute for Biomedical Research and Innovation (IRIB), Cosenza, Italy
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Marco Gaspari
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Angela Magariello
- National Research Council, Institute for Agricultural and Forest Systems in the Mediterranean (ISAFOM), Cosenza, Italy
| | - Patrizia Spadafora
- National Research Council, Institute for Biomedical Research and Innovation (IRIB), Cosenza, Italy
| | - Luigi Citrigno
- National Research Council, Institute for Biomedical Research and Innovation (IRIB), Cosenza, Italy
| | - Nelide Romeo
- National Research Council, Institute for Agricultural and Forest Systems in the Mediterranean (ISAFOM), Cosenza, Italy
| | - Antonio Qualtieri
- National Research Council, Institute for Biomedical Research and Innovation (IRIB), Cosenza, Italy
| |
Collapse
|
10
|
Nicolardi S, Kilgour DPA, van der Burgt YEM, Wuhrer M. Improved N- and C-Terminal Sequencing of Proteins by Combining Positive and Negative Ion MALDI In-Source Decay Mass Spectrometry. Anal Chem 2020; 92:12429-12436. [PMID: 32803948 PMCID: PMC7498143 DOI: 10.1021/acs.analchem.0c02198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/17/2020] [Indexed: 01/10/2023]
Abstract
The development of various ionization and fragmentation techniques has been of key importance for establishing mass spectrometry (MS) as a powerful tool for protein characterization. One example of this is matrix-assisted laser desorption/ionization (MALDI) combined with in-source decay (ISD) fragmentation that allows mapping of N- and C-terminal regions of large proteins without the need for proteolysis. Positive ion mode ISD fragments are commonly assigned in the mass region above m/z 1000, while MALDI matrix ions generally hamper the detection of smaller singly charged fragments. The ultrahigh resolving power provided by Fourier transform ion cyclotron resonance (FT-ICR) MS partially overcomes this limitation, but to further increase the detection of smaller fragments we have revisited the application of negative ion mode MALDI-ISD and found good coverage of the peptide chain termini starting from c'2 and z'2 fragment ions. For the first time, we demonstrate that the combination of negative and positive ion MALDI FT-ICR MS is a useful tool to improve the characterization of mAbs. The different specificities of the two ion modes allowed us to selectively cover the sequence of the light and heavy chains of mAbs at increased sensitivity. A comprehensive evaluation of positive and negative ion mode MALDI-ISD FT-ICR MS in the m/z range 46-13 500 showed an increased sequence coverage for three standard proteins, namely, myoglobin, SiLuLite mAb, and NIST mAb. The data obtained in the two ion modes were, in part, complementary.
Collapse
Affiliation(s)
- Simone Nicolardi
- Center
for Proteomics & Metabolomics, Leiden
University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - David P. A. Kilgour
- Department
of Chemistry, Nottingham Trent University, Nottingham NG11 0JN, U.K.
| | - Yuri E. M. van der Burgt
- Center
for Proteomics & Metabolomics, Leiden
University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Manfred Wuhrer
- Center
for Proteomics & Metabolomics, Leiden
University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| |
Collapse
|
11
|
Asakawa D. Ultraviolet-Laser-Induced Electron Transfer from Peptides to an Oxidizing Matrix: Study of the First Step of MALDI In-Source Decay Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1918-1926. [PMID: 32687357 DOI: 10.1021/jasms.0c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although the N-H bond in peptide backbones is stronger than the C-H bond, hydrogen abstraction from the amide nitrogen is considered to be the initial step in the Cα-C bond cleavage of peptide backbones by matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) when using an oxidizing matrix. MALDI-ISD induces Cα-C bond cleavage in most amino acid residues, whereas the N-terminal sides of proline (Pro) residues preferentially undergo peptide bond cleavage, which cannot be explained by the previously proposed mechanism involving hydrogen abstraction from peptides. To explain the whole MALDI-ISD process, electron abstraction from peptides by the oxidizing matrix is proposed as the initial step in the MALDI-ISD process. The electron abstraction occurs from either nitrogen or oxygen in the peptide backbone and induces the cleavage of both Cα-C and N-H bonds in most amino acid residues, except for those on the N-terminal sides of Pro residues. Electron abstraction from the Pro residues induces the cleavage of both peptide and Cα-C bonds, which is consistent with MALDI-ISD experimental results. The electron transfer from the peptide to the oxidizing matrix occurs simultaneously with the formation of matrix ions, which is considered to be the initial ion formation process in MALDI. The resultant peptide radical cation produces protonated and neutral molecules/radicals, which undergo subsequent ion-molecule reactions in the MALDI plume, finally yielding the ions that are observed in MALDI-ISD spectrum. As a result, the fragment ions formed by MALDI-ISD are observed as both positive and negative ions.
Collapse
Affiliation(s)
- Daiki Asakawa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
| |
Collapse
|
12
|
Nicolardi S, Kilgour DPA, Dolezal N, Drijfhout JW, Wuhrer M, van der Burgt YEM. Evaluation of Sibling and Twin Fragment Ions Improves the Structural Characterization of Proteins by Top-Down MALDI In-Source Decay Mass Spectrometry. Anal Chem 2020; 92:5871-5881. [PMID: 32212639 PMCID: PMC7178258 DOI: 10.1021/acs.analchem.9b05683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Comprehensive determination
of primary sequence and identification
of post-translational modifications (PTMs) are key elements in protein
structural analysis. Various mass spectrometry (MS) based fragmentation
techniques are powerful approaches for mapping both the amino acid
sequence and PTMs; one of these techniques is matrix-assisted laser
desorption/ionization (MALDI), combined with in-source decay (ISD)
fragmentation and Fourier-transform ion cyclotron resonance (FT-ICR)
MS. MALDI-ISD MS protein analysis involves only minimal sample preparation
and does not require spectral deconvolution. The resulting MALDI-ISD
MS data is complementary to electrospray ionization-based MS/MS sequencing
readouts, providing knowledge on the types of fragment ions is available.
In this study, we evaluate the isotopic distributions of z′ ions in protein top-down MALDI-ISD FT-ICR mass spectra and
show why these distributions can deviate from theoretical profiles
as a result of co-occurring and isomeric z and y-NH3 ions. Two synthetic peptides, containing
either normal or deuterated alanine residues, were used to confirm
the presence and unravel the identity of isomeric z and y-NH3 fragment ions (“twins”).
Furthermore, two reducing MALDI matrices, namely 1,5-diaminonaphthalene
and N-phenyl-p-phenylenediamine
were applied that yield ISD mass spectra with different fragment ion
distributions. This study demonstrates that the relative abundance
of isomeric z and y-NH3 ions requires consideration for accurate and confident assignments
of z′ ions in MALDI-ISD FT-ICR mass spectra.
Collapse
Affiliation(s)
- Simone Nicolardi
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden 2333, ZA, The Netherlands
| | - David P A Kilgour
- Department of Chemistry, Nottingham Trent University, Nottingham NG11 0JN, United Kingdom
| | - Natasja Dolezal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333, ZA, The Netherlands
| | - Jan W Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333, ZA, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden 2333, ZA, The Netherlands
| | - Yuri E M van der Burgt
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden 2333, ZA, The Netherlands
| |
Collapse
|
13
|
Kimura S, Fujisaka A, Obika S. Nucleobase derivatives induce in-source decay of oligonucleotides as new matrix-assisted laser desorption/ionization matrices. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8620. [PMID: 31658399 DOI: 10.1002/rcm.8620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE For quality control of oligonucleotide therapeutics, accurate and efficient structural characterization using mass spectrometry techniques, such as liquid chromatography/mass spectrometry (LC/MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), is essential. In MALDI MS analysis, matrix selection is critical and a new matrix could enable more efficient and rapid structural analysis. METHODS We hypothesized that nucleobase derivatives could act as matrices more efficiently than the currently used matrices for oligonucleotides because of structural similarity, which leads to close contact with the analyte. To evaluate their suitability as matrices, 16 nucleobase derivatives were selected and tested as matrix candidates for oligonucleotide analysis. RESULTS Six of the 16 nucleobase derivatives acted as matrices for oligonucleotides. Particularly, 6-thioguanine (TG) performed well and induced clear in-source decay fragmentation. When TG or 2-amino-6-chloropurine was used as the matrix, oligonucleotides were ionized, and mainly the w and d fragment ions were observed. CONCLUSIONS Herein we demonstrate that a 10-mer RNA or DNA sequence can be successfully characterized using TG as matrix and suggest the possibility of using nucleobase derivatives as novel matrices in oligonucleotide sequencing.
Collapse
Affiliation(s)
- Satoshi Kimura
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Aki Fujisaka
- Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
14
|
Hempel BF, Damm M, Mrinalini, Göçmen B, Karış M, Nalbantsoy A, Kini RM, Süssmuth RD. Extended Snake Venomics by Top-Down In-Source Decay: Investigating the Newly Discovered Anatolian Meadow Viper Subspecies, Vipera anatolica senliki. J Proteome Res 2020; 19:1731-1749. [PMID: 32073270 DOI: 10.1021/acs.jproteome.9b00869] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, we report on the venom proteome of Vipera anatolica senliki, a recently discovered and hitherto unexplored subspecies of the critically endangered Anatolian meadow viper endemic to the Antalya Province of Turkey. Integrative venomics, including venom gland transcriptomics as well as complementary bottom-up and top-down proteomics analyses, were applied to fully characterize the venom of V. a. senliki. Furthermore, the classical top-down venomics approach was extended to elucidate the venom proteome by an alternative in-source decay (ISD) proteomics workflow using the reducing matrix 1,5-diaminonaphthalene. Top-down ISD proteomics allows for disulfide bond counting and effective de novo sequencing-based identification of high-molecular-weight venom constituents, both of which are difficult to achieve by commonly established top-down approaches. Venom gland transcriptome analysis identified 96 toxin transcript annotations from 18 toxin families. Relative quantitative snake venomics revealed snake venom metalloproteinases (42.9%) as the most abundant protein family, followed by several less dominant toxin families. Online mass profiling and top-down venomics provide a detailed insight into the venom proteome of V. a. senliki and facilitate a comparative analysis of venom variability for the closely related subspecies, Vipera anatolica anatolica.
Collapse
Affiliation(s)
- Benjamin-Florian Hempel
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Maik Damm
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Mrinalini
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Bayram Göçmen
- Department of Biology, Faculty of Science, Ege University, 35100 Bornova, 35100 Izmir, Turkey
| | - Mert Karış
- Department of Biology, Faculty of Science, Ege University, 35100 Bornova, 35100 Izmir, Turkey
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Bornova, Turkey
| | - R Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16, Medical Drive, Singapore 117600
| | - Roderich D Süssmuth
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
15
|
Miyazawa K, Takayama M. Multiple Hydrogen Loss from [M + H] + and [a] + ions of Peptides in MALDI In-Source Decay Using a Dinitro-Substituted Matrix. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:547-552. [PMID: 32126775 DOI: 10.1021/jasms.9b00013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The formation and radical-directed dissociation of multiple hydrogen-abstracted peptide cations [M + H - mH]·+ has been reported using MALDI-ISD with dinitro-substituted matrices. The MALDI-ISD of synthetic peptides using 3,5-dinitrosalicylic acid (3,5-DNSA) and 3,4-dinitrobenzoic acid (3,4-DNBA) as matrices resulted in multiple hydrogen abstraction from the analyte [M + H]+ and fragment [a]+ ions, i.e., [M + H - mH]+ and [a - mH]+ (m = 1-8). All of the ISD spectra showed unusually intense [a]+ ions originating from cleavage at the Cα-C bond of the Leu-Xxx residues when peptides without Phe/Tyr/His/Cys residues were used. The intensity of the [an]+ series ions generated using 3,5-DNSA and 3,4-DNBA rapidly decreased with increasing residue number n, suggesting cleavage at multiradical sites of [M + H - mH]•+. It was suggested that multiple hydrogen abstraction from protonated peptides [M + H]+ mainly takes place from the backbone amide nitrogen.
Collapse
Affiliation(s)
- Kei Miyazawa
- Mass Spectrometry Laboratory, Graduate School in Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Mitsuo Takayama
- Mass Spectrometry Laboratory, Graduate School in Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
16
|
Han J, Permentier H, Bischoff R, Groothuis G, Casini A, Horvatovich P. Imaging of protein distribution in tissues using mass spectrometry: An interdisciplinary challenge. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Applications of Matrix-Assisted Laser Desorption Ionization In-Source Decay Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:45-54. [DOI: 10.1007/978-3-030-15950-4_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Fukuyama Y, Izumi S, Tanaka K. 3-Hydroxy-2-Nitrobenzoic Acid as a MALDI Matrix for In-Source Decay and Evaluation of the Isomers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:2227-2236. [PMID: 30062476 DOI: 10.1007/s13361-018-2030-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/26/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
In in-source decay (ISD) in matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry (MS), 1,5-diaminonaphthalene (1,5-DAN) is a most frequently used matrix probably due to the highly sensitive detection of fragment ions. 1,5-DAN is a reducing matrix generating c- and z-series ions by N-Cα bond cleavage. However, it is difficult for reducing matrices to distinguish leucine and isoleucine, and generate c(n-1)-series ions owing to proline (Pro) at residues n. Oxidizing matrices providing a- and x-series ions accompanied by d-series ions by Cα-C bond cleavage solve the problem, but their sensitivity of the ISD fragment ions has been lower than reducing matrices such as 1,5-DAN. Recently, 3-hydroxy-4-nitrobenzoic acid (3H4NBA) had been reported as an oxidizing matrix generating a-series ions with higher intensity compared with conventional oxidizing matrices such as 5-nitrosalicylic acid, but a little lower intensity compared with 1,5-DAN (Anal Chem 88, 8058-8063, 2016). In this study, 3H4NBA isomers (2H3NBA, 2H4NBA, 2H5NBA, 2H6NBA, 3H2NBA, 3H5NBA, 4H2NBA, 4H3NBA, 5H2NBA, and 3H4NBA) were evaluated. All the isomers generated a-series ions accompanied by d-series ions, wherein 3H2NBA, 3H5NBA, 4H2NBA, 4H3NBA, and 5H2NBA were first confirmed as oxidizing matrices for ISD. Among the isomers, 3H2NBA and 4H3NBA generated a-series ions with higher peak intensity compared with 3H4NBA for several peptides. Especially, 3H2NBA generated a-series ions with almost the same or higher intensity, and clearly higher peak resolution compared with c-series ions using 1,5-DAN in several cases. 3H2NBA was expected to contribute to ISD analyses in MALDI-MS as one of the most effective oxidizing matrices. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yuko Fukuyama
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1, Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto, 604-8511, Japan.
| | - Shunsuke Izumi
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Koichi Tanaka
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1, Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto, 604-8511, Japan
| |
Collapse
|
19
|
Resemann A, Liu-Shin L, Tremintin G, Malhotra A, Fung A, Wang F, Ratnaswamy G, Suckau D. Rapid, automated characterization of disulfide bond scrambling and IgG2 isoform determination. MAbs 2018; 10:1200-1213. [PMID: 30277844 PMCID: PMC6284591 DOI: 10.1080/19420862.2018.1512328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human antibodies of the IgG2 subclass exhibit complex inter-chain disulfide bonding patterns that result in three structures, namely A, A/B, and B. In therapeutic applications, the distribution of disulfide isoforms is a critical product quality attribute because each configuration affects higher order structure, stability, isoelectric point, and antigen binding. The current standard for quantification of IgG2 disulfide isoform distribution is based on chromatographic or electrophoretic techniques that require additional characterization using mass spectrometry (MS)-based methods to confirm disulfide linkages. Detailed characterization of the IgG2 disulfide linkages often involve MS/MS approaches that include electrospray ionization or electron-transfer dissociation, and method optimization is often cumbersome due to the large size and heterogeneity of the disulfide-bonded peptides. As reported here, we developed a rapid LC-MALDI-TOF/TOF workflow that can both identify the IgG2 disulfide linkages and provide a semi-quantitative assessment of the distribution of the disulfide isoforms. We established signature disulfide-bonded IgG2 hinge peptides that correspond to the A, A/B, and B disulfide isoforms and can be applied to the fast classification of IgG2 isoforms in heterogeneous mixtures.
Collapse
Affiliation(s)
- Anja Resemann
- a BioPharma Solutions R&D , BALS, Bruker Daltonik , Bremen , Germany
| | - Lily Liu-Shin
- b Analytical and Formulation Development, Agensys, Inc., an affiliate of Astellas , Santa Monica , CA , USA.,c Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , FL , USA
| | | | - Arun Malhotra
- c Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Adam Fung
- b Analytical and Formulation Development, Agensys, Inc., an affiliate of Astellas , Santa Monica , CA , USA
| | - Fang Wang
- b Analytical and Formulation Development, Agensys, Inc., an affiliate of Astellas , Santa Monica , CA , USA
| | - Gayathri Ratnaswamy
- b Analytical and Formulation Development, Agensys, Inc., an affiliate of Astellas , Santa Monica , CA , USA
| | - Detlev Suckau
- a BioPharma Solutions R&D , BALS, Bruker Daltonik , Bremen , Germany
| |
Collapse
|
20
|
Massonnet P, Haler JRN, Upert G, Smargiasso N, Mourier G, Gilles N, Quinton L, De Pauw E. Disulfide Connectivity Analysis of Peptides Bearing Two Intramolecular Disulfide Bonds Using MALDI In-Source Decay. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1995-2002. [PMID: 29987664 DOI: 10.1007/s13361-018-2022-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/07/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
Disulfide connectivity in peptides bearing at least two intramolecular disulfide bonds is highly important for the structure and the biological activity of the peptides. In that context, analytical strategies allowing a characterization of the cysteine pairing are of prime interest for chemists, biochemists, and biologists. For that purpose, this study evaluates the potential of MALDI in-source decay (ISD) for characterizing cysteine pairs through the systematic analysis of identical peptides bearing two disulfide bonds, but not the same cysteine connectivity. Three different matrices have been tested in positive and/or in negative mode (1,5-DAN, 2-AB and 2-AA). As MALDI-ISD is known to partially reduce disulfide bonds, the data analysis of this study rests firstly on the deconvolution of the isotope pattern of the parent ions. Moreover, data analysis is also based on the formed fragment ions and their signal intensities. Results from MS/MS-experiments (MALDI-ISD-MS/MS) constitute the last reference for data interpretation. Owing to the combined use of different ISD-promoting matrices, cysteine connectivity identification could be performed on the considered peptides. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Philippe Massonnet
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Quartier Agora, Allée du six Aout 11, B-4000, Liege, Belgium.
| | - Jean R N Haler
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Quartier Agora, Allée du six Aout 11, B-4000, Liege, Belgium
| | - Gregory Upert
- Commissariat à l'Energie Atomique, DRF/SIMOPRO, 91191, Gif sur Yvette, France
| | - Nicolas Smargiasso
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Quartier Agora, Allée du six Aout 11, B-4000, Liege, Belgium
| | - Gilles Mourier
- Commissariat à l'Energie Atomique, DRF/SIMOPRO, 91191, Gif sur Yvette, France
| | - Nicolas Gilles
- Commissariat à l'Energie Atomique, DRF/SIMOPRO, 91191, Gif sur Yvette, France
| | - Loïc Quinton
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Quartier Agora, Allée du six Aout 11, B-4000, Liege, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Quartier Agora, Allée du six Aout 11, B-4000, Liege, Belgium
| |
Collapse
|
21
|
Qi Y, Müller MJ, Volmer DA. Activation of Reactive MALDI Adduct Ions Enables Differentiation of Dihydroxylated Vitamin D Isomers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2532-2537. [PMID: 28842822 DOI: 10.1007/s13361-017-1775-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Vitamin D compounds are secosteroids, which are best known for their role in bone health. More recent studies have shown that vitamin D metabolites and catabolites such as dihydroxylated species (e.g., 1,25- and 24,25-dihydroxyvitamin D3) play key roles in the pathologies of various diseases. Identification of these isomers by mass spectrometry is challenging and currently relies on liquid chromatography, as the isomers exhibit virtually identical product ion spectra under collision induced dissociation conditions. Here, we developed a simple MALDI-CID method that utilizes ion activation of reactive analyte/matrix adducts to distinguish isomeric dihydroxyvitamin D3 species, without the need for chromatography separation or chemical derivatization techniques. Specifically, reactive 1,5-diaminonaphthalene adducts of dihydroxyvitamin D3 compounds formed during MADI were activated and specific cleavages in the secosteroid's backbone structure were achieved that produced isomer-diagnostic fragment ions. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yulin Qi
- Institute of Bioanalytical Chemistry, Saarland University, D-66123, Saarbrücken, Germany
| | - Miriam J Müller
- Institute of Bioanalytical Chemistry, Saarland University, D-66123, Saarbrücken, Germany
| | - Dietrich A Volmer
- Institute of Bioanalytical Chemistry, Saarland University, D-66123, Saarbrücken, Germany.
| |
Collapse
|
22
|
Abstract
BACKGROUND Variable domains of camelid heavy-chain antibodies, commonly named nanobodies, have high biotechnological potential. In view of their broad range of applications in research, diagnostics and therapy, engineering their stability is of particular interest. One important aspect is the improvement of thermostability, because it can have immediate effects on conformational stability, protease resistance and aggregation propensity of the protein. METHODS We analyzed the sequences and thermostabilities of 78 purified nanobody binders. From this data, potentially stabilizing amino acid variations were identified and studied experimentally. RESULTS Some mutations improved the stability of nanobodies by up to 6.1°C, with an average of 2.3°C across eight modified nanobodies. The stabilizing mechanism involves an improvement of both conformational stability and aggregation behavior, explaining the variable degree of stabilization in individual molecules. In some instances, variations predicted to be stabilizing actually led to thermal destabilization of the proteins. The reasons for this contradiction between prediction and experiment were investigated. CONCLUSIONS The results reveal a mutational strategy to improve the biophysical behavior of nanobody binders and indicate a species-specificity of nanobody architecture. GENERAL SIGNIFICANCE This study illustrates the potential and limitations of engineering nanobody thermostability by merging sequence information with stability data, an aspect that is becoming increasingly important with the recent development of high-throughput biophysical methods.
Collapse
|
23
|
Covaleda G, Trejo SA, Salas-Sarduy E, Del Rivero MA, Chavez MA, Aviles FX. Intensity fading MALDI-TOF mass spectrometry and functional proteomics assignments to identify protease inhibitors in marine invertebrates. J Proteomics 2017; 165:75-92. [PMID: 28602552 DOI: 10.1016/j.jprot.2017.05.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/20/2017] [Accepted: 05/31/2017] [Indexed: 12/14/2022]
Abstract
Proteases and their inhibitors have become molecules of increasing fundamental and applicative value. Here we report an integrated strategy to identify and analyze such inhibitors from Caribbean marine invertebrates extracts by a fast and sensitive functional proteomics-like approach. The strategy works in three steps: i) multiplexed enzymatic inhibition kinetic assays, ii) Intensity Fading MALDI-TOF MS to establish a link between inhibitory molecules and the related MALDI signal(s) detected in the extract(s), and iii) ISD-CID-T3 MS fragmentation on the parent MALDI signals selected in the previous step, enabling the partial or total top-down sequencing of the molecules. The present study has allowed validation of the whole approach, identification of a substantial number of novel protein protease inhibitors, as well as full or partial sequencing of reference molecular species and of many unknown ones, respectively. Such inhibitors correspond to six protease subfamilies (metallocarboxypeptidases-A and -B, pepsin, papain, trypsin and subtilisin), are small (1-10KDa) disulfide-rich proteins, and have been found at diverse frequencies among the invertebrates (13 to 41%). The overall procedure could be tailored to other enzyme-inhibitor and protein interacting systems, analyzing samples at medium-throughput level and leading to the functional and structural characterization of proteinaceous ligands from complex biological extracts. SIGNIFICANCE Invertebrate animals, and marine ones among, display a remarkable diversity of species and contained biomolecules. Many of their proteins-peptides have high biological, biotechnological and biomedical potential interest but, because of the lack of sequenced genomes behind, their structural and functional characterization constitutes a great challenge. Here, looking at the small, disulfide-rich, proteinaceous inhibitors of proteases found in them, it is shown that such problem can be significatively facilitated by integrative multiplexed enzymatic assays, affinity-based Intensity-Fading (IF-) MALDI-TOF mass spectrometry (MS), and on-line MS fragmentation, in a fast and easy approach.
Collapse
Affiliation(s)
- Giovanni Covaleda
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Sebastian A Trejo
- Servei de Proteomica i Biologia Estructural SePBioEs, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Emir Salas-Sarduy
- Centro de Estudio de Proteinas, Facultad de Biologia, Universidad de la Habana, Cuba
| | | | - Maria Angeles Chavez
- Centro de Estudio de Proteinas, Facultad de Biologia, Universidad de la Habana, Cuba.
| | - Francesc X Aviles
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
24
|
Mulagapati S, Koppolu V, Raju TS. Decoding of O-Linked Glycosylation by Mass Spectrometry. Biochemistry 2017; 56:1218-1226. [PMID: 28196325 DOI: 10.1021/acs.biochem.6b01244] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein glycosylation (N- and O-linked) plays an important role in many biological processes, including protein structure and function. However, the structural elucidation of glycans, specifically O-linked glycans, remains a major challenge and is often overlooked during protein analysis. Recently, mass spectrometry (MS) has matured as a powerful technology for high-quality analytical characterization of O-linked glycans. This review summarizes the recent developments and insights of MS-based glycomics technologies, with a focus on mucin-type O-glycan analysis. Three main MS-based approaches are outlined: O-glycan profiling (structural analysis of released O-glycan), a "bottom-up" approach (analysis of an O-glycan covalently attached to a glycopeptide), and a "top-down" approach (analysis of a glycan attached to an intact glycoprotein). In addition, the most widely used MS ionization techniques, i.e., matrix-assisted laser desorption ionization and electrospray ionization, as well as ion activation techniques like collision-induced dissociation, electron capture dissociation, and electron transfer dissociation during O-glycan analysis are discussed. The MS technical approaches mentioned above are already major improvements for studying O-linked glycosylation and appear to be valuable for in-depth analysis of the type of O-glycan attached, branching patterns, and the occupancy of O-glycosylation sites.
Collapse
Affiliation(s)
- SriHariRaju Mulagapati
- Bioassay Development and Quality, Analytical Sciences, Biopharmaceutical Development, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Veerendra Koppolu
- Bioassay Development and Quality, Analytical Sciences, Biopharmaceutical Development, MedImmune , Gaithersburg, Maryland 20878, United States
| | - T Shantha Raju
- Bioassay Development and Quality, Analytical Sciences, Biopharmaceutical Development, MedImmune , Gaithersburg, Maryland 20878, United States
| |
Collapse
|
25
|
Kwak H, Dohmae N. Characterization of post-translational modifications on lysine 9 of histone H3 variants in mouse testis using matrix-assisted laser desorption/ionization in-source decay. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:2529-2536. [PMID: 27643486 PMCID: PMC5108415 DOI: 10.1002/rcm.7742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/25/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Post-translational modifications (PTMs) of histones result in changes to transcriptional activities and chromatin remodeling. Lysine 9 of histone H3 (H3K9) is subject to PTMs, such as methylation and acetylation, which influence histone activity during spermatogenesis. Characterization strategies for studying PTMs on H3K9 have been developed to provide epigenetic and proteomic information. Proteomic analysis has been used to limited success to study PTMs on H3K9; however, a comprehensive analytical approach is required to elucidate global patterns of PTMs of H3 variants during spermatogenesis. METHODS Intact H3 variants in mouse testis were separated by high-performance liquid chromatography on a reversed-phase column with an ion-pairing reagent. Modifications to H3K9 were identified via top-down analysis using matrix-assisted laser desorption/ionization in source decay (MALDI-ISD). RESULTS Mono-, di-, and tri-methylations were identified at H3K9 in mouse testis and epididymis. These modifications were also observed in testis-specific histone H3 (H3t). Specifically, tri-methylation was more abundant on H3tK9 than on K9 of other H3 variants. CONCLUSIONS We introduce a method for rapid, simple, and comprehensive characterization of PTMs on the N-termini of H3 variants using MALDI-ISD. This approach provides novel and useful information, including K9 modifications on H3t, which would benefit epigenetic and proteomic research. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Ho‐Geun Kwak
- Biomolecular Characterization UnitRIKEN Center for Sustainable Resource Science2‐1 HirosawaWako351‐0198Japan
- Graduate School of Science and EngineeringSaitama UniversitySaitamaSaitama338‐8570Japan
| | - Naoshi Dohmae
- Biomolecular Characterization UnitRIKEN Center for Sustainable Resource Science2‐1 HirosawaWako351‐0198Japan
- Graduate School of Science and EngineeringSaitama UniversitySaitamaSaitama338‐8570Japan
| |
Collapse
|
26
|
Ait-Belkacem R, Dilillo M, Pellegrini D, Yadav A, de Graaf EL, McDonnell LA. In-Source Decay and Pseudo-MS 3 of Peptide and Protein Ions Using Liquid AP-MALDI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:2075-2079. [PMID: 27752913 PMCID: PMC5088222 DOI: 10.1007/s13361-016-1511-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/09/2016] [Accepted: 09/11/2016] [Indexed: 05/12/2023]
Abstract
Atmospheric pressure MALDI on a Q-Exactive instrument was optimized for in-source decay and pseudo-MS3. The dependence of AP-MALDI ISD on the MALDI liquid matrix was investigated for peptides and proteins. The liquid matrices enabled long-life ISD signal, and exhibited high fragment ion yield and signal stability. Extensive a-, b-, c-, y-, and z-type fragment series were observed depending on the matrix used but were most extensive with 2,5-DHB. Complete sequence coverage of small peptide and intact protein-terminus sequence tags were obtained and confirmed using HCD as a pseudo-MS3 method. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
| | - Marialaura Dilillo
- Fondazione Pisana per la Scienza ONLUS, Pisa, Italy
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Pisa, Italy
| | - Davide Pellegrini
- Fondazione Pisana per la Scienza ONLUS, Pisa, Italy
- Scuola Normale Superiore di Pisa, Pisa, Italy
| | | | | | - Liam A McDonnell
- Fondazione Pisana per la Scienza ONLUS, Pisa, Italy.
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
27
|
A Proof of Concept to Bridge the Gap between Mass Spectrometry Imaging, Protein Identification and Relative Quantitation: MSI~LC-MS/MS-LF. Proteomes 2016; 4:proteomes4040032. [PMID: 28248242 PMCID: PMC5260965 DOI: 10.3390/proteomes4040032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 01/08/2023] Open
Abstract
Mass spectrometry imaging (MSI) is a powerful tool to visualize the spatial distribution of molecules on a tissue section. The main limitation of MALDI-MSI of proteins is the lack of direct identification. Therefore, this study focuses on a MSI~LC-MS/MS-LF workflow to link the results from MALDI-MSI with potential peak identification and label-free quantitation, using only one tissue section. At first, we studied the impact of matrix deposition and laser ablation on protein extraction from the tissue section. Then, we did a back-correlation of the m/z of the proteins detected by MALDI-MSI to those identified by label-free quantitation. This allowed us to compare the label-free quantitation of proteins obtained in LC-MS/MS with the peak intensities observed in MALDI-MSI. We managed to link identification to nine peaks observed by MALDI-MSI. The results showed that the MSI~LC-MS/MS-LF workflow (i) allowed us to study a representative muscle proteome compared to a classical bottom-up workflow; and (ii) was sparsely impacted by matrix deposition and laser ablation. This workflow, performed as a proof-of-concept, suggests that a single tissue section can be used to perform MALDI-MSI and protein extraction, identification, and relative quantitation.
Collapse
|
28
|
Fukuyama Y, Izumi S, Tanaka K. 3-Hydroxy-4-nitrobenzoic Acid as a MALDI Matrix for In-Source Decay. Anal Chem 2016; 88:8058-63. [PMID: 27467192 DOI: 10.1021/acs.analchem.6b01471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In-source decay (ISD) in matrix-assisted laser desorption/ionization (MALDI) is a rapid sequencing method for peptides. 1,5-Diaminonaphthalene (1,5-DAN) is a most frequently used matrix for ISD. However, using 1,5-DAN generates mainly c- and z-series ions by N-Cα bond cleavage, which makes it difficult to distinguish leucine (Leu) and isoleucine (Ile), and frequently lacks c(n-1)-series ions owing to proline (Pro) at residues n. Several oxidizing matrices generating a- and x-series ions accompanied by d-series ions by Cα-C bond cleavage have been reported, but an issue remained concerning their sensitivity. 3-Hydroxy-4-nitrobenzoic acid (3H4NBA) has been reported as a matrix for 2-nitrobenzenesulfenyl-labeled peptides by Matsuo et al. (Proteomics 2006, 6, 2042-2049). Here, we used 3H4NBA as an oxidizing matrix for ISD. As a result, numerous a- and d-series ions for amyloid β 1-40 were generated with high sensitivity using 3H4NBA. Each of the two Leu and two Ile was identified by the d-series ions. The sensitivity of the a-series ions using 3H4NBA was a little lower than that of c-series ions using 1,5-DAN. The same tendency was observed for N-acetyl renin substrate and ACTH 18-39. The a-series ions were detected, even at the left side of Pro. The sensitivity of the a-series ions using 3H4NBA was higher than with other existing oxidizing matrices, such as 5-nitrosalicylic acid and 5-formyl salycilic acid. The ions were detected over the entire area of the matrix-analyte spot using 3H4NBA. 3H4NBA was confirmed to be a useful oxidizing matrix for ISD, leading to higher sequence coverage of peptides.
Collapse
Affiliation(s)
- Yuko Fukuyama
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation , 1, Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Shunsuke Izumi
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University , 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Koichi Tanaka
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation , 1, Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan
| |
Collapse
|
29
|
Asakawa D. Principles of hydrogen radical mediated peptide/protein fragmentation during matrix-assisted laser desorption/ionization mass spectrometry. MASS SPECTROMETRY REVIEWS 2016; 35:535-556. [PMID: 25286767 DOI: 10.1002/mas.21444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/30/2014] [Accepted: 06/30/2014] [Indexed: 06/03/2023]
Abstract
Matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) is a very easy way to obtain large sequence tags and, thereby, reliable identification of peptides and proteins. Recently discovered new matrices have enhanced the MALDI-ISD yield and opened new research avenues. The use of reducing and oxidizing matrices for MALDI-ISD of peptides and proteins favors the production of fragmentation pathways involving "hydrogen-abundant" and "hydrogen-deficient" radical precursors, respectively. Since an oxidizing matrix provides information on peptide/protein sequences complementary to that obtained with a reducing matrix, MALDI-ISD employing both reducing and oxidizing matrices is a potentially useful strategy for de novo peptide sequencing. Moreover, a pseudo-MS(3) method provides sequence information about N- and C-terminus extremities in proteins and allows N- and C-terminal side fragments to be discriminated within the complex MALDI-ISD mass spectrum. The combination of high mass resolution of a Fourier transform-ion cyclotron resonance (FTICR) analyzer and the software suitable for MALDI-ISD facilitates the interpretation of MALDI-ISD mass spectra. A deeper understanding of the MALDI-ISD process is necessary to fully exploit this method. Thus, this review focuses first on the mechanisms underlying MALDI-ISD processes, followed by a discussion of MALDI-ISD applications in the field of proteomics. © 2014 Wiley Periodicals, Inc., Mass Spec Rev 35:535-556, 2016.
Collapse
Affiliation(s)
- Daiki Asakawa
- Quantitative Biology Center (QBiC), RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| |
Collapse
|
30
|
Asakawa D, Smargiasso N, De Pauw E. Estimation of peptide N-Cα bond cleavage efficiency during MALDI-ISD using a cyclic peptide. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:323-327. [PMID: 27194516 DOI: 10.1002/jms.3748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
Matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) induces N-Cα bond cleavage via hydrogen transfer from the matrix to the peptide backbone, which produces a c'/z• fragment pair. Subsequently, the z• generates z' and [z + matrix] fragments via further radical reactions because of the low stability of the z•. In the present study, we investigated MALDI-ISD of a cyclic peptide. The N-Cα bond cleavage in the cyclic peptide by MALDI-ISD produced the hydrogen-abundant peptide radical [M + 2H](+) • with a radical site on the α-carbon atom, which then reacted with the matrix to give [M + 3H](+) and [M + H + matrix](+) . For 1,5-diaminonaphthalene (1,5-DAN) adducts with z fragments, post-source decay of [M + H + 1,5-DAN](+) generated from the cyclic peptide showed predominant loss of an amino acid with 1,5-DAN. Additionally, MALDI-ISD with Fourier transform-ion cyclotron resonance mass spectrometry allowed for the detection of both [M + 3H](+) and [M + H](+) with two (13) C atoms. These results strongly suggested that [M + 3H](+) and [M + H + 1,5-DAN](+) were formed by N-Cα bond cleavage with further radical reactions. As a consequence, the cleavage efficiency of the N-Cα bond during MALDI-ISD could be estimated by the ratio of the intensity of [M + H](+) and [M + 3H](+) in the Fourier transform-ion cyclotron resonance spectrum. Because the reduction efficiency of a matrix for the cyclic peptide cyclo(Arg-Gly-Asp-D-Phe-Val) was correlated to its tendency to cleave the N-Cα bond in linear peptides, the present method could allow the evaluation of the efficiency of N-Cα bond cleavage for MALDI matrix development. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Daiki Asakawa
- National Metrology Institute of Japan (NMIJ), Reserch Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Nicolas Smargiasso
- Chemistry Department and GIGA-R, Mass Spectrometry Laboratory, University of Liège, Liège, Belgium
| | - Edwin De Pauw
- Chemistry Department and GIGA-R, Mass Spectrometry Laboratory, University of Liège, Liège, Belgium
| |
Collapse
|
31
|
McMillen CL, Wright PM, Cassady CJ. Negative Ion In-Source Decay Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Sequencing Acidic Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:847-855. [PMID: 26864792 DOI: 10.1007/s13361-016-1345-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/15/2016] [Accepted: 01/16/2016] [Indexed: 06/05/2023]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) in-source decay was studied in the negative ion mode on deprotonated peptides to determine its usefulness for obtaining extensive sequence information for acidic peptides. Eight biological acidic peptides, ranging in size from 11 to 33 residues, were studied by negative ion mode ISD (nISD). The matrices 2,5-dihydroxybenzoic acid, 2-aminobenzoic acid, 2-aminobenzamide, 1,5-diaminonaphthalene, 5-amino-1-naphthol, 3-aminoquinoline, and 9-aminoacridine were used with each peptide. Optimal fragmentation was produced with 1,5-diaminonphthalene (DAN), and extensive sequence informative fragmentation was observed for every peptide except hirudin(54-65). Cleavage at the N-Cα bond of the peptide backbone, producing c' and z' ions, was dominant for all peptides. Cleavage of the N-Cα bond N-terminal to proline residues was not observed. The formation of c and z ions is also found in electron transfer dissociation (ETD), electron capture dissociation (ECD), and positive ion mode ISD, which are considered to be radical-driven techniques. Oxidized insulin chain A, which has four highly acidic oxidized cysteine residues, had less extensive fragmentation. This peptide also exhibited the only charged localized fragmentation, with more pronounced product ion formation adjacent to the highly acidic residues. In addition, spectra were obtained by positive ion mode ISD for each protonated peptide; more sequence informative fragmentation was observed via nISD for all peptides. Three of the peptides studied had no product ion formation in ISD, but extensive sequence informative fragmentation was found in their nISD spectra. The results of this study indicate that nISD can be used to readily obtain sequence information for acidic peptides.
Collapse
Affiliation(s)
- Chelsea L McMillen
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Patience M Wright
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL, 35487, USA
- Department of Chemistry, The University of Georgia, Athens, GA, 30602, USA
| | - Carolyn J Cassady
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
32
|
Takayama M. MALDI In-Source Decay of Protein: The Mechanism of c-Ion Formation. ACTA ACUST UNITED AC 2016; 5:A0044. [PMID: 27162707 DOI: 10.5702/massspectrometry.a0044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/22/2016] [Indexed: 02/05/2023]
Abstract
The in-source decay (ISD) phenomenon, the fragmentation at an N-Cα bond of a peptide backbone that occurs within several tens of nanoseconds in the ion-source in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS), is discussed from the standpoints of the discovery and early publications dealing with MALDI-ISD, the formation of c-ions in energy-sudden desorption/ionization methods, the formation of radical species in a MALDI, model construction for ISD, and matrix materials that are suitable for use in MALDI-ISD. The formation of c-ions derived from peptides and proteins in MALDI-ISD can be rationalized by a mechanism involving intermolecular hydrogen transfer, denoted as the "Takayama's model" by De Pauw's group (Anal. Chem. 79: 8678-8685, 2007). It should be emphasized that the model for MALDI-ISD was constructed on the basis of X-ray crystallography and scanning probe microscopy (SPM) analyses of matrix crystals, as well as the use of isotopically-labelled peptides.
Collapse
Affiliation(s)
- Mitsuo Takayama
- Mass Spectrometry Laboratory, Graduate School of Nanobioscience, Yokohama City University
| |
Collapse
|
33
|
Möginger U, Resemann A, Martin CE, Parameswarappa S, Govindan S, Wamhoff EC, Broecker F, Suckau D, Pereira CL, Anish C, Seeberger PH, Kolarich D. Cross Reactive Material 197 glycoconjugate vaccines contain privileged conjugation sites. Sci Rep 2016; 6:20488. [PMID: 26841683 PMCID: PMC4740906 DOI: 10.1038/srep20488] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/05/2016] [Indexed: 12/22/2022] Open
Abstract
Production of glycoconjugate vaccines involves the chemical conjugation of glycans to an immunogenic carrier protein such as Cross-Reactive-Material-197 (CRM197). Instead of using glycans from natural sources recent vaccine development has been focusing on the use of synthetically defined minimal epitopes. While the glycan is structurally defined, the attachment sites on the protein are not. Fully characterized conjugates and batch-to-batch comparisons are the key to eventually create completely defined conjugates. A variety of glycoconjugates consisting of CRM197 and synthetic oligosaccharide epitopes was characterised using mass spectrometry techniques. The primary structure was assessed by combining intact protein MALDI-TOF-MS, LC-MALDI-TOF-MS middle-down and LC-ESI-MS bottom-up approaches. The middle-down approach on CNBr cleaved glycopeptides provided almost complete sequence coverage, facilitating rapid batch-to-batch comparisons, resolving glycan loading and identification of side products. Regions close to the N- and C-termini were most efficiently conjugated.
Collapse
Affiliation(s)
- Uwe Möginger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | | | - Christopher E. Martin
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Sharavathi Parameswarappa
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Subramanian Govindan
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Eike-Christian Wamhoff
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Felix Broecker
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | | | - Claney Lebev Pereira
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Chakkumkal Anish
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Daniel Kolarich
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| |
Collapse
|
34
|
Resemann A, Jabs W, Wiechmann A, Wagner E, Colas O, Evers W, Belau E, Vorwerg L, Evans C, Beck A, Suckau D. Full validation of therapeutic antibody sequences by middle-up mass measurements and middle-down protein sequencing. MAbs 2016; 8:318-30. [PMID: 26760197 PMCID: PMC4966597 DOI: 10.1080/19420862.2015.1128607] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The regulatory bodies request full sequence data assessment both for innovator and biosimilar monoclonal antibodies (mAbs). Full sequence coverage is typically used to verify the integrity of the analytical data obtained following the combination of multiple LC-MS/MS datasets from orthogonal protease digests (so called “bottom-up” approaches). Top-down or middle-down mass spectrometric approaches have the potential to minimize artifacts, reduce overall analysis time and provide orthogonality to this traditional approach. In this work we report a new combined approach involving middle-up LC-QTOF and middle-down LC-MALDI in-source decay (ISD) mass spectrometry. This was applied to cetuximab, panitumumab and natalizumab, selected as representative US Food and Drug Administration- and European Medicines Agency-approved mAbs. The goal was to unambiguously confirm their reference sequences and examine the general applicability of this approach. Furthermore, a new measure for assessing the integrity and validity of results from middle-down approaches is introduced – the “Sequence Validation Percentage.” Full sequence data assessment of the 3 antibodies was achieved enabling all 3 sequences to be fully validated by a combination of middle-up molecular weight determination and middle-down protein sequencing. Three errors in the reference amino acid sequence of natalizumab, causing a cumulative mass shift of only −2 Da in the natalizumab Fd domain, were corrected as a result of this work.
Collapse
Affiliation(s)
- Anja Resemann
- a Bruker Daltonics GmbH , Fahrenheitstr. 4, Bremen , Germany
| | - Wolfgang Jabs
- a Bruker Daltonics GmbH , Fahrenheitstr. 4, Bremen , Germany
| | - Anja Wiechmann
- a Bruker Daltonics GmbH , Fahrenheitstr. 4, Bremen , Germany
| | - Elsa Wagner
- b Centre d'Immunologie Pierre , St Julien-en-Genevois, France
| | - Olivier Colas
- b Centre d'Immunologie Pierre , St Julien-en-Genevois, France
| | - Waltraud Evers
- a Bruker Daltonics GmbH , Fahrenheitstr. 4, Bremen , Germany
| | - Eckhard Belau
- a Bruker Daltonics GmbH , Fahrenheitstr. 4, Bremen , Germany
| | - Lars Vorwerg
- a Bruker Daltonics GmbH , Fahrenheitstr. 4, Bremen , Germany
| | | | - Alain Beck
- b Centre d'Immunologie Pierre , St Julien-en-Genevois, France
| | - Detlev Suckau
- a Bruker Daltonics GmbH , Fahrenheitstr. 4, Bremen , Germany
| |
Collapse
|
35
|
Ramesh Babu A, Raju G, Purna Chander C, Shoban Babu B, Srinivas R, Sharma GVM. Electrospray ionization tandem mass spectrometric study of protonated and alkali- cationized α/ε-hybrid peptides: differentiation of a pair of dipeptide positional isomers. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2016; 22:181-191. [PMID: 27882883 DOI: 10.1255/ejms.1431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A new class of Boc-N-protected hybrid peptides derived from L- Ala and ε6-Caa (L-Ala = L-Alanine, Caa = C-linked carboamino acid derived from D-xylose) have been studied by positive ion electrospray ionization (ESI) ion-trap tandem mass spectrometry (MS/MS). MSn spectra of protonated and alkali-cationized hybrid peptides produce characteristic fragmentation involving the peptide backbone, the tert-butyloxycarbonyl (Boc) group, and the side chain. The dipeptide positional isomers are differentiated by the collision-induced dissociation (CID) of the protonated and alkali-cationized peptides. The CID of [M + H]+ ion of Boc-NH-L-Ala-ε-Caa- OCH3 (1) shows a prominent [M + H - C4H8]+ ion, which is totally absent for its positional isomer Boc-NH-ε-Caa-L-Ala-OCH3 (6), which instead shows significant loss of t-butanol. The formation of the [M + Cat - C4H8]+ ion is totally absent and [M + Cat - Boc + H]+ is prominent in the CID of the [M + Cat]+ ion of Boc-NH-L-Ala-ε-Caa- OCH3 (1), whereas the former is highly abundant and the latter is of low abundance for its positional isomer Boc-NH-ε-Caa-L-Ala-OCH3 (6). It is observed that 'b' ions are abundant when oxazolone structures are formed through a five-membered cyclic transition state in tetra-, penta-, and hexapeptides and the cyclization process for larger 'b' ions led to an insignificant abundance. However, the significant 'b' ion is formed in ε,α-dipeptide, which may have a seven-membered substituted 2-oxoazepanium ion structure. The MSn spectra of [M + Cat - Boc + H]+ ions of these peptides are found to be significantly different to those of [M + H - Boc + H]+ ions. The CID spectra of [M + Cat - Boc + H]+ ions of peptide acids containing L-Ala at the C-terminus show an abundant N-terminal rearrangement ion, [bn + 17 + Cat]+, which is absent for the peptide acids containing ε-Caa at the C-terminus. Thus, the results of these hybrid peptides provide sequencing information, the structure of the cyclic intermediate involved in the formation of the rearrangement ion, and distinguish a pair of dipeptide positional isomers.
Collapse
Affiliation(s)
- A Ramesh Babu
- National Centre for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - G Raju
- National Centre for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - C Purna Chander
- National Centre for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - B Shoban Babu
- Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - R Srinivas
- National Centre for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
| | - G V M Sharma
- Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.
| |
Collapse
|
36
|
Théberge R, Dikler S, Heckendorf C, Chui DHK, Costello CE, McComb ME. MALDI-ISD Mass Spectrometry Analysis of Hemoglobin Variants: a Top-Down Approach to the Characterization of Hemoglobinopathies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1299-310. [PMID: 26002792 PMCID: PMC4496427 DOI: 10.1007/s13361-015-1164-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 05/13/2023]
Abstract
Hemoglobinopathies are the most common inherited disorders in humans and are thus the target of screening programs worldwide. Over the past decade, mass spectrometry (MS) has gained a more important role as a clinical means to diagnose variants, and a number of approaches have been proposed for characterization. Here we investigate the use of matrix-assisted laser desorption/ionization time-of-flight MS (MALDI-TOF MS) with sequencing using in-source decay (MALDI-ISD) for the characterization of Hb variants. We explored the effect of matrix selection using super DHB or 1,5-diaminonaphthalene on ISD fragment ion yield and distribution. MALDI-ISD MS of whole blood using super DHB simultaneously provided molecular weights for the alpha and beta chains, as well as extensive fragmentation in the form of sequence defining c-, (z + 2)-, and y-ion series. We observed sequence coverage on the first 70 amino acids positions from the N- and C-termini of the alpha and beta chains in a single experiment. An abundant beta chain N-terminal fragment ion corresponding to βc34 was determined to be a diagnostic marker ion for Hb S (β6 Glu→Val, sickle cell), Hb C (β6 Glu→Lys), and potentially for Hb E (β26 Glu→Lys). The MALDI-ISD analysis of Hb S and HbSC yielded mass shifts corresponding to the variants, demonstrating the potential for high-throughput screening. Characterization of an alpha chain variant, Hb Westmead (α122 His→Gln), generated fragments that established the location of the variant. This study is the first clinical application of MALDI-ISD MS for the determination and characterization of hemoglobin variants.
Collapse
Affiliation(s)
- Roger Théberge
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118
| | - Sergei Dikler
- Bruker Daltonics Inc., 40 Manning Road, Billerica, MA 01821
| | - Christian Heckendorf
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118
| | - David H. K. Chui
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Catherine E. Costello
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118
| | - Mark E. McComb
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
37
|
Nicolardi S, Switzar L, Deelder AM, Palmblad M, van der Burgt YE. Top-Down MALDI-In-Source Decay-FTICR Mass Spectrometry of Isotopically Resolved Proteins. Anal Chem 2015; 87:3429-37. [DOI: 10.1021/ac504708y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Simone Nicolardi
- Center for Proteomics and
Metabolomics, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Linda Switzar
- Center for Proteomics and
Metabolomics, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - André M. Deelder
- Center for Proteomics and
Metabolomics, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Magnus Palmblad
- Center for Proteomics and
Metabolomics, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Yuri E.M. van der Burgt
- Center for Proteomics and
Metabolomics, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
38
|
Guo M, Zhai Y, Guo C, Liu Y, Tang D, Pan Y. A new strategy to determine the protein mutation site using matrix-assisted laser desorption ionization in-source decay: Derivatization by ionic liquid. Anal Chim Acta 2015; 865:31-8. [DOI: 10.1016/j.aca.2015.01.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 10/24/2022]
|
39
|
Yefremova Y, Al-Majdoub M, Opuni KF, Koy C, Cui W, Yan Y, Gross M, Glocker MO. "De-novo" amino acid sequence elucidation of protein G'e by combined "top-down" and "bottom-up" mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:482-492. [PMID: 25560987 PMCID: PMC6130978 DOI: 10.1007/s13361-014-1053-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 11/20/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
Mass spectrometric de-novo sequencing was applied to review the amino acid sequence of a commercially available recombinant protein G´ with great scientific and economic importance. Substantial deviations to the published amino acid sequence (Uniprot Q54181) were found by the presence of 46 additional amino acids at the N-terminus, including a so-called "His-tag" as well as an N-terminal partial α-N-gluconoylation and α-N-phosphogluconoylation, respectively. The unexpected amino acid sequence of the commercial protein G' comprised 241 amino acids and resulted in a molecular mass of 25,998.9 ± 0.2 Da for the unmodified protein. Due to the higher mass that is caused by its extended amino acid sequence compared with the original protein G' (185 amino acids), we named this protein "protein G'e." By means of mass spectrometric peptide mapping, the suggested amino acid sequence, as well as the N-terminal partial α-N-gluconoylations, was confirmed with 100% sequence coverage. After the protein G'e sequence was determined, we were able to determine the expression vector pET-28b from Novagen with the Xho I restriction enzyme cleavage site as the best option that was used for cloning and expressing the recombinant protein G'e in E. coli. A dissociation constant (K(d)) value of 9.4 nM for protein G'e was determined thermophoretically, showing that the N-terminal flanking sequence extension did not cause significant changes in the binding affinity to immunoglobulins.
Collapse
Affiliation(s)
- Yelena Yefremova
- Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| | | | | | - Cornelia Koy
- Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| | - Weidong Cui
- Washington University in St. Louis, St. Louis, Missouri, USA
| | - Yuetian Yan
- Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael Gross
- Washington University in St. Louis, St. Louis, Missouri, USA
| | | |
Collapse
|
40
|
Guo M, Weng G, Yin D, Hu X, Han J, Du Y, Liu Y, Tang D, Pan Y. Identification of the over alkylation sites of a protein by IAM in MALDI-TOF/TOF tandem mass spectrometry. RSC Adv 2015. [DOI: 10.1039/c5ra18595e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Overalkylation often appears during the proteolytic digestion process when using iodoacetamide (IAM) to protect the produced side chain thiol of Cys from disulfide bonds.
Collapse
Affiliation(s)
- Mengzhe Guo
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
- Key Laboratory of New Drug Research and Clinical Pharmacy
| | - Guofeng Weng
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Dengyang Yin
- Key Laboratory of New Drug Research and Clinical Pharmacy
- Xuzhou Medical College
- Xuzhou
- China
- Department of Pharmaceutical Analysis
| | - Xunxiu Hu
- Key Laboratory of New Drug Research and Clinical Pharmacy
- Xuzhou Medical College
- Xuzhou
- China
- Department of Pharmaceutical Analysis
| | - Jie Han
- Key Laboratory of New Drug Research and Clinical Pharmacy
- Xuzhou Medical College
- Xuzhou
- China
- Department of Pharmaceutical Analysis
| | - Yan Du
- Key Laboratory of New Drug Research and Clinical Pharmacy
- Xuzhou Medical College
- Xuzhou
- China
- Department of Pharmaceutical Analysis
| | - Yaqin Liu
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Daoquan Tang
- Key Laboratory of New Drug Research and Clinical Pharmacy
- Xuzhou Medical College
- Xuzhou
- China
- Department of Pharmaceutical Analysis
| | - Yuanjiang Pan
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
41
|
Rand KD, Zehl M, Jørgensen TJD. Measuring the hydrogen/deuterium exchange of proteins at high spatial resolution by mass spectrometry: overcoming gas-phase hydrogen/deuterium scrambling. Acc Chem Res 2014; 47:3018-27. [PMID: 25171396 DOI: 10.1021/ar500194w] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Proteins are dynamic molecules that exhibit conformational flexibility to function properly. Well-known examples of this are allosteric regulation of protein activity and ligand-induced conformational changes in protein receptors. Detailed knowledge of the conformational properties of proteins is therefore pertinent to both basic and applied research, including drug development, since the majority of drugs target protein receptors and a growing number of drugs introduced to the market are therapeutic peptides or proteins. X-ray crystallography provides a static picture at atomic resolution of the lowest-energy structure of the native ensemble. There is a growing need for sensitive analytical tools to explore all of the significant molecular structures in the conformational landscape of proteins. Hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) has recently emerged as a powerful method for characterizing protein conformational dynamics. The basis of this method is the fact that backbone amides in stable hydrogen-bonded structures (e.g., α-helices and β-sheets) are protected against exchange with the aqueous solvent. All protein structures are dynamic, however, and eventually all of the protecting hydrogen bonds will transiently break as the protein--according to thermodynamic principles--cycles through partially unfolded states that correspond to excited free energy levels. As a result, all of the backbone amides will eventually become temporarily solvent-exposed and exchange-competent over time. Consequently, a folded protein in D2O will gradually incorporate deuterium into its backbone amides, and the kinetics of the process can be readily monitored by mass spectrometry. The deuterium uptake kinetics for the intact protein (global exchange kinetics) represents the sum of the exchange kinetics for the individual backbone amides. Local exchange kinetics is typically achieved by using pepsin digestion under quench conditions (i.e., under cold acidic conditions where the amide hydrogen exchange rate is slowed by many orders of magnitude). The ability to localize the individual deuterated residues (the spatial resolution) is determined by the size (typically ∼7-15 residues) and the number of peptic peptides. These peptides provide a relatively coarse-grained picture of the protein dynamics. A fundamental understanding of the relationship between protein function/dysfunction and conformational dynamics requires in many cases higher resolution and ultimately single-residue resolution. In this Account, we summarize our efforts to achieve single-residue deuterium levels in proteins by electron-based or laser-induced gas-phase fragmentation methods. A crucial analytical requirement for this approach is that the pattern of deuterium labeling from solution is retained in the gas-phase fragment ions. It is therefore essential to control and minimize any occurrence of gas-phase randomization of the solution deuterium label (H/D scrambling) during the MS experiment. For this purpose, we have developed model peptide probes to accurately measure the onset and extent of H/D scrambling. Our analytical procedures to control the occurrence of H/D scrambling are detailed along with the physical parameters that induce it during MS analysis. In light of the growing use of gas-phase dissociation experiments to measure the HDX of proteins in order to obtain a detailed characterization and understanding of the dynamic conformations and interactions of proteins at the molecular level, we discuss the perspectives and challenges of future high-resolution HDX-MS methodology.
Collapse
Affiliation(s)
- Kasper D. Rand
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Martin Zehl
- Department
of Pharmacognosy and Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Thomas J. D. Jørgensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark
| |
Collapse
|
42
|
Asakawa D, Smargiasso N, De Pauw E. Coordination of alkali metal ions to model branched hexasaccharides dictates fragment yield in MALDI in-source decay with hydrogen abstraction using 5-nitrosalicylic acid as the matrix. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:1059-1062. [PMID: 25303396 DOI: 10.1002/jms.3415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 06/04/2023]
Affiliation(s)
- Daiki Asakawa
- Department of Chemistry, Mass Spectrometry Laboratory and GIGA-R, University of Liege, Liege, 4000, Belgium
| | | | | |
Collapse
|
43
|
Liang Q, Macher T, Xu Y, Bao Y, Cassady CJ. MALDI MS In-Source Decay of Glycans Using a Glutathione-Capped Iron Oxide Nanoparticle Matrix. Anal Chem 2014; 86:8496-503. [DOI: 10.1021/ac502422a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qiaoli Liang
- Department
of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Thomas Macher
- Department
of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Yaolin Xu
- Department
of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Yuping Bao
- Department
of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Carolyn J. Cassady
- Department
of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
44
|
Asakawa D, Smargiasso N, Quinton L, De Pauw E. Influences of proline and cysteine residues on fragment yield in matrix-assisted laser desorption/ionization in-source decay mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1040-1048. [PMID: 24700120 DOI: 10.1007/s13361-014-0868-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 06/03/2023]
Abstract
Matrix-assisted laser desorption/ionization in-source decay produces highly informative fragments for the sequencing of peptides/proteins. Among amino acids, cysteine and proline residues were found to specifically influence the fragment yield. As they are both frequently found in small peptide structures for which de novo sequencing is mandatory, the understanding of their specific behaviors would allow useful fragmentation rules to be established. In the case of cysteine, a c•/w fragment pair originating from Xxx-Cys is formed by side-chain loss from the cysteine residue. The presence of a proline residue contributes to an increased yield of ISD fragments originating from N-Cα bond cleavage at Xxx1-Xxx2Pro, which is attributable to the cyclic structure of the proline residue. Our results suggest that the aminoketyl radical formed by MALDI-ISD generally induces the homolytic N-Cα bond cleavage located on the C-terminal side of the radical site. In contrast, N-Cα bond cleavage at Xxx-Pro produces no fragments and the N-Cα bond at the Xxx1-Xxx2Pro bond is alternatively cleaved via a heterolytic cleavage pathway.
Collapse
Affiliation(s)
- Daiki Asakawa
- Chemistry Department and GIGA-R, Mass Spectrometry Laboratory, University of Liege, Liege, Belgium,
| | | | | | | |
Collapse
|
45
|
Access of hydrogen-radicals to the peptide-backbone as a measure for estimating the flexibility of proteins using matrix-assisted laser desorption/ionization mass spectrometry. Int J Mol Sci 2014; 15:8428-42. [PMID: 24828203 PMCID: PMC4057740 DOI: 10.3390/ijms15058428] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/11/2014] [Accepted: 04/30/2014] [Indexed: 11/26/2022] Open
Abstract
A factor for estimating the flexibility of proteins is described that uses a cleavage method of “in-source decay (ISD)” coupled with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). The MALDI-ISD spectra of bovine serum albumin (BSA), myoglobin and thioredoxin show discontinuous intense ion peaks originating from one-side preferential cleavage at the N-Cα bond of Xxx-Asp, Xxx-Asn, Xxx-Cys and Gly-Xxx residues. Consistent with these observations, Asp, Asn and Gly residues are also identified by other flexibility measures such as B-factor, turn preference, protection and fluorescence decay factors, while Asp, Asn, Cys and Gly residues are identified by turn preference factor based on X-ray crystallography. The results suggest that protein molecules embedded in/on MALDI matrix crystals partly maintain α-helix and that the reason some of the residues are more susceptible to ISD (Asp, Asn, Cys and Gly) and others less so (Ile and Val) is because of accessibility of the peptide backbone to hydrogen-radicals from matrix molecules. The hydrogen-radical accessibility in MALDI-ISD could therefore be adopted as a factor for measuring protein flexibility.
Collapse
|
46
|
Park KM, Moon JH, Kim KP, Lee SH, Kim MS. Relative Quantification in Imaging of a Peptide on a Mouse Brain Tissue by Matrix-Assisted Laser Desorption Ionization. Anal Chem 2014; 86:5131-5. [DOI: 10.1021/ac500911x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Kyung M. Park
- Department
of Chemistry, Seoul National University, Seoul 151-747, Korea
| | - Jeong H. Moon
- Medical Proteomics Research Center, KRIBB, Daejeon 305-806, Korea
| | - Kwang P. Kim
- Department
of Applied Chemistry, Kyunghee University, Yongin 446-701, Korea
| | - Seong H. Lee
- Department
of Chemistry, Seoul National University, Seoul 151-747, Korea
| | - Myung S. Kim
- Department
of Chemistry, Seoul National University, Seoul 151-747, Korea
| |
Collapse
|
47
|
Asakawa D, Smargiasso N, De Pauw E. New approach for pseudo-MS(3) analysis of peptides and proteins via MALDI in-source decay using radical recombination with 1,5-diaminonaphthalene. Anal Chem 2014; 86:2451-7. [PMID: 24512348 DOI: 10.1021/ac403285b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Matrix-assisted laser desorption ionization in-source decay (MALDI-ISD) is a useful method for top-down sequencing of proteins and preferentially produces the c'/z(•) fragment pair. Subsequently, radical z(•) fragments undergo a variety of radical reactions. This work is focused on the chemical properties of the 1,5-diaminonaphthalene (1,5-DAN) adducts on z fragment ions (zn*), which are abundant in MALDI-ISD spectra. Postsource decay (PSD) of the zn* fragments resulted in specific peptide bond cleavage adjacent to the binding site of 1,5-DAN, leading to the preferential formation of y'n-1 fragments. The dominant loss of an amino acid with 1,5-DAN from zn* can be used in pseudo-MS(3) mode to identify the C-terminal side fragments from a complex MALDI-ISD spectrum or to determine missed cleavage residues using MALDI-ISD. Although the N-Cα bond at the N-terminal side of Pro is not cleaved by MALDI-ISD, pseudo-MS(3) via zn* can confirm the presence of a Pro residue.
Collapse
Affiliation(s)
- Daiki Asakawa
- Chemistry Department, Mass Spectrometry Laboratory and GIGA-R, University of Liege , 4000 Liege, Belgium
| | | | | |
Collapse
|
48
|
Takayama M, Sekiya S, Iimuro R, Iwamoto S, Tanaka K. Selective and nonselective cleavages in positive and negative CID of the fragments generated from in-source decay of intact proteins in MALDI-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:120-131. [PMID: 24135807 DOI: 10.1007/s13361-013-0756-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 06/02/2023]
Abstract
Selective and nonselective cleavages in ion trap low-energy collision-induced dissociation (CID) experiments of the fragments generated from in-source decay (ISD) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) of intact proteins are described in both positive and negative ion modes. The MALDI-ISD spectra of the proteins demonstrate common, discontinuous, abundant c- and z'-ions originating from cleavage at the N-Cα bond of Xxx-Asp/Asn and Gly-Xxx residues in both positive- and negative-ion modes. The positive ion CID of the c- and z'-ions resulted in product ions originating from selective cleavage at Asp-Xxx, Glu-Xxx and Cys-Xxx residues. Nonselective cleavage product ions rationalized by the mechanism of a "mobile proton" are also observed in positive ion CID spectra. Negative ion CID of the ISD fragments results in complex product ions accompanied by the loss of neutrals from b-, c-, and y-ions. The most characteristic feature of negative ion CID is selective cleavage of the peptide bonds of acidic residues, Xxx-Asp/Glu/Cys. A definite influence of α-helix on the CID product ions was not obtained. However, the results from positive ion and negative ion CID of the MALDI-ISD fragments that may have long α-helical domains suggest that acidic residues in helix-free regions tend to degrade more than those in helical regions.
Collapse
Affiliation(s)
- Mitsuo Takayama
- Graduate School in Nanobioscience, Mass Spectrometry Laboratory, Yokohama City University, Kanazawa-ku, Yokohama, Japan,
| | | | | | | | | |
Collapse
|
49
|
|
50
|
Lemaire P, Debois D, Smargiasso N, Quinton L, Gabelica V, De Pauw EA. Use of 1,5-diaminonaphthalene to combine matrix-assisted laser desorption/ionization in-source decay fragmentation with hydrogen/deuterium exchange. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:1837-1846. [PMID: 23857929 DOI: 10.1002/rcm.6627] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/12/2013] [Accepted: 05/13/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE In-Source Decay (ISD) in Matrix-Assisted Laser Desorption/Ionization (MALDI) mass spectrometry is a fast and easy top-down activation method. Our objective is to find a suitable matrix to locate the deuterons following in-solution hydrogen/deuterium exchange (HDX). This matrix must circumvent the commonly encountered undesired back-exchange reactions, in order to preserve the regioselective deuteration pattern. METHODS The 1,5-diaminonaphthalene (1,5-DAN) matrix is known to be suitable for MALDI-ISD fragmentation. MALDI Mass Spectrometry Imaging (MSI) was employed to compare 1,5-DAN and other commonly used MALDI matrices with respect to the extent of back-exchange and the uniformity of the H/D exchange profiles within the MALDI spots. We tested the back-exchange on the highly sensitive amyloid-beta peptide (1-40), and proved the regioselectivity on ubiquitin and β-endorphin. RESULTS MALDI-MSI results show that 1,5-DAN leads to the least back-exchange over all the spot. MALDI-ISD fragmentation combined with H/D exchange using 1,5-DAN matrix was validated by localizing deuterons in native ubiquitin. Results agree with previous data obtained by Nuclear Magnetic Resonance (NMR) and Electron Transfer Dissociation (ETD). Moreover, 1,5-DAN matrix was used to study the H/D exchange profile of the methanol-induced helical structure of β-endorphin, and the relative protection can be explained by the polarity of residues involved in hydrogen bond formation. CONCLUSIONS We found that controlling crystallization is the most important parameter when combining H/D exchange with MALDI. The 1,5-DAN matrix is characterized by a fast crystallization kinetics, and therefore gives robust and reliable H/D exchange profiles using MALDI-ISD.
Collapse
Affiliation(s)
- Pascale Lemaire
- GIGA-R, Mass Spectrometry Laboratory, Department of Chemistry, Chemistry Building B6c, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | |
Collapse
|