1
|
Singh P, Kaur J. MSMEG_5850, a global TetR family member supports Mycobacterium smegmatis to survive environmental stress. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01186-9. [PMID: 39017913 DOI: 10.1007/s12223-024-01186-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
A Mycobacterium smegmatis transcriptional regulator, MSMEG_5850, and its ortholog in M. tuberculosis, rv0775 were annotated as putative TetR Family Transcriptional Regulators. Our previous study revealed MSMEG_5850 is involved in global transcriptional regulation in M. smegmatis and the presence of gene product supported the survival of bacteria during nutritional starvation. Phylogenetic analysis showed that MSMEG_5850 diverged early in comparison to its counterparts in virulent strains. Therefore, the expression pattern of MSMEG_5850 and its counterpart, rv0775, was compared during various in-vitro growth and stress conditions. Expression of MSMEG_5850 was induced under different environmental stresses while no change in expression was observed under mid-exponential and stationary phases. No expression of rv0775 was observed under any stress condition tested, while the gene was expressed during the mid-exponential phase that declined in the stationary phase. The effect of MSMEG_5850 on the survival of M. smegmatis under stress conditions and growth pattern was studied using wild type, knockout, and supplemented strain. Deletion of MSMEG_5850 resulted in altered colony morphology, biofilm/pellicle formation, and growth pattern of M. smegmatis. The survival rate of wild-type MSMEG_5850 was higher in comparison to knockout under different environmental stresses. Overall, this study suggested the role of MSMEG_5850 in the growth and adaptation/survival of M. smegmatis under stress conditions.
Collapse
Affiliation(s)
- Parul Singh
- Department of Biotechnology, Panjab University, BMS Block-1, Sector-25, Chandigarh, India, 160014
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, BMS Block-1, Sector-25, Chandigarh, India, 160014.
| |
Collapse
|
2
|
Filipek J, Chalaskiewicz K, Kosmider A, Nielipinski M, Michalak A, Bednarkiewicz M, Goslawski-Zeligowski M, Prucnal F, Sekula B, Pietrzyk-Brzezinska AJ. Comprehensive structural overview of the C-terminal ligand-binding domains of the TetR family regulators. J Struct Biol 2024; 216:108071. [PMID: 38401830 DOI: 10.1016/j.jsb.2024.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
TetR family regulators (TFRs) represent a large group of one-component bacterial signal transduction systems which recognize environmental signals, like the presence of antibiotics or other bactericidal compounds, and trigger the cell response by regulating the expression of genes that secure bacterial survival in harsh environmental conditions. TFRs act as homodimers, each protomer is composed of a conserved DNA-binding N-terminal domain (NTD) and a variable ligand-binding C-terminal domain (CTD). Currently, there are about 500 structures of TFRs available in the Protein Data Bank and one-fourth of them represent the structures of TFR-ligand complexes. In this review, we summarized information on the ligands interacting with TFRs and based on structural data, we compared the CTDs of the TFR family members, as well as their ligand-binding cavities. Additionally, we divided the whole TFR family, including more than half of a million sequences, into subfamilies according to calculated multiple sequence alignment and phylogenetic tree. We also highlighted structural elements characteristic of some of the subfamilies. The presented comprehensive overview of the TFR CTDs provides good bases and future directions for further studies on TFRs that are not only important targets for battling multidrug resistance but also good candidates for many biotechnological approaches, like TFR-based biosensors.
Collapse
Affiliation(s)
- Jakub Filipek
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Katarzyna Chalaskiewicz
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland; Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, Lodz 90-537, Poland
| | - Aleksandra Kosmider
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Maciej Nielipinski
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland; Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, Lodz 90-537, Poland
| | - Agnieszka Michalak
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Maria Bednarkiewicz
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Mieszko Goslawski-Zeligowski
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Filip Prucnal
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Bartosz Sekula
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, Lodz 90-537, Poland
| | - Agnieszka J Pietrzyk-Brzezinska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, Lodz 90-537, Poland.
| |
Collapse
|
3
|
Saito S, Kobayashi I, Hoshina M, Uenaka E, Sakurai A, Imamura S, Shimada T. Regulatory Role of GgaR (YegW) for Glycogen Accumulation in Escherichia coli K-12. Microorganisms 2024; 12:115. [PMID: 38257942 PMCID: PMC10819704 DOI: 10.3390/microorganisms12010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Glycogen, the stored form of glucose, accumulates upon growth arrest in the presence of an excess carbon source in Escherichia coli and other bacteria. Chromatin immunoprecipitation screening for the binding site of a functionally unknown GntR family transcription factor, YegW, revealed that the yegTUV operon was a single target of the E. coli genome. Although none of the genes in the yegTUV operon have a clear function, a previous study suggested their involvement in the production of ADP-glucose (ADPG), a glycogen precursor. Various validation through in vivo and in vitro experiments showed that YegW is a single-target transcription factor that acts as a repressor of yegTUV, with an intracellular concentration of consistently approximately 10 molecules, and senses ADPG as an effector. Further analysis revealed that YegW repressed glycogen accumulation in response to increased glucose concentration, which was not accompanied by changes in the growth phase. In minimal glucose medium, yegW-deficient E. coli promoted glycogen accumulation, at the expense of poor cell proliferation. We concluded that YegW is a single-target transcription factor that senses ADPG and represses glycogen accumulation in response to the amount of glucose available to the cell. We propose renaming YegW to GgaR (repressor of glycogen accumulation).
Collapse
Affiliation(s)
- Shunsuke Saito
- School of Agriculture, Meiji University, 1-1-1 Kawasaki-Shi, Kanagawa 214-8571, Japan
| | - Ikki Kobayashi
- School of Agriculture, Meiji University, 1-1-1 Kawasaki-Shi, Kanagawa 214-8571, Japan
| | - Motoki Hoshina
- Research and Development Section, Diagnostics Division, YAMASA Corporation, 2-10-1 Araoicho, Choshi, Chiba 288-0056, Japan
| | - Emi Uenaka
- School of Agriculture, Meiji University, 1-1-1 Kawasaki-Shi, Kanagawa 214-8571, Japan
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Musashino-shi, Tokyo 180-8585, Japan
| | - Atsushi Sakurai
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Musashino-shi, Tokyo 180-8585, Japan
| | - Sousuke Imamura
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Musashino-shi, Tokyo 180-8585, Japan
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, 1-1-1 Kawasaki-Shi, Kanagawa 214-8571, Japan
| |
Collapse
|
4
|
Patil RS, Sharma S, Bhaskarwar AV, Nambiar S, Bhat NA, Koppolu MK, Bhukya H. TetR and OmpR family regulators in natural product biosynthesis and resistance. Proteins 2023. [PMID: 37874037 DOI: 10.1002/prot.26621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023]
Abstract
This article provides a comprehensive review and sequence-structure analysis of transcription regulator (TR) families, TetR and OmpR/PhoB, involved in specialized secondary metabolite (SSM) biosynthesis and resistance. Transcription regulation is a fundamental process, playing a crucial role in orchestrating gene expression to confer a survival advantage in response to frequent environmental stress conditions. This process, coupled with signal sensing, enables bacteria to respond to a diverse range of intra and extracellular signals. Thus, major bacterial signaling systems use a receptor domain to sense chemical stimuli along with an output domain responsible for transcription regulation through DNA-binding. Sensory and output domains on a single polypeptide chain (one component system, OCS) allow response to stimuli by allostery, that is, DNA-binding affinity modulation upon signal presence/absence. On the other hand, two component systems (TCSs) allow cross-talk between the sensory and output domains as they are disjoint and transmit information by phosphorelay to mount a response. In both cases, however, TRs play a central role. Biosynthesis of SSMs, which includes antibiotics, is heavily regulated by TRs as it diverts the cell's resources towards the production of these expendable compounds, which also have clinical applications. These TRs have evolved to relay information across specific signals and target genes, thus providing a rich source of unique mechanisms to explore towards addressing the rapid escalation in antimicrobial resistance (AMR). Here, we focus on the TetR and OmpR family TRs, which belong to OCS and TCS, respectively. These TR families are well-known examples of regulators in secondary metabolism and are ubiquitous across different bacteria, as they also participate in a myriad of cellular processes apart from SSM biosynthesis and resistance. As a result, these families exhibit higher sequence divergence, which is also evident from our bioinformatic analysis of 158 389 and 77 437 sequences from TetR and OmpR family TRs, respectively. The analysis of both sequence and structure allowed us to identify novel motifs in addition to the known motifs responsible for TR function and its structural integrity. Understanding the diverse mechanisms employed by these TRs is essential for unraveling the biosynthesis of SSMs. This can also help exploit their regulatory role in biosynthesis for significant pharmaceutical, agricultural, and industrial applications.
Collapse
Affiliation(s)
- Rachit S Patil
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Siddhant Sharma
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Aditya V Bhaskarwar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Souparnika Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Niharika A Bhat
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Mani Kanta Koppolu
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Hussain Bhukya
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| |
Collapse
|
5
|
Veigyabati Devi M, Singh AK. Delineation of transcriptional regulators involve in biofilm formation cycle of Mycobacterium abscessus. Gene 2023; 882:147644. [PMID: 37479094 DOI: 10.1016/j.gene.2023.147644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/01/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Mycobacterium abscessus is an intrinsically and acquired multidrug resistant (MDR) intracellular pathogen with biofilm formation capability and limited option for treatment. Biofilm is the major characteristic that leads to failure and prolong treatment, intensifies treatment cost and increases mortality/morbidity rate. However, the biofilm formation regulations of M. abscessus remain largely unexplored. In this study, we identify the putative/hypothetical transcriptional regulator (TR) of M. abscessus that are involved in biofilm formation. This study includes fifty TRs belonging to thirteen different families viz., AraC, ArsR, AsnC, CarD, CdaR, GntR, IclR, LysR, MarR, PadR, PrrA, TetR and WhiB, including TRs of unknown family. The promoter of these putative TRs were fused individually with GFP and analyzed their expression using CLSM in planktonic phase and early, mid and mature stages of biofilm formation phase, which overall termed as biofilm formation cycle. Further, qRT-PCR was carried out for selected TRs to analyze their differential expressions. This study found thirteen numbers of TR belonging to TetR family, five TRs belonging to MarR family, four TRs of unannotated TR family, two AraC TRs, two LysR, two GntR, two AsnC, one each of ArsR family, CarD family, IclR family, PadR family, PrrA family and WhiB family selected for this study are involved in biofilm formation cycle. Our study characterized the TRs with respect to their role in biofilm formation for the first time in M. abscessus and also found that their biofilm formation is regulated by diverse TR families.
Collapse
Affiliation(s)
- Moirangthem Veigyabati Devi
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anil Kumar Singh
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Sano K, Kobayashi H, Chuta H, Matsuyoshi N, Kato Y, Ogasawara H. CsgI (YccT) Is a Novel Inhibitor of Curli Fimbriae Formation in Escherichia coli Preventing CsgA Polymerization and Curli Gene Expression. Int J Mol Sci 2023; 24:ijms24054357. [PMID: 36901788 PMCID: PMC10002515 DOI: 10.3390/ijms24054357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Curli fimbriae are amyloids-found in bacteria (Escherichia coli)-that are involved in solid-surface adhesion and bacterial aggregation during biofilm formation. The curli protein CsgA is coded by a csgBAC operon gene, and the transcription factor CsgD is essential to induce its curli protein expression. However, the complete mechanism underlying curli fimbriae formation requires elucidation. Herein, we noted that curli fimbriae formation was inhibited by yccT-i.e., a gene that encodes a periplasmic protein of unknown function regulated by CsgD. Furthermore, curli fimbriae formation was strongly repressed by CsgD overexpression caused by a multicopy plasmid in BW25113-the non-cellulose-producing strain. YccT deficiency prevented these CsgD effects. YccT overexpression led to intracellular YccT accumulation and reduced CsgA expression. These effects were addressed by deleting the N-terminal signal peptide of YccT. Localization, gene expression, and phenotypic analyses revealed that YccT-dependent inhibition of curli fimbriae formation and curli protein expression was mediated by the two-component regulatory system EnvZ/OmpR. Purified YccT inhibited CsgA polymerization; however, no intracytoplasmic interaction between YccT and CsgA was detected. Thus, YccT-renamed CsgI (curli synthesis inhibitor)-is a novel inhibitor of curli fimbriae formation and has a dual role as an OmpR phosphorylation modulator and CsgA polymerization inhibitor.
Collapse
Affiliation(s)
- Kotaro Sano
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Department of Applied Biology, Graduated School of Science and Technology, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
| | - Hiroaki Kobayashi
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Department of Applied Biology, Graduated School of Science and Technology, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
| | - Hirotaka Chuta
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Department of Applied Biology, Graduated School of Science and Technology, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
| | - Nozomi Matsuyoshi
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Department of Applied Biology, Graduated School of Science and Technology, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
| | - Yuki Kato
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Department of Applied Biology, Graduated School of Science and Technology, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
| | - Hiroshi Ogasawara
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Academic Assembly School of Humanities and Social Sciences Institute of Humanities, Shinshu University, Matsumoto 390-8621, Japan
- Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
- Renaissance Center for Applied Microbiology, Shinshu University, Nagano-shi, Nagano 380-8553, Japan
- Correspondence: ; Tel.: +81-268-21-5803
| |
Collapse
|
7
|
The antidiabetic drug metformin aids bacteria in hijacking vitamin B12 from the environment through RcdA. Commun Biol 2023; 6:96. [PMID: 36693976 PMCID: PMC9873799 DOI: 10.1038/s42003-023-04475-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
Years of use of the antidiabetic drug metformin has long been associated with the risk of vitamin B12 (B12) deficiency in type 2 diabetes (T2D) patients, although the underlying mechanisms are unclear. Accumulating evidence has shown that metformin may exert beneficial effects by altering the metabolism of the gut microbiota, but whether it induces human B12 deficiency via modulation of bacterial activity remains poorly understood. Here, we show that both metformin and the other biguanide drug phenformin markedly elevate the accumulation of B12 in E. coli. By functional and genomic analysis, we demonstrate that both biguanides can significantly increase the expression of B12 transporter genes, and depletions of vital ones, such as tonB, nearly completely abolish the drugs' effect on bacterial B12 accumulation. Via high-throughput screens in E. coli and C. elegans, we reveal that the TetR-type transcription factor RcdA is required for biguanide-mediated promotion of B12 accumulation and the expressions of B12 transporter genes in bacteria. Together, our study unveils that the antidiabetic drug metformin helps bacteria gather B12 from the environment by increasing the expressions of B12 transporter genes in an RcdA-dependent manner, which may theoretically reduce the B12 supply to T2D patients taking the drug over time.
Collapse
|
8
|
Schwarz J, Schumacher K, Brameyer S, Jung K. Bacterial battle against acidity. FEMS Microbiol Rev 2022; 46:6652135. [PMID: 35906711 DOI: 10.1093/femsre/fuac037] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023] Open
Abstract
The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and other acid-resistant Gram-negative bacteria adapt to acidic environments. We discuss the constitutive and inducible defense mechanisms that promote survival, including proton-consuming or ammonia-producing processes, cellular remodeling affecting membranes and chaperones, and chemotaxis. We provide insights into how Gram-negative bacteria sense environmental acidity using membrane-integrated and cytosolic pH sensors. Finally, we address in more detail the powerful proton-consuming decarboxylase systems by examining the phylogeny of their regulatory components and their collective functionality in a population.
Collapse
Affiliation(s)
- Julia Schwarz
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Sophie Brameyer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| |
Collapse
|
9
|
Qiao J, Liang Y, Wang Y. Trimethylamine N-Oxide Reduces the Susceptibility of Escherichia coli to Multiple Antibiotics. Front Microbiol 2022; 13:956673. [PMID: 35875516 PMCID: PMC9300990 DOI: 10.3389/fmicb.2022.956673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/21/2022] [Indexed: 12/03/2022] Open
Abstract
Trimethylamine N-oxide (TMAO), an important intestinal flora-derived metabolite, plays a role in the development of cardiovascular disease and tumor immunity. Here, we determined the minimum inhibitory concentration (MIC) of antibiotics against Escherichia coli under gradient concentrations of TMAO and performed a bacterial killing analysis. Overall, TMAO (in the range of 10 ~ 100 mM) increased the MIC of quinolones, aminoglycosides, and β-lactams in a concentration-dependent manner, and increased the lethal dose of antibiotics against E. coli. It implies that TMAO is a potential risk for failure of anti-infective therapy, and presents a case for the relationship between intestinal flora-derived metabolites and antibiotic resistance. Further data demonstrated that the inhibition of antibiotic efficacy by TMAO is independent of the downstream metabolic processes of TMAO and the typical bacterial resistance mechanisms (mar motif and efflux pump). Interestingly, TMAO protects E. coli from high-protein denaturant (urea) stress and improves the viability of bacteria following treatment with two disinfectants (ethanol and hydrogen peroxide) that mediate protein denaturation by chemical action or oxidation. Since antibiotics can induce protein inactivation directly or indirectly, our work suggests that disruption of protein homeostasis may be a common pathway for different stress-mediated bacterial growth inhibition/cell death. In addition, we further discuss this possibility, which provides a different perspective to address the global public health problem of antibiotic resistance.
Collapse
Affiliation(s)
- Jiaxin Qiao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yan Liang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Yao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
10
|
Kobayashi I, Mochizuki K, Teramoto J, Imamura S, Takaya K, Ishihama A, Shimada T. Transcription Factor SrsR (YgfI) Is a Novel Regulator for the Stress-Response Genes in Stationary Phase in Escherichia coli K-12. Int J Mol Sci 2022; 23:ijms23116055. [PMID: 35682733 PMCID: PMC9181523 DOI: 10.3390/ijms23116055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Understanding the functional information of all genes and the biological mechanism based on the comprehensive genome regulation mechanism is an important task in life science. YgfI is an uncharacterized LysR family transcription factor in Escherichia coli. To identify the function of YgfI, the genomic SELEX (gSELEX) screening was performed for YgfI regulation targets on the E. coli genome. In addition, regulatory and phenotypic analyses were performed. A total of 10 loci on the E. coli genome were identified as the regulatory targets of YgfI with the YgfI binding activity. These predicted YgfI target genes were involved in biofilm formation, hydrogen peroxide resistance, and antibiotic resistance, many of which were expressed in the stationary phase. The TCAGATTTTGC sequence was identified as an YgfI box in in vitro gel shift assay and DNase-I footprinting assays. RT-qPCR analysis in vivo revealed that the expression of YgfI increased in the stationary phase. Physiological analyses suggested the participation of YgfI in biofilm formation and an increase in the tolerability against hydrogen peroxide. In summary, we propose to rename ygfI as srsR (a stress-response regulator in stationary phase).
Collapse
Affiliation(s)
- Ikki Kobayashi
- School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan;
| | - Kenji Mochizuki
- Micro-Nano Technology Research Center, Hosei University, Koganei 184-0003, Tokyo, Japan; (K.M.); (J.T.)
| | - Jun Teramoto
- Micro-Nano Technology Research Center, Hosei University, Koganei 184-0003, Tokyo, Japan; (K.M.); (J.T.)
| | - Sousuke Imamura
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Musashino-shi 180-8585, Tokyo, Japan; (S.I.); (K.T.)
| | - Kazuhiro Takaya
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Musashino-shi 180-8585, Tokyo, Japan; (S.I.); (K.T.)
| | - Akira Ishihama
- Micro-Nano Technology Research Center, Hosei University, Koganei 184-0003, Tokyo, Japan; (K.M.); (J.T.)
- Correspondence: (A.I.); (T.S.)
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan;
- Correspondence: (A.I.); (T.S.)
| |
Collapse
|
11
|
Tierrafría VH, Rioualen C, Salgado H, Lara P, Gama-Castro S, Lally P, Gómez-Romero L, Peña-Loredo P, López-Almazo AG, Alarcón-Carranza G, Betancourt-Figueroa F, Alquicira-Hernández S, Polanco-Morelos JE, García-Sotelo J, Gaytan-Nuñez E, Méndez-Cruz CF, Muñiz LJ, Bonavides-Martínez C, Moreno-Hagelsieb G, Galagan JE, Wade JT, Collado-Vides J. RegulonDB 11.0: Comprehensive high-throughput datasets on transcriptional regulation in Escherichia coli K-12. Microb Genom 2022; 8:mgen000833. [PMID: 35584008 PMCID: PMC9465075 DOI: 10.1099/mgen.0.000833] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/24/2022] [Indexed: 01/23/2023] Open
Abstract
Genomics has set the basis for a variety of methodologies that produce high-throughput datasets identifying the different players that define gene regulation, particularly regulation of transcription initiation and operon organization. These datasets are available in public repositories, such as the Gene Expression Omnibus, or ArrayExpress. However, accessing and navigating such a wealth of data is not straightforward. No resource currently exists that offers all available high and low-throughput data on transcriptional regulation in Escherichia coli K-12 to easily use both as whole datasets, or as individual interactions and regulatory elements. RegulonDB (https://regulondb.ccg.unam.mx) began gathering high-throughput dataset collections in 2009, starting with transcription start sites, then adding ChIP-seq and gSELEX in 2012, with up to 99 different experimental high-throughput datasets available in 2019. In this paper we present a radical upgrade to more than 2000 high-throughput datasets, processed to facilitate their comparison, introducing up-to-date collections of transcription termination sites, transcription units, as well as transcription factor binding interactions derived from ChIP-seq, ChIP-exo, gSELEX and DAP-seq experiments, besides expression profiles derived from RNA-seq experiments. For ChIP-seq experiments we offer both the data as presented by the authors, as well as data uniformly processed in-house, enhancing their comparability, as well as the traceability of the methods and reproducibility of the results. Furthermore, we have expanded the tools available for browsing and visualization across and within datasets. We include comparisons against previously existing knowledge in RegulonDB from classic experiments, a nucleotide-resolution genome viewer, and an interface that enables users to browse datasets by querying their metadata. A particular effort was made to automatically extract detailed experimental growth conditions by implementing an assisted curation strategy applying Natural language processing and machine learning. We provide summaries with the total number of interactions found in each experiment, as well as tools to identify common results among different experiments. This is a long-awaited resource to make use of such wealth of knowledge and advance our understanding of the biology of the model bacterium E. coli K-12.
Collapse
Affiliation(s)
- Víctor H. Tierrafría
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Claire Rioualen
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Heladia Salgado
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Paloma Lara
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Socorro Gama-Castro
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Patrick Lally
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Laura Gómez-Romero
- Instituto Nacional de Medicina Genómica, INMEGEN, Periférico Sur 4809, Arenal Tepepan, Tlalpan 14610, CDMX, Mexico
| | - Pablo Peña-Loredo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Andrés G. López-Almazo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Gabriel Alarcón-Carranza
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Felipe Betancourt-Figueroa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Shirley Alquicira-Hernández
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - J. Enrique Polanco-Morelos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Jair García-Sotelo
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Querétaro 76230, Querétaro, Mexico
| | - Estefani Gaytan-Nuñez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Carlos-Francisco Méndez-Cruz
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Luis J. Muñiz
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - César Bonavides-Martínez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Gabriel Moreno-Hagelsieb
- Department of Biology, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5, Canada
| | - James E. Galagan
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Joseph T. Wade
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, NY, USA
| | - Julio Collado-Vides
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Universitat Pompeu Fabra(UPF), Barcelona, Spain
| |
Collapse
|
12
|
Pietrzyk-Brzezinska AJ, Cociurovscaia A. Structures of the TetR-like transcription regulator RcdA alone and in complexes with ligands. Proteins 2021; 90:33-44. [PMID: 34288132 DOI: 10.1002/prot.26183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/20/2021] [Accepted: 07/11/2021] [Indexed: 01/25/2023]
Abstract
RcdA is a helix-turn-helix (HTH) transcriptional regulator belonging to the TetR family. The protein regulates the transcription of curlin subunit gene D, the master regulator of biofilm formation. Moreover, it was predicted that it might be involved in the regulation of up to 27 different genes. However, an effector of RcdA and the environmental conditions which trigger RcdA action remain unknown. Herein, we report the first crystal structures of RcdA in complexes with ligands, trimethylamine N-oxide (TMAO) and tris(hydroxymethyl)aminomethane (Tris), which might serve as RcdA effectors. Based on these structures, the ligand-binding pocket of RcdA was characterized in detail. The conservation of the amino acid residues forming the ligand-binding cavity was analyzed and the comprehensive search for RcdA structural homologs was performed. This analysis indicated that RcdA is structurally similar to multidrug-binding TetR family members, however, its ligand-binding cavity differs significantly from the pockets of its structural homologs. The interaction of RcdA with TMAO and Tris indicates that the protein might be involved in alkaline stress response.
Collapse
Affiliation(s)
- Agnieszka J Pietrzyk-Brzezinska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Anna Cociurovscaia
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
13
|
Shimada T, Ogasawara H, Kobayashi I, Kobayashi N, Ishihama A. Single-Target Regulators Constitute the Minority Group of Transcription Factors in Escherichia coli K-12. Front Microbiol 2021; 12:697803. [PMID: 34220787 PMCID: PMC8249747 DOI: 10.3389/fmicb.2021.697803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
The identification of regulatory targets of all transcription factors (TFs) is critical for understanding the entire network of genome regulation. A total of approximately 300 TFs exist in the model prokaryote Escherichia coli K-12, but the identification of whole sets of their direct targets is impossible with use of in vivo approaches. For this end, the most direct and quick approach is to identify the TF-binding sites in vitro on the genome. We then developed and utilized the gSELEX screening system in vitro for identification of more than 150 E. coli TF-binding sites along the E. coli genome. Based on the number of predicted regulatory targets, we classified E. coli K-12 TFs into four groups, altogether forming a hierarchy ranging from a single-target TF (ST-TF) to local TFs, global TFs, and nucleoid-associated TFs controlling as many as 1,000 targets. Using the collection of purified TFs and a library of genome DNA segments from a single and the same E. coli K-12, we identified here a total of 11 novel ST-TFs, CsqR, CusR, HprR, NorR, PepA, PutA, QseA, RspR, UvrY, ZraR, and YqhC. The regulation of single-target promoters was analyzed in details for the hitherto uncharacterized QseA and RspR. In most cases, the ST-TF gene and its regulatory target genes are adjacently located on the E. coli K-12 genome, implying their simultaneous transfer in the course of genome evolution. The newly identified 11 ST-TFs and the total of 13 hitherto identified altogether constitute the minority group of TFs in E. coli K-12.
Collapse
Affiliation(s)
| | - Hiroshi Ogasawara
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Nagano, Japan.,Research Center for Fungal and Microbial Dynamism, Shinshu University, Nagano, Japan
| | - Ikki Kobayashi
- School of Agriculture, Meiji University, Kawasaki, Japan
| | - Naoki Kobayashi
- Department of Frontier Science, Hosei University, Koganei, Japan
| | - Akira Ishihama
- Department of Frontier Science, Hosei University, Koganei, Japan.,Micro-Nano Technology Research Center, Hosei University, Koganei, Japan
| |
Collapse
|
14
|
Ogasawara H, Ishizuka T, Hotta S, Aoki M, Shimada T, Ishihama A. Novel regulators of the csgD gene encoding the master regulator of biofilm formation in Escherichia coli K-12. Microbiology (Reading) 2020; 166:880-890. [DOI: 10.1099/mic.0.000947] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Under stressful conditions,
Escherichia coli
forms biofilm for survival by sensing a variety of environmental conditions. CsgD, the master regulator of biofilm formation, controls cell aggregation by directly regulating the synthesis of Curli fimbriae. In agreement of its regulatory role, as many as 14 transcription factors (TFs) have so far been identified to participate in regulation of the csgD promoter, each monitoring a specific environmental condition or factor. In order to identify the whole set of TFs involved in this typical multi-factor promoter, we performed in this study ‘promoter-specific transcription-factor’ (PS-TF) screening in vitro using a set of 198 purified TFs (145 TFs with known functions and 53 hitherto uncharacterized TFs). A total of 48 TFs with strong binding to the csgD promoter probe were identified, including 35 known TFs and 13 uncharacterized TFs, referred to as Y-TFs. As an attempt to search for novel regulators, in this study we first analysed a total of seven Y-TFs, including YbiH, YdcI, YhjC, YiaJ, YiaU, YjgJ and YjiR. After analysis of curli fimbriae formation, LacZ-reporter assay, Northern-blot analysis and biofilm formation assay, we identified at least two novel regulators, repressor YiaJ (renamed PlaR) and activator YhjC (renamed RcdB), of the csgD promoter.
Collapse
Affiliation(s)
- Hiroshi Ogasawara
- Academic Assembly School of Humanities and Social Sciences Institute of Humanities, Shinshu University, Asahi 3-1-1, Matsumoto, 390–8621, Japan
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Toshiyuki Ishizuka
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Shuhei Hotta
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Michiko Aoki
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, 1-1-1 Higashi Mita, Tama-ku, Kawasaki, Kanagawa 214–8571, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-8584, Japan
| |
Collapse
|
15
|
Azam MW, Zuberi A, Khan AU. bolA gene involved in curli amyloids and fimbriae production in E. coli: exploring pathways to inhibit biofilm and amyloid formation. ACTA ACUST UNITED AC 2020; 27:10. [PMID: 32566535 PMCID: PMC7301969 DOI: 10.1186/s40709-020-00120-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022]
Abstract
Background Biofilm formation is a complex phenomenon of bacterial cells, involved in several human infections. Its formation is regulated and controlled by several protein factors. The BolA-like proteins (bolA gene) are conserved in both prokaryotes and eukaryotes. The BolA protein is a transcription factor involved in bacterial cell motility and biofilm formation. This study was initiated to elucidate the role of the bolA gene in the curli biogenesis and amyloid production as well as to observe changes in the expression of fimH, a fimbriae gene. Methods Knockdown mutants of Escherichia coli MG1655 bolA gene (bolA-KD) were generated using CRISPR interference. The results obtained, were validated through gene expression using RT-PCR, microscopic analysis and different biofilm and amyloid assays. Results The bolA knockdown mutants showed a decrement in curli amyloid fibers, in fimbriae production and biofilm formation. We have also observed a reduction in EPS formation, eDNA production and extracellular protein content. Gene expression data showed that bolA downregulation caused the suppression of csgA and csgD of curli that led to the reduction in curli fiber and the amyloid formation and also the suppression of fimH, leading to the loss of fimbriae. Conclusions Curli fibers and fimbriae are found to be involved in biofilm formation leading to the pathogenicity of the bacterial cell. BolA is a conserved protein and is found to play a significant role in curli and fimbriae formation in E. coli. This study further proved that CRISPRi mediated suppression of the bolA gene leads to inhibition of biofilm formation through curli and fimbriae inhibition. Hence, it may be proposed as a possible target for intervention of biofilm mediated infections.
Collapse
Affiliation(s)
- Mohd W Azam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP 202002 India
| | - Azna Zuberi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP 202002 India
| | - Asad U Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP 202002 India.,Medical Microbiology and Molecular Biology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002 India
| |
Collapse
|
16
|
Ogasawara H, Ishizuka T, Yamaji K, Kato Y, Shimada T, Ishihama A. Regulatory role of pyruvate-sensing BtsSR in biofilm formation by Escherichia coli K-12. FEMS Microbiol Lett 2019; 366:5675631. [PMID: 31834370 DOI: 10.1093/femsle/fnz251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/12/2019] [Indexed: 12/29/2022] Open
Abstract
Pyruvate, the key regulator in connection of a variety of metabolic pathways, influences transcription of the Escherichia coli genome through controlling the activity of two pyruvate-sensing two-component systems (TCSs), BtsSR and PyrSR. Previously, we identified the whole set of regulatory targets of PyrSR with low-affinity to pyruvate. Using gSELEX screening system, we found here that BtsSR with high-affinity to pyruvate regulates more than 100 genes including as many as 13 transcription factors genes including the csgD gene encoding the master regulator of biofilm formation. CsgD regulates more than 20 target genes including the csg operons encoding the Curli fimbriae. In addition, we identified the csgBAC as one of the regulatory targets of BtsR, thus indicating the involvement of two pyruvate-dependent regulatory pathways of the curli formation: indirect regulation by CsgD; and direct regulation by BtsR. Based on the findings of the whole set of regulatory targets by two pyruvate-sensing BtsR and PyrR, we further propose an innovative concept that the pyruvate level-dependent regulation of different gene sets takes place through two pyruvate-sensing TCS systems, high-affinity BtsSR and low-affinity PyrSR to pyruvate.
Collapse
Affiliation(s)
- Hiroshi Ogasawara
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan.,Research Center for Fungal and Microbial Dynamism, Shinshu University, Minamiminowa 8304, Kamiina, Nagano 399-4598, Japan.,Academic Assembly School of Humanities and Social Sciences Institute of Humanities, Shinshu University, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | - Toshiyuki Ishizuka
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Kotaro Yamaji
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Yuki Kato
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, 1-1-1 Higashi Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan
| |
Collapse
|
17
|
Colclough AL, Scadden J, Blair JMA. TetR-family transcription factors in Gram-negative bacteria: conservation, variation and implications for efflux-mediated antimicrobial resistance. BMC Genomics 2019; 20:731. [PMID: 31606035 PMCID: PMC6790063 DOI: 10.1186/s12864-019-6075-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Background TetR-family transcriptional regulators (TFTRs) are DNA binding factors that regulate gene expression in bacteria. Well-studied TFTRs, such as AcrR, which regulates efflux pump expression, are usually encoded alongside target operons. Recently, it has emerged that there are many TFTRs which act as global multi-target regulators. Our classical view of TFTRs as simple, single-target regulators therefore needs to be reconsidered. As some TFTRs regulate essential processes (e.g. metabolism) or processes which are important determinants of resistance and virulence (e.g. biofilm formation and efflux gene expression) and as TFTRs are present throughout pathogenic bacteria, they may be good drug discovery targets for tackling antimicrobial resistant infections. However, the prevalence and conservation of individual TFTR genes in Gram-negative species, has to our knowledge, not yet been studied. Results Here, a wide-scale search for TFTRs in available proteomes of clinically relevant pathogens Salmonella and Escherichia species was performed and these regulators further characterised. The majority of identified TFTRs are involved in efflux regulation in both Escherichia and Salmonella. The percentage variance in TFTR genes of these genera was found to be higher in those regulating genes involved in efflux, bleach survival or biofilm formation than those regulating more constrained processes. Some TFTRs were found to be present in all strains and species of these two genera, whereas others (i.e. TetR) are only present in some strains and some (i.e. RamR) are genera-specific. Two further pathogens on the WHO priority pathogen list (K. pneumoniae and P. aeruginosa) were then searched for the presence of the TFTRs conserved in Escherichia and Salmonella. Conclusions Through bioinformatics and literature analyses, we present that TFTRs are a varied and heterogeneous family of proteins required for the regulation of numerous important processes, with consequences to antimicrobial resistance and virulence, and that the roles and responses of these proteins are frequently underestimated. Electronic supplementary material The online version of this article (10.1186/s12864-019-6075-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A L Colclough
- Institute of Microbiology and Infection, Biosciences Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - J Scadden
- Institute of Microbiology and Infection, Biosciences Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - J M A Blair
- Institute of Microbiology and Infection, Biosciences Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
18
|
Shimada T, Yamamoto K, Nakano M, Watanabe H, Schleheck D, Ishihama A. Regulatory role of CsqR (YihW) in transcription of the genes for catabolism of the anionic sugar sulfoquinovose (SQ) in Escherichia coli K-12. MICROBIOLOGY-SGM 2018; 165:78-89. [PMID: 30372406 DOI: 10.1099/mic.0.000740] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The binding sites of YihW, an uncharacterized DeoR-family transcription factor (TF) of Escherichia coli K-12, were identified using Genomic SELEX screening at two closely located sites, one inside the spacer between the bidirectional transcription units comprising the yihUTS operon and the yihV gene, and another one upstream of the yihW gene itself. Recently the YihUTS and YihV proteins were identified as catalysing the catabolism of sulfoquinovose (SQ), a hydrolysis product of sulfoquinovosyl diacylglycerol (SQDG) derived from plants and other photosynthetic organisms. Gel shift assay in vitro and reporter assay in vivo indicated that YihW functions as a repressor for all three transcription units. De-repression of the yih operons was found to be under the control of SQ as inducer, but not of lactose, glucose or galactose. Furthermore, a mode of its cooperative DNA binding was suggested for YihW by atomic force microscopy. Hence, as a regulator of the catabolism of SQ, we renamed YihW as CsqR.
Collapse
Affiliation(s)
- Tomohiro Shimada
- 1Meiji University, School of Agriculture, Kawasaki, Kanagawa, Japan
| | - Kaneyoshi Yamamoto
- 2Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan.,3Hosei University, Micro-Nano Technology Research Center, Koganei, Tokyo, Japan
| | - Masahiro Nakano
- 4Kyoto University, Institute for Frontier Life and Medical Sciences, Sakyo-ku, Kyoto, Japan
| | - Hiroki Watanabe
- 2Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - David Schleheck
- 5Department of Biology and Konstanz Research School Chemical Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Akira Ishihama
- 3Hosei University, Micro-Nano Technology Research Center, Koganei, Tokyo, Japan
| |
Collapse
|
19
|
Coordinated Hibernation of Transcriptional and Translational Apparatus during Growth Transition of Escherichia coli to Stationary Phase. mSystems 2018; 3:mSystems00057-18. [PMID: 30225374 PMCID: PMC6134199 DOI: 10.1128/msystems.00057-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022] Open
Abstract
During the growth transition of E. coli from exponential phase to stationary, the genome expression pattern is altered markedly. For this alteration, the transcription apparatus is altered by binding of anti-sigma factor Rsd to the RpoD sigma factor for sigma factor replacement, while the translation machinery is modulated by binding of RMF to 70S ribosome to form inactive ribosome dimer. Using the PS-TF screening system, a number of TFs were found to bind to both the rsd and rmf promoters, of which the regulatory roles of 5 representative TFs (one repressor ArcA and the four activators McbR, RcdA, SdiA, and SlyA) were analyzed in detail. The results altogether indicated the involvement of a common set of TFs, each sensing a specific environmental condition, in coordinated hibernation of the transcriptional and translational apparatus for adaptation and survival under stress conditions. In the process of Escherichia coli K-12 growth from exponential phase to stationary, marked alteration takes place in the pattern of overall genome expression through modulation of both parts of the transcriptional and translational apparatus. In transcription, the sigma subunit with promoter recognition properties is replaced from the growth-related factor RpoD by the stationary-phase-specific factor RpoS. The unused RpoD is stored by binding with the anti-sigma factor Rsd. In translation, the functional 70S ribosome is converted to inactive 100S dimers through binding with the ribosome modulation factor (RMF). Up to the present time, the regulatory mechanisms of expression of these two critical proteins, Rsd and RMF, have remained totally unsolved. In this study, attempts were made to identify the whole set of transcription factors involved in transcription regulation of the rsd and rmf genes using the newly developed promoter-specific transcription factor (PS-TF) screening system. In the first screening, 74 candidate TFs with binding activity to both of the rsd and rmf promoters were selected from a total of 194 purified TFs. After 6 cycles of screening, we selected 5 stress response TFs, ArcA, McbR, RcdA, SdiA, and SlyA, for detailed analysis in vitro and in vivo of their regulatory roles. Results indicated that both rsd and rmf promoters are repressed by ArcA and activated by McbR, RcdA, SdiA, and SlyA. We propose the involvement of a number of TFs in simultaneous and coordinated regulation of the transcriptional and translational apparatus. By using genomic SELEX (gSELEX) screening, each of the five TFs was found to regulate not only the rsd and rmf genes but also a variety of genes for growth and survival. IMPORTANCE During the growth transition of E. coli from exponential phase to stationary, the genome expression pattern is altered markedly. For this alteration, the transcription apparatus is altered by binding of anti-sigma factor Rsd to the RpoD sigma factor for sigma factor replacement, while the translation machinery is modulated by binding of RMF to 70S ribosome to form inactive ribosome dimer. Using the PS-TF screening system, a number of TFs were found to bind to both the rsd and rmf promoters, of which the regulatory roles of 5 representative TFs (one repressor ArcA and the four activators McbR, RcdA, SdiA, and SlyA) were analyzed in detail. The results altogether indicated the involvement of a common set of TFs, each sensing a specific environmental condition, in coordinated hibernation of the transcriptional and translational apparatus for adaptation and survival under stress conditions.
Collapse
|
20
|
Santos-Zavaleta A, Sánchez-Pérez M, Salgado H, Velázquez-Ramírez DA, Gama-Castro S, Tierrafría VH, Busby SJW, Aquino P, Fang X, Palsson BO, Galagan JE, Collado-Vides J. A unified resource for transcriptional regulation in Escherichia coli K-12 incorporating high-throughput-generated binding data into RegulonDB version 10.0. BMC Biol 2018; 16:91. [PMID: 30115066 PMCID: PMC6094552 DOI: 10.1186/s12915-018-0555-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/25/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Our understanding of the regulation of gene expression has benefited from the availability of high-throughput technologies that interrogate the whole genome for the binding of specific transcription factors and gene expression profiles. In the case of widely used model organisms, such as Escherichia coli K-12, the new knowledge gained from these approaches needs to be integrated with the legacy of accumulated knowledge from genetic and molecular biology experiments conducted in the pre-genomic era in order to attain the deepest level of understanding possible based on the available data. RESULTS In this paper, we describe an expansion of RegulonDB, the database containing the rich legacy of decades of classic molecular biology experiments supporting what we know about gene regulation and operon organization in E. coli K-12, to include the genome-wide dataset collections from 32 ChIP and 19 gSELEX publications, in addition to around 60 genome-wide expression profiles relevant to the functional significance of these datasets and used in their curation. Three essential features for the integration of this information coming from different methodological approaches are: first, a controlled vocabulary within an ontology for precisely defining growth conditions; second, the criteria to separate elements with enough evidence to consider them involved in gene regulation from isolated transcription factor binding sites without such support; and third, an expanded computational model supporting this knowledge. Altogether, this constitutes the basis for adequately gathering and enabling the comparisons and integration needed to manage and access such wealth of knowledge. CONCLUSIONS This version 10.0 of RegulonDB is a first step toward what should become the unifying access point for current and future knowledge on gene regulation in E. coli K-12. Furthermore, this model platform and associated methodologies and criteria can be emulated for gathering knowledge on other microbial organisms.
Collapse
Affiliation(s)
- Alberto Santos-Zavaleta
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos México
| | - Mishael Sánchez-Pérez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos México
| | - Heladia Salgado
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos México
| | | | - Socorro Gama-Castro
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos México
| | - Víctor H. Tierrafría
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos México
| | | | - Patricia Aquino
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts USA
| | - Xin Fang
- Department of Bioengineering, University of California San Diego, La Jolla, California USA
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California USA
- Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - James E. Galagan
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts USA
| | - Julio Collado-Vides
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos México
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts USA
| |
Collapse
|
21
|
Sugino H, Usui T, Shimada T, Nakano M, Ogasawara H, Ishihama A, Hirata A. A structural sketch of RcdA, a transcription factor controlling the master regulator of biofilm formation. FEBS Lett 2017; 591:2019-2031. [PMID: 28608551 DOI: 10.1002/1873-3468.12713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 12/23/2022]
Abstract
RcdA is a regulator of curlin subunit gene D, the master regulator of biofilm formation in Escherichia coli. Here, we determined the X-ray structure of RcdA at 2.55 Å resolution. RcdA consists of an N-terminal DNA-binding domain (DBD) containing a helix-turn-helix (HTH) motif and a C-terminal dimerization domain, and forms a homodimer in crystals. A computational docking model of the RcdA-DNA complex allowed prediction of the candidate residues responsible for DNA binding. Our structure-guided mutagenesis, in combination with gel shift assay, atomic force microscopic observation, and reporter assay, indicate that R32 in α2 of the HTH motif plays an essential role in the recognition and binding of target DNA while T46 in α3 influences the mode of oligomerization. These results provide insights into the DNA-binding mode of RcdA.
Collapse
Affiliation(s)
- Hirotaka Sugino
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Takanori Usui
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, Tama-ku, Kawasaki-shi, Kanagawa, Japan
| | - Masahiro Nakano
- Department of Virus Research, Institute for Frontier Life and Medical Science, Kyoto University, Japan
| | - Hiroshi Ogasawara
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Ueda, Nagano, Japan.,Research Center for Fungal and Microbial Dynamism, Shinshu University, Nagano, Japan
| | - Akira Ishihama
- Micro-Nano Technology Research Center and Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| |
Collapse
|
22
|
Bruno A, Sandionigi A, Rizzi E, Bernasconi M, Vicario S, Galimberti A, Cocuzza C, Labra M, Casiraghi M. Exploring the under-investigated "microbial dark matter" of drinking water treatment plants. Sci Rep 2017; 7:44350. [PMID: 28290543 PMCID: PMC5349567 DOI: 10.1038/srep44350] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 02/09/2017] [Indexed: 11/09/2022] Open
Abstract
Scientists recently reported the unexpected detection of unknown or poorly studied bacterial diversity in groundwater. The ability to uncover this neglected biodiversity mainly derives from technical improvements, and the term "microbial dark matter" was used to group taxa poorly investigated and not necessarily monophyletic. We focused on such under-investigated microbial dark matter of drinking water treatment plant from groundwater, across carbon filters, to post-chlorination. We tackled this topic using an integrated approach where the efficacy of stringent water filtration (10000 MWCO) in recovering even the smallest environmental microorganisms was coupled with high-throughput DNA sequencing to depict an informative spectrum of the neglected microbial diversity. Our results revealed that the composition of bacterial communities varies across the plant system: Parcubacteria (OD1) superphylum is found mainly in treated water, while groundwater has the highest heterogeneity, encompassing non-OD1 candidate phyla (Microgenomates, Saccharibacteria, Dependentiae, OP3, OP1, BRC1, WS3). Carbon filters probably act as substrate for microorganism growth and contribute to seeding water downstream, since chlorination does not modify the incoming bacterial community. New questions arise about the role of microbial dark matter in drinking water. Indeed, our results suggest that these bacteria might play a central role in the microbial dynamics of drinking water.
Collapse
Affiliation(s)
- Antonia Bruno
- University of Milan-Bicocca, ZooPlantLab, Biotechnology and Biosciences Department, Piazza della Scienza 2, 20126, Milan, Italy
| | - Anna Sandionigi
- University of Milan-Bicocca, ZooPlantLab, Biotechnology and Biosciences Department, Piazza della Scienza 2, 20126, Milan, Italy
| | - Ermanno Rizzi
- National Research Council (CNR), Institute of Biomedical Technologies (ITB), Via Fratelli Cervi, 93, 20090 Segrate (MI), Italy.,Fondazione Telethon Piazza Cavour, 1, 20121, Milan, Italy
| | - Marzia Bernasconi
- Metropolitana Milanese S.p.A., Via Giuseppe Meda 44, 20141, Milan, Italy
| | - Saverio Vicario
- Institute of Atmospheric Pollution Research, National ResearchCouncil, C/O Physics Department, University of Bari "Aldo Moro", Via Giovanni Amendola, 173 70126, Bari, Italy.,National Research Council (CNR), Institute of Biomedical and Technologies (ITB), via Giovanni Amendola, 122/D, 70126, Bari, Italy
| | - Andrea Galimberti
- University of Milan-Bicocca, ZooPlantLab, Biotechnology and Biosciences Department, Piazza della Scienza 2, 20126, Milan, Italy
| | - Clementina Cocuzza
- University of Milan-Bicocca, Medicine and Surgery Department, Via Cadore 48, 20126, Monza, Italy
| | - Massimo Labra
- University of Milan-Bicocca, ZooPlantLab, Biotechnology and Biosciences Department, Piazza della Scienza 2, 20126, Milan, Italy
| | - Maurizio Casiraghi
- University of Milan-Bicocca, ZooPlantLab, Biotechnology and Biosciences Department, Piazza della Scienza 2, 20126, Milan, Italy
| |
Collapse
|
23
|
Keseler IM, Mackie A, Santos-Zavaleta A, Billington R, Bonavides-Martínez C, Caspi R, Fulcher C, Gama-Castro S, Kothari A, Krummenacker M, Latendresse M, Muñiz-Rascado L, Ong Q, Paley S, Peralta-Gil M, Subhraveti P, Velázquez-Ramírez DA, Weaver D, Collado-Vides J, Paulsen I, Karp PD. The EcoCyc database: reflecting new knowledge about Escherichia coli K-12. Nucleic Acids Res 2016; 45:D543-D550. [PMID: 27899573 PMCID: PMC5210515 DOI: 10.1093/nar/gkw1003] [Citation(s) in RCA: 389] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/07/2016] [Indexed: 12/16/2022] Open
Abstract
EcoCyc (EcoCyc.org) is a freely accessible, comprehensive database that collects and summarizes experimental data for Escherichia coli K-12, the best-studied bacterial model organism. New experimental discoveries about gene products, their function and regulation, new metabolic pathways, enzymes and cofactors are regularly added to EcoCyc. New SmartTable tools allow users to browse collections of related EcoCyc content. SmartTables can also serve as repositories for user- or curator-generated lists. EcoCyc now supports running and modifying E. coli metabolic models directly on the EcoCyc website.
Collapse
Affiliation(s)
- Ingrid M Keseler
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Amanda Mackie
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alberto Santos-Zavaleta
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, Mexico
| | | | - César Bonavides-Martínez
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, Mexico
| | - Ron Caspi
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Carol Fulcher
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Socorro Gama-Castro
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, Mexico
| | - Anamika Kothari
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | | | | | - Luis Muñiz-Rascado
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, Mexico
| | - Quang Ong
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Suzanne Paley
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Martin Peralta-Gil
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, Mexico
| | | | - David A Velázquez-Ramírez
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, Mexico
| | - Daniel Weaver
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Julio Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, Mexico
| | - Ian Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Peter D Karp
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| |
Collapse
|
24
|
Ishihama A, Shimada T, Yamazaki Y. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors. Nucleic Acids Res 2016; 44:2058-74. [PMID: 26843427 PMCID: PMC4797297 DOI: 10.1093/nar/gkw051] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/20/2016] [Indexed: 01/25/2023] Open
Abstract
Bacterial genomes are transcribed by DNA-dependent RNA polymerase (RNAP), which achieves gene selectivity through interaction with sigma factors that recognize promoters, and transcription factors (TFs) that control the activity and specificity of RNAP holoenzyme. To understand the molecular mechanisms of transcriptional regulation, the identification of regulatory targets is needed for all these factors. We then performed genomic SELEX screenings of targets under the control of each sigma factor and each TF. Here we describe the assembly of 156 SELEX patterns of a total of 116 TFs performed in the presence and absence of effector ligands. The results reveal several novel concepts: (i) each TF regulates more targets than hitherto recognized; (ii) each promoter is regulated by more TFs than hitherto recognized; and (iii) the binding sites of some TFs are located within operons and even inside open reading frames. The binding sites of a set of global regulators, including cAMP receptor protein, LeuO and Lrp, overlap with those of the silencer H-NS, suggesting that certain global regulators play an anti-silencing role. To facilitate sharing of these accumulated SELEX datasets with the research community, we compiled a database, ‘Transcription Profile of Escherichia coli’ (www.shigen.nig.ac.jp/ecoli/tec/).
Collapse
Affiliation(s)
- Akira Ishihama
- Micro-Nano Technology Research Center, Hosei University, Koganei, Tokyo, 184-8584, Japan
| | - Tomohiro Shimada
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuda, Yokohama 226-8503, Japan
| | - Yukiko Yamazaki
- National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
25
|
Simm R, Ahmad I, Rhen M, Le Guyon S, Römling U. Regulation of biofilm formation in Salmonella enterica serovar Typhimurium. Future Microbiol 2015; 9:1261-82. [PMID: 25437188 DOI: 10.2217/fmb.14.88] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In animals, plants and the environment, Salmonella enterica serovar Typhimurium forms the red dry and rough (rdar) biofilm characterized by extracellular matrix components curli and cellulose. With complex expression control by at least ten transcription factors, the bistably expressed orphan response regulator CsgD directs rdar morphotype development. CsgD expression is an integral part of the Hfq regulon and the complex cyclic diguanosine monophosphate signaling network partially controlled by the global RNA-binding protein CsrA. Cell wall turnover and the periplasmic redox status regulate csgD expression on a post-transcriptional level by unknown mechanisms. Furthermore, phosphorylation of CsgD is a potential inactivation and degradation signal in biofilm dissolution. Including complex incoherent feed-forward loops, regulation of biofilm formation versus motility and virulence is of recognized complexity.
Collapse
Affiliation(s)
- Roger Simm
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, Oslo, Norway
| | | | | | | | | |
Collapse
|
26
|
Evans ML, Chapman MR. Curli biogenesis: order out of disorder. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:1551-8. [PMID: 24080089 PMCID: PMC4243835 DOI: 10.1016/j.bbamcr.2013.09.010] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/18/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
Many bacteria assemble extracellular amyloid fibers on their cell surface. Secretion of proteins across membranes and the assembly of complex macromolecular structures must be highly coordinated to avoid the accumulation of potentially toxic intracellular protein aggregates. Extracellular amyloid fiber assembly poses an even greater threat to cellular health due to the highly aggregative nature of amyloids and the inherent toxicity of amyloid assembly intermediates. Therefore, temporal and spatial control of amyloid protein secretion is paramount. The biogenesis and assembly of the extracellular bacterial amyloid curli is an ideal system for studying how bacteria cope with the many challenges of controlled and ordered amyloid assembly. Here, we review the recent progress in the curli field that has made curli biogenesis one of the best-understood functional amyloid assembly pathways. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Margery L Evans
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109, USA
| | - Matthew R Chapman
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109, USA.
| |
Collapse
|
27
|
Intracellular concentrations of 65 species of transcription factors with known regulatory functions in Escherichia coli. J Bacteriol 2014; 196:2718-27. [PMID: 24837290 DOI: 10.1128/jb.01579-14] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The expression pattern of the Escherichia coli genome is controlled in part by regulating the utilization of a limited number of RNA polymerases among a total of its approximately 4,600 genes. The distribution pattern of RNA polymerase changes from modulation of two types of protein-protein interactions: the interaction of core RNA polymerase with seven species of the sigma subunit for differential promoter recognition and the interaction of RNA polymerase holoenzyme with about 300 different species of transcription factors (TFs) with regulatory functions. We have been involved in the systematic search for the target promoters recognized by each sigma factor and each TF using the newly developed Genomic SELEX system. In parallel, we developed the promoter-specific (PS)-TF screening system for identification of the whole set of TFs involved in regulation of each promoter. Understanding the regulation of genome transcription also requires knowing the intracellular concentrations of the sigma subunits and TFs under various growth conditions. This report describes the intracellular levels of 65 species of TF with known function in E. coli K-12 W3110 at various phases of cell growth and at various temperatures. The list of intracellular concentrations of the sigma factors and TFs provides a community resource for understanding the transcription regulation of E. coli under various stressful conditions in nature.
Collapse
|
28
|
Identification of the set of genes, including nonannotated morA, under the direct control of ModE in Escherichia coli. J Bacteriol 2013; 195:4496-505. [PMID: 23913318 DOI: 10.1128/jb.00304-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
ModE is the molybdate-sensing transcription regulator that controls the expression of genes related to molybdate homeostasis in Escherichia coli. ModE is activated by binding molybdate and acts as both an activator and a repressor. By genomic systematic evolution of ligands by exponential enrichment (SELEX) screening and promoter reporter assays, we have identified a total of nine operons, including the hitherto identified modA, moaA, dmsA, and napF operons, of which six were activated by ModE and three were repressed. In addition, two promoters were newly identified and direct transcription of novel genes, referred to as morA and morB, located on antisense strands of yghW and torY, respectively. The morA gene encodes a short peptide, MorA, with an unusual initiation codon. Surprisingly, overexpression of the morA 5' untranslated region exhibited an inhibitory influence on colony formation of E. coli K-12.
Collapse
|
29
|
Holmqvist E, Reimegård J, Wagner EGH. Massive functional mapping of a 5'-UTR by saturation mutagenesis, phenotypic sorting and deep sequencing. Nucleic Acids Res 2013; 41:e122. [PMID: 23609548 PMCID: PMC3695526 DOI: 10.1093/nar/gkt267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We present here a method that enables functional screening of large number of mutations in a single experiment through the combination of random mutagenesis, phenotypic cell sorting and high-throughput sequencing. As a test case, we studied post-transcriptional gene regulation of the bacterial csgD messenger RNA, which is regulated by a small RNA (sRNA). A 109 bp sequence within the csgD 5′-UTR, containing all elements for expression and sRNA-dependent control, was mutagenized close to saturation. We monitored expression from a translational gfp fusion and collected fractions of cells with distinct expression levels by fluorescence-activated cell sorting. Deep sequencing of mutant plasmids from cells in different activity-sorted fractions identified functionally important positions in the messenger RNA that impact on intrinsic (translational activity per se) and extrinsic (sRNA-based) gene regulation. The results obtained corroborate previously published data. In addition to pinpointing nucleotide positions that change expression levels, our approach also reveals mutations that are silent in terms of gene expression and/or regulation. This method provides a simple and informative tool for studies of regulatory sequences in RNA, in particular addressing RNA structure–function relationships (e.g. sRNA-mediated control, riboswitch elements). However, slight protocol modifications also permit mapping of functional DNA elements and functionally important regions in proteins.
Collapse
Affiliation(s)
- Erik Holmqvist
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SciLifeLab Uppsala, Box 596, S-75124 Uppsala, Sweden
| | | | | |
Collapse
|
30
|
Shimada T, Yamazaki K, Ishihama A. Novel regulator PgrR for switch control of peptidoglycan recycling in Escherichia coli. Genes Cells 2013; 18:123-34. [PMID: 23301696 DOI: 10.1111/gtc.12026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/02/2012] [Indexed: 01/06/2023]
Abstract
Peptidoglycan (PG), also designated as murein, forms a skeletal mesh within the periplasm of bacterial membrane. PG is a metabolically stable cell architecture in Escherichia coli, but under as yet ill-defined conditions, a portion of PG is degraded, of which both amino sugar and peptide moieties are either recycled or used as self-generated nutrients for cell growth. At present, the control of PG degradation remains uncharacterized. Using the Genomic SELEX screening system, we identified an uncharacterized transcription factor YcjZ is a repressor of the expression of the initial step enzymes for PG peptide degradation. Under nutrient starvation, the genes encoding the enzymes for PG peptide degradation are derepressed so as to generate amino acids but are tightly repressed at high osmotic conditions so as to maintain the rigid membrane for withstanding the turgor. Taken together, we propose to rename YcjZ as PgrR (regulator of peptide glycan recycling).
Collapse
Affiliation(s)
- Tomohiro Shimada
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | | | | |
Collapse
|