1
|
Zhu L, Yang X, Fu X, Yang P, Lin X, Wang F, Shen Z, Wang J, Sun F, Qiu Z. Pheromone cCF10 inhibits the antibiotic persistence of Enterococcus faecalis by modulating energy metabolism. Front Microbiol 2024; 15:1408701. [PMID: 39040910 PMCID: PMC11260814 DOI: 10.3389/fmicb.2024.1408701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Bacterial resistance presents a major challenge to both the ecological environment and human well-being, with persistence playing a key role. Multiple studies were recently undertaken to examine the factors influencing the formation of persisters and the underlying process, with a primary focus on Gram-negative bacteria and Staphylococcus aureus (Gram-positive bacteria). Enterococcus faecalis (E. faecalis) is capable of causing a variety of infectious diseases, but there have been few studies of E. faecalis persisters. Previous studies have shown that the sex pheromone cCF10 secreted by E. faecalis induces conjugative plasmid transfer. However, whether the pheromone cCF10 regulates the persistence of E. faecalis has not been investigated. Methods As a result, we investigated the effect and potential molecular mechanism of pheromone cCF10 in regulating the formation of persisters in E. faecalis OG1RF using a persistent bacteria model. Results and discussion The metabolically active E. faecalis OG1RF reached a persistence state and temporarily tolerated lethal antibiotic concentrations after 8 h of levofloxacin hydrochloride (20 mg/mL) exposure, exhibiting a persistence rate of 0.109 %. During the growth of E. faecalis OG1RF, biofilm formation was a critical factor contributing to antibiotic persistence, whereas 10 ng/mL cCF10 blocked persister cell formation. Notably, cCF10 mediated the antibiotic persistence of E. faecalis OG1RF via regulating metabolic activity rather than suppressing biofilm formation. The addition of cCF10 stimulated the Opp system and entered bacterial cells, inhibiting (p)ppGpp accumulation, thus maintaining the metabolically active state of bacteria and reducing persister cell generation. These findings offer valuable insights into the formation, as well as the control mechanism of E. faecalis persisters.
Collapse
Affiliation(s)
- Li Zhu
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an, China
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaobo Yang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xinyue Fu
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Panpan Yang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xiaoli Lin
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- Key Laboratory of Karst Geological Resources and Environment, Guizhou University, Guizhou, China
| | - Feng Wang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Zhiqiang Shen
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Jingfeng Wang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Feilong Sun
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an, China
| | - Zhigang Qiu
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
2
|
Yang X, Niu Y, Yang Y, Zhou H, Li J, Fu X, Shen Z, Wang J, Qiu Z. Pheromone effect of estradiol regulates the conjugative transfer of pCF10 carrying antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131087. [PMID: 36889077 DOI: 10.1016/j.jhazmat.2023.131087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Horizontal gene transfer (HGT) mediated by conjugative plasmids greatly contributes to bacteria evolution and the transmission of antibiotic resistance genes (ARGs). In addition to the selective pressure imposed by extensive antibiotic use, environmental chemical pollutants facilitate the dissemination of antibiotic resistance, consequently posing a serious threat to the ecological environment. Presently, the majority of studies focus on the effects of environmental compounds on R plasmid-mediated conjugation transfer, and pheromone-inducible conjugation has largely been neglected. In this study, we explored the pheromone effect and potential molecular mechanisms of estradiol in promoting the conjugative transfer of pCF10 plasmid in Enterococcus faecalis. Environmentally relevant concentrations of estradiol significantly increased the conjugative transfer of pCF10 with a maximum frequency of 3.2 × 10-2, up to 3.5-fold change compared to that of control. Exposure to estradiol induced the activation of pheromone signaling cascade by increasing the expression of ccfA. Furthermore, estradiol might directly bind to the pheromone receptor PrgZ and promote pCF10 induction and finally enhance the conjugative transfer of pCF10. These findings cast valuable insights on the roles of estradiol and its homolog in increasing antibiotic resistance and the potential ecological risk.
Collapse
Affiliation(s)
- Xiaobo Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yuanyuan Niu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Shanghai Ocean University, Shanghai 201306, China
| | - Yutong Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Hongrui Zhou
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jing Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinyue Fu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Shanghai Ocean University, Shanghai 201306, China
| | - Zhiqiang Shen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jingfeng Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Zhigang Qiu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
3
|
Zhou H, Yang X, Yang Y, Niu Y, Li J, Fu X, Wang S, Xue B, Li C, Zhao C, Zhang X, Shen Z, Wang J, Qiu Z. Docosahexaenoic acid inhibits pheromone-responsive-plasmid-mediated conjugative transfer of antibiotic resistance genes in Enterococcus faecalis. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130390. [PMID: 36423456 DOI: 10.1016/j.jhazmat.2022.130390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The rapid spread of antibiotic-resistance genes (ARGs) in Enterococcus faecalis (E. faecalis) poses a great challenge to human health and ecological and environmental safety. Therefore, it is important to control the spread of ARGs. In this study, we observed that the addition of 5 μg/mL docosahexaenoic acid (DHA) reduced the conjugative transfer of pCF10 plasmid by more than 95% in E. faecalis. DHA disturbed the pheromone transport by inhibiting the mRNA levels of the prgZ gene, causing the iCF10 pheromone to accumulate in the donor bacteria and bond to the PrgX receptor to form an inhibitory phase, which resulted in the down-regulation of the expression of genes related to conjugative transfer, inhibiting biofilm formation, reducing bacterial adhesion and thus inhibiting conjugative transfer. Collectively, DHA exhibited an admirable inhibitory effect on the transfer of ARGs in E. faecalis. This study provided a technical option to control the transfer of ARGs.
Collapse
Affiliation(s)
- Hongrui Zhou
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xiaobo Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yutong Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yuanyuan Niu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Shanghai Ocean University, Shanghai 201306, China
| | - Jing Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinyue Fu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Shanghai Ocean University, Shanghai 201306, China
| | - Shang Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Bin Xue
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Chenyu Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Chen Zhao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xi Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhiqiang Shen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jingfeng Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhigang Qiu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
4
|
Segawa T, Manias DA, Dunny GM. Structural Differences in Complexes between the Master Regulator PrgX, Peptide Pheromones, and Operator Binding Sites Determine the Induction State for Conjugative Transfer of pCF10. J Bacteriol 2022; 204:e0029822. [PMID: 36354318 PMCID: PMC9764970 DOI: 10.1128/jb.00298-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/13/2022] [Indexed: 11/12/2022] Open
Abstract
Pheromone-inducible conjugation in the Enterococcus faecalis pCF10 system is regulated by the PrgX transcription factor through binding interactions at two operator binding sites (XBS1 and XBS2) upstream of the transcription start site of the prgQ operon encoding the conjugation machinery. Repression of transcription requires the interaction of a PrgX tetramer with both XBSs via formation of a DNA loop. The ability of PrgX to regulate prgQ transcription is modulated by its interaction with two antagonistic regulatory peptides, ICF10 (I) and cCF10 (C); the former peptide inhibits prgQ transcription, while the latter peptide enhances prgQ transcription. In this report, we used electrophoretic mobility shift assays (EMSAs) and DNase footprinting to examine binding interactions between the XBS operator sites and various forms of PrgX (Apo-X, PrgX/I, and PrgX/C). Whereas a previous model based on high-resolution structures of PrgX proposed that the functional differences between PrgX/C and PrgX/I resulted from differences in PrgX oligomerization state, the current results show that specific differences in XBS2 occupancy by bound tetramers account for the differential regulatory properties of the two peptide/PrgX complexes and for the effects of XBS mutations on regulation. The results also confirmed a DNA looping model of PrgX function. IMPORTANCE Peptide pheromones regulate antibiotic resistance transfer in Enterococcus faecalis. Here, we present new data showing that pheromone-dependent regulation of transfer genes is mediated via effects on the structures of complexes between peptides, the intracellular peptide receptor, and operator sites on the target DNA.
Collapse
Affiliation(s)
- Takaya Segawa
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Dawn A. Manias
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Gary M. Dunny
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Pheromone Activity after Stimulation with Ampicillin in a Plasmid-Free Enterococcus faecalis Strain. Microorganisms 2022; 10:microorganisms10112294. [DOI: 10.3390/microorganisms10112294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
Enterococci exhibit clumping under the selective pressure of antibiotics. The aim of this study was to analyze the effect of supernatants from a plasmid-free clone (C29) of Enterococcus faecalis subjected to 0.25×, 0.5×, and 0.75× of the minimal inhibitory concentration (MIC) of ampicillin on the expression of an aggregation substance (AS) by a donor plasmid clone (1390R). A clumping assay was performed. The relative expression of prgB (gene that encodes AS) was determined and semiquantified in 1390R, and iad1 expression was determined and semiquantified in C29. AS expression was analyzed in the stimulated 1390R cells by confocal microscopy, flow cytometry, and ELISA. Adherence was also measured. Maximal clumping was observed with the pheromone medium 0.25×. Only the 1390R strain stimulated with the C29 supernatant without ampicillin and with 0.25× was able to express prgB. No expression of prgB was observed at 0.5× and 0.75×. The difference in relative expression (RE) of 1390R without ampicillin and with 0.25× was 0.5-fold. AS expression in 1390R showed the greatest increase upon stimulation with 0.25×. When 1390R was stimulated with 0.5× and 0.75×, AS expression was also observed but was significantly lower. Ampicillin stimulated C29 switch-off pheromone expression in recipient cells, which in turn switched off AS expression in donor cells. We observed that although prgB was switched off after 0.5× stimulation in C29, the supernatants induced expression in certain 1390R strains. In conclusion, ampicillin was able to modulate pheromone expression in free plasmid clones which, in turn, modulated AS expression in plasmid donor cells. The fact that PrgB gene expression was switched off after the ampicillin stimulus at 0.5× MIC, whereas AS proteins were present on the surface of the bacteria, suggested that a mechanism of rescue associated with mechanism pheromone sensing may be involved.
Collapse
|
6
|
Johnson CN, Sheriff EK, Duerkop BA, Chatterjee A. Let Me Upgrade You: Impact of Mobile Genetic Elements on Enterococcal Adaptation and Evolution. J Bacteriol 2021; 203:e0017721. [PMID: 34370561 PMCID: PMC8508098 DOI: 10.1128/jb.00177-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococci are Gram-positive bacteria that have evolved to thrive as both commensals and pathogens, largely due to their accumulation of mobile genetic elements via horizontal gene transfer (HGT). Common agents of HGT include plasmids, transposable elements, and temperate bacteriophages. These vehicles of HGT have facilitated the evolution of the enterococci, specifically Enterococcus faecalis and Enterococcus faecium, into multidrug-resistant hospital-acquired pathogens. On the other hand, commensal strains of Enterococcus harbor CRISPR-Cas systems that prevent the acquisition of foreign DNA, restricting the accumulation of mobile genetic elements. In this review, we discuss enterococcal mobile genetic elements by highlighting their contributions to bacterial fitness, examine the impact of CRISPR-Cas on their acquisition, and identify key areas of research that can improve our understanding of enterococcal evolution and ecology.
Collapse
Affiliation(s)
- Cydney N. Johnson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Emma K. Sheriff
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
7
|
Segawa T, Johnson CM, Berntsson RPA, Dunny GM. Two ABC transport systems carry out peptide uptake in Enterococcus faecalis: Their roles in growth and in uptake of sex pheromones. Mol Microbiol 2021; 116:459-469. [PMID: 33817866 DOI: 10.1111/mmi.14725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022]
Abstract
Enterococcal pheromone-inducible plasmids encode a predicted OppA-family secreted lipoprotein. In the case of plasmid pCF10, the protein is PrgZ, which enhances the mating response to cCF10 pheromone. OppA proteins generally function with associated OppBCDF ABC transporters to import peptides. In this study, we analyzed the potential interactions of PrgZ with two host-encoded Opp transporters using two pheromone-inducible fluorescent reporter constructs. Based on our results, we propose renaming these loci opp1 (OG1RF_10634-10639) and opp2 (OG1RF_12366-12370). We also examined the ability of the Opp1 and Opp2 systems to mediate import in the absence of PrgZ. Cells expressing PrgZ were able to import pheromone if either opp1 or opp2 was functional, but not if both opp loci were disrupted. In the absence of PrgZ, pheromone import was dependent on a functional opp2 system, including opp2A. Comparative structural analysis of the peptide-binding pockets of PrgZ, Opp1A, Opp2A, and the related Lactococcus lactis OppA protein, suggested that the robust pheromone-binding ability of PrgZ relates to a nearly optimal fit of the hydrophobic peptide, whereas binding ability of Opp2A likely results from a more open, promiscuous peptide-binding pocket similar to L. lactis OppA.
Collapse
Affiliation(s)
- Takaya Segawa
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Christopher M Johnson
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ronnie P-A Berntsson
- Department of Medical Biochemistry and Biophysics, Umea University, Umea, Sweden.,Wallenberg Center for Molecular Medicine, Umea University, Umea, Sweden
| | - Gary M Dunny
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
8
|
Shu CC, Chen WC, Chang YD, Chen JN, Liu FY, Huang YS, You CX, Wu EH. Exposure to One Antibiotic Leads to Acquisition of Resistance to Another Antibiotic via Quorum Sensing Mechanisms. Front Microbiol 2021; 11:580466. [PMID: 33552007 PMCID: PMC7855173 DOI: 10.3389/fmicb.2020.580466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/11/2020] [Indexed: 11/13/2022] Open
Abstract
The vancomycin-resistant Enterococci (VRE) have progressively become a severe medical problem. Although clinics have started to reduce vancomycin prescription, vancomycin resistance has not been contained. We found that the transfer of vancomycin resistance in Enterococcus faecalis increased more than 30-fold upon treatment by streptomycin. Notably, treatment with an antibiotic caused the bacteria to become resistant to another. The response was even stronger in the well-studied plasmid pCF10 and the number of transconjugants increased about 100,000-fold. We tested four different antibiotics, and all of them induced conjugal response. Through a mathematical model based on gene regulation, we found a plausible explanation. Via quorum sensing, the change of the cell density triggers the conjugation. Moreover, we searched for generality and found a similar strategy in Bacillus subtilis. The outcome of the present study suggests that even common antibiotics must not be overused.
Collapse
Affiliation(s)
- Che-Chi Shu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Wan-Ci Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Yao-Duo Chang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Jyy-Ning Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Feng-You Liu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Yu-Shan Huang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Chao-Xuan You
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - En Hsuan Wu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
9
|
Kurnia D, Rachmawati P, Satari MH. Antibacterial of Dibenzo- p-Dioxi-2,8-Dicarboxylic Acid Against Pathogenic Oral Bacteria E. faecalis ATCC 29212 Peptide Pheromones: Quorum Sensing of in vitro and in silico Study. Drug Des Devel Ther 2020; 14:3079-3086. [PMID: 32801646 PMCID: PMC7398749 DOI: 10.2147/dddt.s255270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/07/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Recently, it has emerged from the international scientific literature that quorum sensing (QS) is a promising way for the effective treatment of diseases caused by pathogenic bacteria. One of the crucial proteins in the QS system of Gram-positive bacteria is the pheromone. Some research has reported secondary metabolites from natural products capable of attenuating bacteria through the interruption of the quorum sensing system. One of the Indonesian herbal plants containing bioactive compounds is Sarang Semut (Myrmecodia pendans). A phenolic compound, dibenzo-p-dioxin-2,8-dicarboxylic acid, has been isolated from this plant which had antibacterial activity against Enterococcus faecalis. However, the molecular mechanism of it has not been known. AIM The study in question aimed to predict the molecular action of the compound M. pendans against some proteins that act as a signal in the mediated QS of Gram-positive bacteria, called pheromones, including PrgQ, PrgX, PrgZ, and CcfA. MATERIALS AND METHODS The methods used in this in silico study were ligand-protein docking and virtual screening that were performed by some software and programs. The compound 1 and some positive controls act as ligand were subject binding to PrgQ, PrgX, PrgZ, and CcfA as proteins target, the ligands were free for blind docking. A framework was presented potency of phenolic compounds to inhibit the protein's target from its affinity binding scores. RESULTS It was found thatcompound 1 was potential to inhibit all of the tested protein and gave the highest binding affinity to PrgX (-9.2 kcal.mol-1; the site at Phe59B, Phe59B, Asn63A, and Asn63B residue) and PrgZ (-7.4 kcal.mol-1; the site at Leu4B, Thr65A, Thr82A. Gln81A, and Val5B residue). CONCLUSION It is proposed that compound 1 has a good activity to inhibit E. faecalis through its peptide pheromones in the QS system.
Collapse
Affiliation(s)
- Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Putri Rachmawati
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Mieke H Satari
- Department of Oral Biology, Faculty of Dentistry, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
10
|
Sterling AJ, Snelling WJ, Naughton PJ, Ternan NG, Dooley JSG. Competent but complex communication: The phenomena of pheromone-responsive plasmids. PLoS Pathog 2020; 16:e1008310. [PMID: 32240270 PMCID: PMC7117660 DOI: 10.1371/journal.ppat.1008310] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Enterococci are robust gram-positive bacteria that are found in a variety of surroundings and that cause a significant number of healthcare-associated infections. The genus possesses a high-efficiency pheromone-responsive plasmid (PRP) transfer system for genetic exchange that allows antimicrobial-resistance determinants to spread within bacterial populations. The pCF10 plasmid system is the best characterised, and although other PRP systems are structurally similar, they lack exact functional homologues of pCF10-encoded genes. In this review, we provide an overview of the enterococcal PRP systems, incorporating functional details for the less-well-defined systems. We catalogue the virulence-associated elements of the PRPs that have been identified to date, and we argue that this reinforces the requirement for elucidation of the less studied systems.
Collapse
Affiliation(s)
- Amy J. Sterling
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Londonderry, Northern Ireland
- * E-mail:
| | - William J. Snelling
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Londonderry, Northern Ireland
| | - Patrick J. Naughton
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Londonderry, Northern Ireland
| | - Nigel G. Ternan
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Londonderry, Northern Ireland
| | - James S. G. Dooley
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Londonderry, Northern Ireland
| |
Collapse
|
11
|
Single-Cell Analysis Reveals that the Enterococcal Sex Pheromone Response Results in Expression of Full-Length Conjugation Operon Transcripts in All Induced Cells. J Bacteriol 2020; 202:JB.00685-19. [PMID: 32041799 DOI: 10.1128/jb.00685-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
For high-frequency transfer of pCF10 between E. faecalis cells, induced expression of the pCF10 genes encoding conjugative machinery from the prgQ operon is required. This process is initiated by the cCF10 (C) inducer peptide produced by potential recipient cells. The expression timing of prgB, an "early" gene just downstream of the inducible promoter, has been studied extensively in single cells. However, several previous studies suggest that only 1 to 10% of donors induced for early prgQ gene expression actually transfer plasmids to recipients, even at a very high recipient population density. One possible explanation for this is that only a minority of pheromone-induced donors actually transcribe the entire prgQ operon. Such cells would not be able to functionally conjugate but might play another role in the group behavior of donors. Here, we sought to (i) simultaneously assess the presence of RNAs produced from the proximal (early induced transcripts [early Q]) and distal (late Q) portions of the prgQ operon in individual cells, (ii) investigate the prevalence of heterogeneity in induced transcript length, and (iii) evaluate the temporality of induced transcript expression. Using fluorescent in situ hybridization chain reaction (HCR) transcript labeling and single-cell microscopic analysis, we observed that most cells expressing early transcripts (QL, prgB, and prgA) also expressed late transcripts (prgJ, pcfC, and pcfG). These data support the conclusion that, after induction is initiated, transcription likely extends through the end of the conjugation machinery operon for most, if not all, induced cells.IMPORTANCE In Enterococcus faecalis, conjugative plasmids like pCF10 often carry antibiotic resistance genes. With antibiotic treatment, bacteria benefit from plasmid carriage; however, without antibiotic treatment, plasmid gene expression may have a fitness cost. Transfer of pCF10 is mediated by cell-to-cell signaling, which activates the expression of conjugation genes and leads to efficient plasmid transfer. Yet, not all donor cells in induced populations transfer the plasmid. We examined whether induced cells might not be able to functionally conjugate due to premature induced transcript termination. Single-cell analysis showed that most induced cells do, in fact, express all of the genes required for conjugation, suggesting that premature transcription termination within the prgQ operon does not account for failure of induced donor cell gene transfer.
Collapse
|
12
|
Song H, Bae Y, Jeon E, Kwon Y, Joh S. Multiplex PCR analysis of virulence genes and their influence on antibiotic resistance in Enterococcus spp. isolated from broiler chicken. J Vet Sci 2019; 20:e26. [PMID: 31161744 PMCID: PMC6538522 DOI: 10.4142/jvs.2019.20.e26] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/12/2019] [Accepted: 04/02/2019] [Indexed: 01/27/2023] Open
Abstract
Enterococcus spp. are opportunistic pathogens that cause lameness in broiler chickens, resulting in serious economic losses worldwide. Virulence of Enterococcus spp. is associated with several putative virulence genes including fsr, efm, esp, cylA, cad1, ace, gelE, and asa1. In this study, multiplex polymerase chain reaction (PCR) for the simultaneous detection of these virulence genes in Enterococcus spp. was developed, and detection limits for E. faecium, E. faecalis, and E. hirae were 64.0 pg/µL, 320.0 pg/µL, and 1.6 ng/µL DNA, respectively. Among 80 Enterococcus isolates tested, efm and cad1 were detected in all 26 E. faecium samples, and only cad1 was observed in E. hirae. Additionally, the presence of virulence genes in 25 E. faecalis isolates were 100% for cad1, 88.0% for gelE, 64.0% for fsr, 44.0% for asa1, 16.0% for cylA, and 4.0% for esp. No virulence genes were found in E. gallinarum isolates. A total of 49 isolates were resistant to tigecycline and to at least 2 different classes of antibiotics. The most prevalent resistance was to ciprofloxacin (73.5%), quinupristin/dalfopristin (55.1%), and tetracycline (49.0%). No strains were resistant to vancomycin or linezolid. This is the first multiplex PCR assay to simultaneously detect eight virulence genes in Enterococcus spp., and the method provides diagnostic value for accurate, rapid, and convenient detection of virulence genes. Additionally, we report the prevalence of virulence genes and antimicrobial resistance in Enterococcus isolates from commercial broiler chickens suffering lameness.
Collapse
Affiliation(s)
- HyeSoon Song
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - YouChan Bae
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - EunJi Jeon
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - YongKuk Kwon
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - SeongJoon Joh
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea.
| |
Collapse
|
13
|
Erickson RJB, Manias DA, Hu WS, Dunny GM. Effects of endogenous levels of master regulator PrgX and peptide pheromones on inducibility of conjugation in the enterococcal pCF10 system. Mol Microbiol 2019; 112:1010-1023. [PMID: 31265752 DOI: 10.1111/mmi.14339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2019] [Indexed: 11/28/2022]
Abstract
Enterococcal pheromone responsive conjugative plasmids like pCF10 promote horizontal spread of antibiotic resistance genes following induction of plasmid-containing cells by potential recipients. Transcription of conjugation genes from promoter PQ is inhibited by the master regulator PrgX, further repressed when PrgX is in complex with the inhibitory I peptide, and allowed when PrgX is in complex with the C inducing peptide. Single-cell analysis has shown that heterogeneity in the pheromone response is prevalent. Here, we systematically varied levels of regulatory molecules to better understand why some individual cells have increased propensity for induction. In this study, PrgX was confirmed to repress PQ in the absence of exogenous peptides in vivo, but cells with increased levels of PrgX were shown to be more prone to induction. Further, ablation of endogenous I reduced PrgX levels, resulting in reduced basal repression and loss of inducibility. Reduction of both endogenous peptides by washing increased the inducibility of cells. Together, these results show that endogenous PrgX, C, and I levels can impact the induction potential of a cell and establish the importance of basal I for regulation. These results also suggest that PrgX/C complexes may directly activate prgQ transcription, contrary to a long-standing working model.
Collapse
Affiliation(s)
- Rebecca J B Erickson
- Department of Microbiology and Immunology, Microbiology Research Facility, University of Minnesota Medical School, 689 23rd Ave SE, Minneapolis, MN, 55455, USA
| | - Dawn A Manias
- Department of Microbiology and Immunology, Microbiology Research Facility, University of Minnesota Medical School, 689 23rd Ave SE, Minneapolis, MN, 55455, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Amundson Hall, 421 Washington Ave SE, Minneapolis, MN, 55455, USA
| | - Gary M Dunny
- Department of Microbiology and Immunology, Microbiology Research Facility, University of Minnesota Medical School, 689 23rd Ave SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
14
|
Kohler V, Keller W, Grohmann E. Regulation of Gram-Positive Conjugation. Front Microbiol 2019; 10:1134. [PMID: 31191478 PMCID: PMC6540685 DOI: 10.3389/fmicb.2019.01134] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022] Open
Abstract
Type IV Secretion Systems (T4SSs) are membrane-spanning multiprotein complexes dedicated to protein secretion or conjugative DNA transport (conjugation systems) in bacteria. The prototype and best-characterized T4SS is that of the Gram-negative soil bacterium Agrobacterium tumefaciens. For Gram-positive bacteria, only conjugative T4SSs have been characterized in some biochemical, structural, and mechanistic details. These conjugation systems are predominantly encoded by self-transmissible plasmids but are also increasingly detected on integrative and conjugative elements (ICEs) and transposons. Here, we report regulatory details of conjugation systems from Enterococcus model plasmids pIP501 and pCF10, Bacillus plasmid pLS1, Clostridium plasmid pCW3, and staphylococcal plasmid pSK41. In addition, regulation of conjugative processes of ICEs (ICEBs1, ICESt1, ICESt3) by master regulators belonging to diverse repressor families will be discussed. A special focus of this review lies on the comparison of regulatory mechanisms executed by proteins belonging to the RRNPP family. These regulators share a common fold and govern several essential bacterial processes, including conjugative transfer.
Collapse
Affiliation(s)
- Verena Kohler
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria
| | - Walter Keller
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria
| | - Elisabeth Grohmann
- Life Sciences and Technology, Beuth University of Applied Sciences Berlin, Berlin, Germany
| |
Collapse
|
15
|
Abstract
The study of the genetics of enterococci has focused heavily on mobile genetic elements present in these organisms, the complex regulatory circuits used to control their mobility, and the antibiotic resistance genes they frequently carry. Recently, more focus has been placed on the regulation of genes involved in the virulence of the opportunistic pathogenic species Enterococcus faecalis and Enterococcus faecium. Little information is available concerning fundamental aspects of DNA replication, partition, and division; this article begins with a brief overview of what little is known about these issues, primarily by comparison with better-studied model organisms. A variety of transcriptional and posttranscriptional mechanisms of regulation of gene expression are then discussed, including a section on the genetics and regulation of vancomycin resistance in enterococci. The article then provides extensive coverage of the pheromone-responsive conjugation plasmids, including sections on regulation of the pheromone response, the conjugative apparatus, and replication and stable inheritance. The article then focuses on conjugative transposons, now referred to as integrated, conjugative elements, or ICEs, and concludes with several smaller sections covering emerging areas of interest concerning the enterococcal mobilome, including nonpheromone plasmids of particular interest, toxin-antitoxin systems, pathogenicity islands, bacteriophages, and genome defense.
Collapse
Affiliation(s)
- Keith E Weaver
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| |
Collapse
|
16
|
Ch’ng JH, Chong KKL, Lam LN, Wong JJ, Kline KA. Biofilm-associated infection by enterococci. Nat Rev Microbiol 2018; 17:82-94. [DOI: 10.1038/s41579-018-0107-z] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Mechanistic Features of the Enterococcal pCF10 Sex Pheromone Response and the Biology of Enterococcus faecalis in Its Natural Habitat. J Bacteriol 2018; 200:JB.00733-17. [PMID: 29437851 DOI: 10.1128/jb.00733-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conjugative transfer of plasmids in enterococci is promoted by intercellular communication using peptide pheromones. The regulatory mechanisms that control transfer have been extensively studied in vitro However, the complicated systems that regulate the spread of these plasmids did not evolve in the laboratory test tube, and remarkably little is known about this form of signaling in the intestinal tract, the primary niche of these organisms. Because the evolution of Enterococcus faecalis strains and their coresident pheromone-inducible plasmids, such as pCF10, have occurred in the gastrointestinal (GI) tract, it is important to consider the functions controlled by pheromones in light of this ecology. This review summarizes our current understanding of the pCF10-encoded pheromone response. We consider how selective pressures in the natural environment may have selected for the complex and very tightly regulated systems controlling conjugation, and we pay special attention to the ecology of enterococci and the pCF10 plasmid as a gut commensal. We summarize the results of recent studies of the pheromone response at the single-cell level, as well as those of the first experiments demonstrating a role for pheromone signaling in plasmid transfer and in GI tract competitive fitness. These results will serve as a foundation for further in vivo studies that could lead to novel interventions to reduce opportunistic infections and the spread of antibiotic resistance.
Collapse
|
18
|
Pérez Morales TG, Ratia K, Wang DS, Gogos A, Bloem L, Driver TG, Federle MJ. A novel chemical inducer of Streptococcus quorum sensing acts by inhibiting the pheromone-degrading endopeptidase PepO. J Biol Chem 2017; 293:931-940. [PMID: 29203527 DOI: 10.1074/jbc.m117.810994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/16/2017] [Indexed: 01/01/2023] Open
Abstract
Bacteria produce chemical signals (pheromones) to coordinate behaviors across a population in a process termed quorum sensing (QS). QS systems comprising peptide pheromones and their corresponding Rgg receptors are widespread among Firmicutes and may be useful targets for manipulating microbial behaviors, like suppressing virulence. The Rgg2/3 QS circuit of the human pathogen Streptococcus pyogenes controls genes affecting resistance to host lysozyme in response to short hydrophobic pheromones (SHPs). Considering that artificial activation of a QS pathway may be as useful in the objective of manipulating bacteria as inhibiting it, we sought to identify small-molecule inducers of the Rgg2/3 QS system. We report the identification of a small molecule, P516-0475, that specifically induced expression of Rgg2/3-regulated genes in the presence of SHP pheromones at concentrations lower than typically required for QS induction. In searching for the mode of action of P516-0475, we discovered that an S. pyogenes mutant deficient in pepO, a neprilysin-like metalloendopeptidase that degrades SHP pheromones, was unresponsive to the compound. P516-0475 directly inhibited recombinant PepO in vitro as an uncompetitive inhibitor. We conclude that this compound induces QS by stabilizing SHP pheromones in culture. Our study indicates the usefulness of cell-based screens that modulate pathway activities to identify unanticipated therapeutic targets contributing to QS signaling.
Collapse
Affiliation(s)
- Tiara G Pérez Morales
- From the Center for Biomolecular Sciences, Department of Medicinal Chemistry and Pharmacognosy
| | - Kiira Ratia
- the UIC High-throughput Screening Core Facility, and
| | | | - Artemis Gogos
- Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60607 and
| | - Laura Bloem
- UICentre for Drug Discovery, University of Illinois at Chicago
| | - Tom G Driver
- the Departments of Chemistry and.,the Institute of Next Generation Matter Transformation, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Michael J Federle
- From the Center for Biomolecular Sciences, Department of Medicinal Chemistry and Pharmacognosy, .,Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60607 and
| |
Collapse
|
19
|
Chen Y, Bandyopadhyay A, Kozlowicz BK, Haemig HAH, Tai A, Hu W, Dunny GM. Mechanisms of peptide sex pheromone regulation of conjugation in Enterococcus faecalis. Microbiologyopen 2017; 6:e00492. [PMID: 28523739 PMCID: PMC5552905 DOI: 10.1002/mbo3.492] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/30/2017] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
In many gram positive bacteria, horizontal transfer and virulence are regulated by peptide-mediated cell-cell signaling. The heptapeptide cCF10 (C) activates conjugative transfer of the Enterococcus faecalis plasmid pCF10, whereas the iCF10 (I) peptide inhibits transfer. Both peptides bind to the same domain of the master transcription regulator PrgX, a repressor of transcription of the prgQ operon encoding conjugation genes. We show that repression of prgQ by PrgX tetramers requires formation of a pCF10 DNA loop where each of two PrgX DNA-binding sites is occupied by a dimer. I binding to PrgX enhances prgQ repression, while C binding has the opposite effect. Previous models suggested that differential effects of these two peptides on the PrgX oligomerization state accounted for their distinct functions. Our new results demonstrate that both peptides have similar, high-binding affinity for PrgX, and that both peptides actually promote formation of PrgX tetramers with higher DNA-binding affinity than Apo-PrgX. We propose that differences in repression ability of PrgX/peptide complexes result from subtle differences in the structures of DNA-bound PrgX/peptide complexes. Changes in the induction state of a donor cell likely results from replacement of one type of DNA-bound peptide/PrgX tetramer with the other.
Collapse
Affiliation(s)
- Yuqing Chen
- Department of Microbiology and ImmunologyUniversity of MinnesotaMinneapolisMNUSA
| | - Arpan Bandyopadhyay
- Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMNUSA
| | - Briana K. Kozlowicz
- Department of Microbiology and ImmunologyUniversity of MinnesotaMinneapolisMNUSA
- Present address:
Cargill Biotechnology R&DPlymouthMNUSA
| | - Heather A. H. Haemig
- Department of Microbiology and ImmunologyUniversity of MinnesotaMinneapolisMNUSA
- Present address:
Department of ChemistryGustavus Adolphus CollegeSt. PeterMNUSA
| | | | - Wei‐Shou Hu
- Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMNUSA
| | - Gary M. Dunny
- Department of Microbiology and ImmunologyUniversity of MinnesotaMinneapolisMNUSA
| |
Collapse
|
20
|
Stochasticity in the enterococcal sex pheromone response revealed by quantitative analysis of transcription in single cells. PLoS Genet 2017; 13:e1006878. [PMID: 28671948 PMCID: PMC5515443 DOI: 10.1371/journal.pgen.1006878] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/18/2017] [Accepted: 06/19/2017] [Indexed: 12/23/2022] Open
Abstract
In Enterococcus faecalis, sex pheromone-mediated transfer of antibiotic resistance plasmids can occur under unfavorable conditions, for example, when inducing pheromone concentrations are low and inhibiting pheromone concentrations are high. To better understand this paradox, we adapted fluorescence in situ hybridization chain reaction (HCR) methodology for simultaneous quantification of multiple E. faecalis transcripts at the single cell level. We present direct evidence for variability in the minimum period, maximum response level, and duration of response of individual cells to a specific inducing condition. Tracking of induction patterns of single cells temporally using a fluorescent reporter supported HCR findings. It also revealed subpopulations of rapid responders, even under low inducing pheromone concentrations where the overall response of the entire population was slow. The strong, rapid induction of small numbers of cells in cultures exposed to low pheromone concentrations is in agreement with predictions of a stochastic model of the enterococcal pheromone response. The previously documented complex regulatory circuitry controlling the pheromone response likely contributes to stochastic variation in this system. In addition to increasing our basic understanding of the biology of a horizontal gene transfer system regulated by cell-cell signaling, demonstration of the stochastic nature of the pheromone response also impacts any future efforts to develop therapeutic agents targeting the system. Quantitative single cell analysis using HCR also has great potential to elucidate important bacterial regulatory mechanisms not previously amenable to study at the single cell level, and to accelerate the pace of functional genomic studies.
Collapse
|
21
|
Grohmann E, Keller W, Muth G. Mechanisms of Conjugative Transfer and Type IV Secretion-Mediated Effector Transport in Gram-Positive Bacteria. Curr Top Microbiol Immunol 2017. [PMID: 29536357 DOI: 10.1007/978-3-319-75241-9_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Conjugative DNA transfer is the most important means to transfer antibiotic resistance genes and virulence determinants encoded by plasmids, integrative conjugative elements (ICE), and pathogenicity islands among bacteria. In gram-positive bacteria, there exist two types of conjugative systems, (i) type IV secretion system (T4SS)-dependent ones, like those encoded by the Enterococcus, Streptococcus, Staphylococcus, Bacillus, and Clostridia mobile genetic elements and (ii) T4SS-independent ones, as those found on Streptomyces plasmids. Interestingly, very recently, on the Streptococcus suis genome, the first gram-positive T4SS not only involved in conjugative DNA transfer but also in effector translocation to the host was detected. Although no T4SS core complex structure from gram-positive bacteria is available, several structures from T4SS protein key factors from Enterococcus and Clostridia plasmids have been solved. In this chapter, we summarize the current knowledge on the molecular mechanisms and structure-function relationships of the diverse conjugation machineries and emerging research needs focused on combatting infections and spread of multiple resistant gram-positive pathogens.
Collapse
Affiliation(s)
- Elisabeth Grohmann
- Beuth University of Applied Sciences Berlin, Life Sciences and Technology, 13347, Berlin, Germany.
| | - Walter Keller
- Institute of Molecular Biosciences, BioTechMed, University of Graz, 8010, Graz, Austria
| | - Günther Muth
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University Tübingen, 72076, Tübingen, Germany
| |
Collapse
|