1
|
Ji Z, Ma W, Liang P, Wang X, Zhang S, Han Y, Guo Y. Anti-inflammatory potential of mycoprotein peptides obtained from fermentation of Schizophyllum commune DS1 with young apples. Int J Biol Macromol 2024; 281:136638. [PMID: 39419141 DOI: 10.1016/j.ijbiomac.2024.136638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Fermenting edible filamentous fungi with food industry by-products, such as young apples, shows promise for producing mycoproteins and functional peptides. This study aimed to evaluate the production of mycoprotein by fermenting different edible-grade filamentous fungi using young apples as a substrate. Schizophyllum commune DS1 (DS1) demonstrated significant potential for generating mycoprotein, yielding 33.56 ± 0.82 %. From the hydrolysis of DS1 mycoprotein, three polypeptides were identified with the capacity of inhibiting nitric oxide synthase (iNOS): DNIQGITKPAIR (DR12), SDNAFGGR (SR8), and ASDPSGF (AF7). Computational analysis, including bioinformatics and molecular docking, indicated their high affinity for inhibiting iNOS, with binding energies of -452.8157 kcal/mol, -388.0222 kcal/mol, and -323.8843 kcal/mol, respectively. This binding was facilitated through various interactions such as electrostatic forces, π-π interactions, hydrogen bonds, and non-covalent interactions, resulting in potential anti-inflammatory properties. Furthermore, cell experiments using RAW264.7 macrophages demonstrated that these peptides effectively suppressed nitric oxide production in a dose-dependent manner. Additionally, they reduced the production of inflammatory cytokines, such as interleukin-6 (IL-6), interleukin-1β (IL-1β), inducible iNOS, and cell apoptosis. In conclusion, this study presents a novel approach for developing plant-based mycoproteins and a new source for discovering food-derived bioactive peptides.
Collapse
Affiliation(s)
- Zhengmei Ji
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China
| | - Wenjun Ma
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China
| | - Pengfei Liang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China
| | - Xiaoyu Wang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China
| | - Shuai Zhang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China
| | - Yanhui Han
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China.
| | - Yurong Guo
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China.
| |
Collapse
|
2
|
Li J, Hou R, Zhang F. A new Schizophyllum commune strain as a potential biocontrol agent against blueberry root rot. Arch Microbiol 2024; 206:235. [PMID: 38722413 DOI: 10.1007/s00203-024-03959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 05/20/2024]
Abstract
In recent years, blueberry root rot has been caused mainly by Fusarium commune, and there is an urgent need for a green and efficient method to control this disease. To date, research on Schizophyllum commune has focused on antioxidant mechanisms, reactive dye degradation, etc., but the mechanism underlying the inhibition of pathogenic microorganisms is still unclear. Here, the control effects of S. commune on F. commune and blueberry root rot were studied using adversarial culture, tissue culture, and greenhouse pot experiments. The results showed that S. commune can dissolve insoluble phosphorus and secrete various extracellular hydrolases. The results of hyphal confrontation and fermentation broth antagonism experiments showed that S. commune had a significant inhibitory effect on F. commune, with inhibition rates of 70.30% and 22.86%, respectively. Microscopy results showed distortion of F. commune hyphae, indicating that S. commune is strongly parasitic. S. commune had a significant growth-promoting effect on blueberry tissue-cultured seedlings. After inoculation with S. commune, inoculation with the pathogenic fungus, or inoculation at a later time, the strain significantly reduced the root rot disease index in the potted blueberry seedlings, with relative control effects of 79.14% and 62.57%, respectively. In addition, S. commune G18 significantly increased the antioxidant enzyme contents in the aboveground and underground parts of potted blueberry seedlings. We can conclude that S. commune is a potential biocontrol agent that can be used to effectively control blueberry root rot caused by F. commune in the field.
Collapse
Affiliation(s)
- Jinziyue Li
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Rui Hou
- College of Forestry, Guizhou University, Guiyang, 550025, China.
| | - Fumei Zhang
- College of Forestry, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
3
|
Faheem M, Bokhari SAI, Malik MA, Ahmad B, Riaz M, Zahid N, Hussain A, Ghani A, Ullah H, Shah W, Mehmood R, Ahmad K, Rasheed H, Zain A, Hussain S, Khan A, Yasin MT, Tariq H, Rizwanullah, Basheir MM, Jogezai N. Production, purification, and characterization of p-diphenol oxidase (PDO) enzyme from lignolytic fungal isolate Schizophyllum commune MF-O5. Folia Microbiol (Praha) 2023; 68:867-888. [PMID: 37160524 DOI: 10.1007/s12223-023-01056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/04/2023] [Indexed: 05/11/2023]
Abstract
Fungi are producers of lignolytic extracellular enzymes which are used in industries like textile, detergents, biorefineries, and paper pulping. This study assessed for the production, purification, and characterization of novel p-diphenol oxidase (PDO; laccase) enzyme from lignolytic white-rot fungal isolate. Fungi samples collected from different areas of Pakistan were initially screened using guaiacol plate method. The maximum PDO producing fungal isolate was identified on the basis of ITS (internal transcribed spacer sequence of DNA of ribosomal RNA) sequencing. To get optimum enzyme yield, various growth and fermentation conditions were optimized. Later PDO was purified using ammonium sulfate precipitation, size exclusion, and anion exchange chromatography and characterized. It was observed that the maximum PDO producing fungal isolate was Schizophyllum commune (MF-O5). Characterization results showed that the purified PDO was a monomeric protein with a molecular mass of 68 kDa and showed stability at lower temperature (30 °C) for 1 h. The Km and Vmax values of the purified PDO recorded were 2.48 mM and 6.20 U/min. Thermal stability results showed that at 30 °C PDO had 119.17 kJ/K/mol Ea value and 33.64 min half-life. The PDO activity was stimulated by Cu2+ ion at 1.0 mM showing enhanced activity up to 111.04%. Strong inhibition effect was noted for Fe2+ ions at 1 mM showing 12.04% activity. The enzyme showed stability against 10 mM concentration oxidizing reducing agents like DMSO, EDTA, H2O2, NaOCl, and urea and retained more than 75% of relative activity. The characterization of purified PDO enzyme confirmed its tolerance against salt, metal ions, organic solvents, and surfactants indicating its ability to be used in the versatile commercial applications.
Collapse
Affiliation(s)
- Muhammad Faheem
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, H-10, Islamabad, 44000, Pakistan.
| | - Syed Ali Imran Bokhari
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, H-10, Islamabad, 44000, Pakistan
| | - Muhammad Arshad Malik
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, H-10, Islamabad, 44000, Pakistan
| | - Bashir Ahmad
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, H-10, Islamabad, 44000, Pakistan
| | - Muhammad Riaz
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, H-10, Islamabad, 44000, Pakistan
| | - Nafeesa Zahid
- Department of Botany, Mirpur University of Science and Technology (MUST), Mirpur, Azad Kashmir, 10250, Pakistan
| | - Adil Hussain
- Food and Biotechnology Research Centre, Pakistan, Council of Scientific and Industrial Research (PCSIR), Laboratories Complex , Ferozepur Road, Lahore, 54600, Pakistan
| | - Abdul Ghani
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, H-10, Islamabad, 44000, Pakistan
| | - Hanif Ullah
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, H-10, Islamabad, 44000, Pakistan
| | - Waseem Shah
- Department of Biosciences, Comsats University, Islamabad, 45550, Pakistan
| | - Rashid Mehmood
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, H-10, Islamabad, 44000, Pakistan
| | - Khurshid Ahmad
- College of Food Sciences and Engineering, Ocean University of China, Shandong Province, 266003, Qingdao, China
| | - Hassam Rasheed
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, H-10, Islamabad, 44000, Pakistan
| | - Ali Zain
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, H-10, Islamabad, 44000, Pakistan
| | - Saddam Hussain
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, H-10, Islamabad, 44000, Pakistan
| | - Abrar Khan
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, H-10, Islamabad, 44000, Pakistan
| | - Muhammad Talha Yasin
- Insititute of Biological Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Hasnat Tariq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rizwanullah
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, H-10, Islamabad, 44000, Pakistan
| | - Muhammad Mudassir Basheir
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, H-10, Islamabad, 44000, Pakistan
| | | |
Collapse
|
4
|
Li Y, Zhan G, Tu M, Wang Y, Cao J, Sun S. A chromosome-scale genome and proteome draft of Tremella fuciformis. Int J Biol Macromol 2023; 247:125749. [PMID: 37429350 DOI: 10.1016/j.ijbiomac.2023.125749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/09/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
In this study, we first reported a high-quality chromosome-scale genome of Tremella fuciformis using Pacbio HiFi sequencing combining Hi-C technology. According to 21.6 Gb PacBio HiFi reads and 18.1 Gb Hi-C valid reads, we drafted a T. fuciformis genome of 27.38 Mb assigned to 10 chromosomes, with the contig N50 of 2.28 Mb, GC content of 56.51 %, BUSCOs completeness of 93.1 % and consensus quality value of 33.7. The following annotation of genomic components predicted 5,171 repeat sequences, 283 RNAs, and 10,150 protein-coding genes. Next, the intracellular proteins at three differential life stages of T. fuciformis (conidium, hyphal and fruiting body) were identified by the shot-gun proteomics. 6,823 canonical proteins (68.1 % of predicted proteome) have been identified with protein FDR cut-off of 0.01, establishing the first proteome draft of predicted protein-coding genes of T. fuciformis. Finally, 24 T. fuciformis polysaccharides (TPS) biosynthesis-related genes in mycelia were identified by comparative transcriptomics and proteomics, which may be more active than in conidium and revealed the TPS biosynthesis process in mycelia. This present study elucidated T. fuciformis genome composition and organization, drafted its associated proteome, and provided a genome-view of TPS biosynthesis, which will be a powerful platform for biological and genetic studies in T. fuciformis.
Collapse
Affiliation(s)
- Yaxing Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Basic Forestry and Proteomics Research Center, Fujian Agriculture and forestry university, China
| | - Guanping Zhan
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Min Tu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and forestry university, China
| | - Yuhua Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and forestry university, China
| | - Jixuan Cao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shujing Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
5
|
Gene complementation strategies for filamentous fungi biotechnology. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
6
|
Berikashvili V, Khardziani T, Kobakhidze A, Kulp M, Kuhtinskaja M, Lukk T, Gargano ML, Venturella G, Kachlishvili E, Metreveli E, Elisashvili VI, Asatiani M. Antifungal Activity of Medicinal Mushrooms and Optimization of Submerged Culture Conditions for Schizophyllum commune (Agaricomycetes). Int J Med Mushrooms 2023; 25:1-21. [PMID: 37830193 DOI: 10.1615/intjmedmushrooms.2023049836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The main goal of the present study was the exploration of the antifungal properties of Agaricomycetes mushrooms. Among twenty-three tested mushrooms against A. niger, B. cinerea, F. oxysporum, and G. bidwellii, Schizophyllum commune demonstrated highest inhibition rates and showed 35.7%, 6.5%, 50.4%, and 66.0% of growth inhibition, respectively. To reveal culture conditions enhancing the antifungal potential of Sch. commune, several carbon (lignocellulosic substrates among them) and nitrogen sources and their optimal concentrations were investigated. Presence of 6% mandarin juice production waste (MJPW) and 6% of peptone in nutrient medium promoted antifungal activity of selected mushroom. It was determined that, extracts obtained in the presence of MJPW effectively inhibited the grow of pathogenic fungi. Moreover, the content of phenolic compounds in the extracts obtained from Sch. commune grown on MJPW was several times higher (0.87 ± 0.05 GAE/g to 2.38 ± 0.08 GAE/g) than the extracts obtained from the mushroom grown on the synthetic (glycerol contained) nutrient medium (0.21 ± 0.03 GAE/g to 0.88 ± 0.05 GAE/g). Flavonoid contents in the extracts from Sch. commune varied from 0.58 ± 0.03 to 27.2 ± 0.8 mg QE/g. Identification of phenolic compounds composition in water and ethanol extracts were provided by mass spectrometry analysis. Extracts demonstrate considerable free radical scavenging activities and the IC50 values were generally low for the extracts, ranging from 1.9 mg/ml to 6.7 mg/ml. All the samples displayed a positive correlation between their concentration (0.05-15.0 mg/ml) and DPPH radical scavenging activity. This investigation revealed that Sch. commune mushroom has great potential to be used as a source of antifungal and antioxidant substances.
Collapse
Affiliation(s)
- Violeta Berikashvili
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| | - Tamar Khardziani
- Durmishidze Institute of Biochemistry and Biotechnology, Academy of Science of Georgia, 10 km Agmashenebeli kheivani, 0159 Tbilisi, Georgia; Institute of Microbial Biotechnology, Agricultural University of Georgia, Tbilisi, Georgia
| | - Aza Kobakhidze
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| | - Maria Kulp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Maria Kuhtinskaja
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Tiit Lukk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Maria Letizia Gargano
- Departament of Schol, Plant, and Food Sciences, University of Bari Aldo Moro, Via G. Amendola, 165/A - 70126 Bari, Italy
| | - Giuseppe Venturella
- Italian Society of Medicinal Mushrooms, Pisa, Italy; Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy
| | - Eva Kachlishvili
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| | - Eka Metreveli
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| | - Vladimir I Elisashvili
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| | - Mikheil Asatiani
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| |
Collapse
|
7
|
Guo H, Zhao Y, Chang JS, Lee DJ. Enzymes and enzymatic mechanisms in enzymatic degradation of lignocellulosic biomass: A mini-review. BIORESOURCE TECHNOLOGY 2023; 367:128252. [PMID: 36334864 DOI: 10.1016/j.biortech.2022.128252] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Enzymatic hydrolysis is the key step limiting the efficiency of the biorefinery of lignocellulosic biomass. Enzymes involved in enzymatic hydrolysis and their interactions with biomass should be comprehended to form the basis for looking for strategies to improve process efficiency. This article updates the contemporary research on the properties of key enzymes in the lignocellulose biorefinery and their interactions with biomass, adsorption, and hydrolysis. The advanced analytical techniques to track the interactions for exploiting mechanisms are discussed. The challenges and prospects for future research are outlined.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ying Zhao
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan.
| |
Collapse
|
8
|
Liu X, Zain ul Arifeen M, Xue Y, Liu C. Genome-wide characterization of laccase gene family in Schizophyllum commune 20R-7-F01, isolated from deep sediment 2 km below the seafloor. Front Microbiol 2022; 13:923451. [PMID: 36003943 PMCID: PMC9393519 DOI: 10.3389/fmicb.2022.923451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Laccases are ligninolytic enzymes that play a crucial role in various biological processes of filamentous fungi, including fruiting-body formation and lignin degradation. Lignin degradation is a complex process and its degradation in Schizophyllum commune is greatly affected by the availability of oxygen. Here, a total of six putative laccase genes (ScLAC) were identified from the S. commune 20R-7-F01 genome. These genes, which include three typical Cu-oxidase domains, can be classified into three groups based on phylogenetic analysis. ScLAC showed distinct intron-exon structures and conserved motifs, suggesting the conservation and diversity of ScLAC in gene structures. Additionally, the number and type of cis-acting elements, such as substrate utilization-, stress-, cell division- and transcription activation-related cis-elements, varied between ScLAC genes, suggesting that the transcription of laccase genes in S. commune 20R-7-F01 could be induced by different substrates, stresses, or other factors. The SNP analysis of resequencing data demonstrated that the ScLAC of S. commune inhabiting deep subseafloor sediments were significantly different from those of S. commune inhabiting terrestrial environments. Similarly, the large variation of conserved motifs number and arrangement of laccase between subseafloor and terrestrial strains indicated that ScLAC had a diverse structure. The expression of ScLAC5 and ScLAC6 genes was significantly up-regulated in lignin/lignite medium, suggesting that these two laccase genes might be involved in fungal utilization and degradation of lignite and lignin under anaerobic conditions. These findings might help in understanding the function of laccase in white-rot fungi and could provide a scientific basis for further exploring the relationship between the LAC family and anaerobic degradation of lignin by S. commune.
Collapse
Affiliation(s)
| | | | - Yarong Xue
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | | |
Collapse
|
9
|
Liu X, Huang X, Chu C, Xu H, Wang L, Xue Y, Arifeen Muhammad ZU, Inagaki F, Liu C. Genome, genetic evolution, and environmental adaptation mechanisms of Schizophyllum commune in deep subseafloor coal-bearing sediments. iScience 2022; 25:104417. [PMID: 35663011 PMCID: PMC9156946 DOI: 10.1016/j.isci.2022.104417] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/30/2022] [Accepted: 05/12/2022] [Indexed: 12/15/2022] Open
Abstract
To understand the genomic evolution and adaptation strategies of fungi to subseafloor sedimentary environments, we de novo assembled the genome of Schizophyllum commune strain 20R-7-F01 isolated from ∼2.0 km-deep, ∼20-millionyearsago (Mya) coal-bearing sediments. Phylogenomics study revealed a differentiation time of 28-73 Mya between this strain and the terrestrial type-strain H4-8, in line with sediment age records. Comparative genome analyses showed that FunK1 protein kinase, NmrA family, and transposons in this strain are significantly expanded, possibly linking to the environmental adaptation and persistence in sediment for over millions of years. Re-sequencing study of 14 S. commune strains sampled from different habitats revealed that subseafloor strains have much lower nucleotide diversity, substitution rate, and homologous recombination rate than other strains, reflecting that the growth and/or reproduction of subseafloor strains are extremely slow. Our data provide new insights into the adaptation and long-term survival of the fungi in the subseafloor sedimentary biosphere.
Collapse
Affiliation(s)
- Xuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Xin Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Chen Chu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Hui Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Yarong Xue
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | | | - Fumio Inagaki
- Mantle Drilling Promotion Office, Institute for Marine-Earth Exploration and Engineering (MarE3), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama 236-0001, Japan
- Department of Earth Sciences, Graduate School of Science, Tohoku University, Sendai 980-8574, Japan
| | - Changhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Arunrattanamook N, Sornlake W, Champreda V. Co-production of schizophyllan and cellulolytic enzymes from bagasse by Schizophyllum commune. Biosci Biotechnol Biochem 2022; 86:1144-1150. [PMID: 35686996 DOI: 10.1093/bbb/zbac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/28/2022] [Indexed: 11/13/2022]
Abstract
Schizophyllum commune is a mushroom-forming fungus well-known for its ability to degrade lignocellulosic materials and production of schizophyllan, a high added-value product for cosmeceutical, pharmaceutical and biomaterial industries. Conventionally, schizophyllan is produced by submerged fermentation using glucose as carbon source. In this work, we demonstrate that alkaline pretreated bagasse can be used by Schizophyllum commune as an alternative carbon source for the production of schizophyllan. The influence of different factors was investigated including cultivation time, biomass loading, and culturing media component and a co-product correlation model was proposed. In this lab-scale study, a yield of 4.4 g/L of schizophyllan containing 89% glucose was achieved. In addition to schizophyllan, the cellulolytic enzymes co-produced during this process were isolated and characterized and could find applications in a range of industrial processes. This demonstrates the potential of using agricultural waste as a cheaper alternative feedstock for this biorefinery process.
Collapse
Affiliation(s)
- Nattapol Arunrattanamook
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Warasirin Sornlake
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Verawat Champreda
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
11
|
Madoroba E, Magwedere K, Chaora NS, Matle I, Muchadeyi F, Mathole MA, Pierneef R. Microbial Communities of Meat and Meat Products: An Exploratory Analysis of the Product Quality and Safety at Selected Enterprises in South Africa. Microorganisms 2021; 9:507. [PMID: 33673660 PMCID: PMC7997435 DOI: 10.3390/microorganisms9030507] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Consumption of food that is contaminated by microorganisms, chemicals, and toxins may lead to significant morbidity and mortality, which has negative socioeconomic and public health implications. Monitoring and surveillance of microbial diversity along the food value chain is a key component for hazard identification and evaluation of potential pathogen risks from farm to the consumer. The aim of this study was to determine the microbial diversity in meat and meat products from different enterprises and meat types in South Africa. Samples (n = 2017) were analyzed for Yersinia enterocolitica, Salmonella species, Listeria monocytogenes, Campylobacter jejuni, Campylobacter coli, Staphylococcus aureus, Clostridium perfringens, Bacillus cereus, and Clostridium botulinum using culture-based methods. PCR was used for confirmation of selected pathogens. Of the 2017 samples analyzed, microbial ecology was assessed for selected subsamples where next generation sequencing had been conducted, followed by the application of computational methods to reconstruct individual genomes from the respective sample (metagenomics). With the exception of Clostridium botulinum, selective culture-dependent methods revealed that samples were contaminated with at least one of the tested foodborne pathogens. The data from metagenomics analysis revealed the presence of diverse bacteria, viruses, and fungi. The analyses provide evidence of diverse and highly variable microbial communities in products of animal origin, which is important for food safety, food labeling, biosecurity, and shelf life limiting spoilage by microorganisms.
Collapse
Affiliation(s)
- Evelyn Madoroba
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Kudakwashe Magwedere
- Directorate of Veterinary Public Health, Department of Agriculture, Land Reform and Rural Development, Pretoria 0001, South Africa;
| | - Nyaradzo Stella Chaora
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida 1710, South Africa;
- Biotechnology Platform, Agricultural Research Council, Private Bag X 05, Onderstepoort, Pretoria 0110, South Africa; (F.M.); (R.P.)
| | - Itumeleng Matle
- Bacteriology Division, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa; (I.M.); (M.A.M.)
| | - Farai Muchadeyi
- Biotechnology Platform, Agricultural Research Council, Private Bag X 05, Onderstepoort, Pretoria 0110, South Africa; (F.M.); (R.P.)
| | - Masenyabu Aletta Mathole
- Bacteriology Division, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa; (I.M.); (M.A.M.)
| | - Rian Pierneef
- Biotechnology Platform, Agricultural Research Council, Private Bag X 05, Onderstepoort, Pretoria 0110, South Africa; (F.M.); (R.P.)
| |
Collapse
|
12
|
Choi Y, Nguyen HTK, Lee TS, Kim JK, Choi J. Genetic Diversity and Dye-Decolorizing Spectrum of Schizophyllum commune Population. J Microbiol Biotechnol 2020; 30:1525-1535. [PMID: 32807761 PMCID: PMC9728380 DOI: 10.4014/jmb.2006.06049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022]
Abstract
Synthetic dyes are widely used in various industries and their wastage causes severe environmental problems while being hazardous to human health, leading to the need for eco-friendly degradation techniques. The split-gill fungus Schizophyllum commune, which is found worldwide, has the potential to degrade all components of the lignocellulosic biomass and is a candidate for the treatment of synthetic dyes. A systematic molecular analysis of 75 Korean and 6 foreign S. commune strains has revealed the high genetic diversity of this population and its important contribution to the total diversity of S. commune. We examined the dye decolorization ability of this population and revealed 5 excellent strains that strongly decolorized 3 dyes: Crystal Violet, Congo Red and Methylene Blue. Finally, comparison of dye decolorization ability and the phylogenetic identification of these strains generalized their genetic and physiological diversity. This study provides an initial resource for physiological and genetic research projects as well as the bioremediation of textile dyes.
Collapse
Affiliation(s)
- Yongjun Choi
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Ha Thi Kim Nguyen
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Tae Soo Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea,Corresponding authors J.K.Kim Phone: +82-32-835-8241 Fax: +82-32-835-0763 E-mail:
| | - Jaehyuk Choi
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea,J.Choi Phone: +82-32-835-8242 Fax: +82-32-835-0763 E-mail:
| |
Collapse
|
13
|
Kumla J, Suwannarach N, Sujarit K, Penkhrue W, Kakumyan P, Jatuwong K, Vadthanarat S, Lumyong S. Cultivation of Mushrooms and Their Lignocellulolytic Enzyme Production Through the Utilization of Agro-Industrial Waste. Molecules 2020; 25:molecules25122811. [PMID: 32570772 PMCID: PMC7355594 DOI: 10.3390/molecules25122811] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022] Open
Abstract
A large amount of agro-industrial waste is produced worldwide in various agricultural sectors and by different food industries. The disposal and burning of this waste have created major global environmental problems. Agro-industrial waste mainly consists of cellulose, hemicellulose and lignin, all of which are collectively defined as lignocellulosic materials. This waste can serve as a suitable substrate in the solid-state fermentation process involving mushrooms. Mushrooms degrade lignocellulosic substrates through lignocellulosic enzyme production and utilize the degraded products to produce their fruiting bodies. Therefore, mushroom cultivation can be considered a prominent biotechnological process for the reduction and valorization of agro-industrial waste. Such waste is generated as a result of the eco-friendly conversion of low-value by-products into new resources that can be used to produce value-added products. Here, we have produced a brief review of the current findings through an overview of recently published literature. This overview has focused on the use of agro-industrial waste as a growth substrate for mushroom cultivation and lignocellulolytic enzyme production.
Collapse
Affiliation(s)
- Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (N.S.); (K.J.); (S.V.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (N.S.); (K.J.); (S.V.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanaporn Sujarit
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathumthani 12110, Thailand;
| | - Watsana Penkhrue
- School of Preclinic, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
- Center of Excellence in Microbial Technology for Agricultural Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pattana Kakumyan
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Kritsana Jatuwong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (N.S.); (K.J.); (S.V.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Santhiti Vadthanarat
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (N.S.); (K.J.); (S.V.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (N.S.); (K.J.); (S.V.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
- Correspondence: ; Tel.: +668-1881-3658
| |
Collapse
|
14
|
Tovar-Herrera OE, Martha-Paz AM, Pérez-LLano Y, Aranda E, Tacoronte-Morales JE, Pedroso-Cabrera MT, Arévalo-Niño K, Folch-Mallol JL, Batista-García RA. Schizophyllum commune: An unexploited source for lignocellulose degrading enzymes. Microbiologyopen 2018; 7:e00637. [PMID: 29785766 PMCID: PMC6011954 DOI: 10.1002/mbo3.637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 02/01/2023] Open
Abstract
Lignocellulose represents the most abundant source of carbon in the Earth. Thus, fraction technology of the biomass turns up as an emerging technology for the development of biorefineries. Saccharification and fermentation processes require the formulation of enzymatic cocktails or the development of microorganisms (naturally or genetically modified) with the appropriate toolbox to produce a cost‐effective fermentation technology. Therefore, the search for microorganisms capable of developing effective cellulose hydrolysis represents one of the main challenges in this era. Schizophyllum commune is an edible agarical with a great capability to secrete a myriad of hydrolytic enzymes such as xylanases and endoglucanases that are expressed in a high range of substrates. In addition, a large number of protein‐coding genes for glycoside hydrolases, oxidoreductases like laccases (Lacs; EC 1.10.3.2), as well as some sequences encoding for lytic polysaccharide monooxygenases (LPMOs) and expansins‐like proteins demonstrate the potential of this fungus to be applied in different biotechnological process. In this review, we focus on the enzymatic toolbox of S. commune at the genetic, transcriptomic, and proteomic level, as well as the requirements to be employed for fermentable sugars production in biorefineries. At the end the trend of its use in patent registration is also reviewed.
Collapse
Affiliation(s)
- Omar Eduardo Tovar-Herrera
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, México
| | - Adriana Mayrel Martha-Paz
- Laboratorio de Micología y Fitopatología, Unidad de manipulación genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, México
| | - Yordanis Pérez-LLano
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Elisabet Aranda
- Instituto del Agua, Universidad de Granada, Granada, Granada, Spain
| | | | | | - Katiushka Arévalo-Niño
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, México
| | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| |
Collapse
|