1
|
Umapathy VR, Dhanavel A, Kesavan R, Natarajan PM, S B, P V. Anticancer Potential of the Principal Constituent of Piper nigrum, Piperine: A Comprehensive Review. Cureus 2024; 16:e54425. [PMID: 38405638 PMCID: PMC10894018 DOI: 10.7759/cureus.54425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/18/2024] [Indexed: 02/27/2024] Open
Abstract
Black pepper's main component, piperine, is a phytochemical that gives the spice its distinctively pungent flavor, which has made it a staple in human diets for decades and a widely used food item. In addition to its use as a culinary component and preservation agent, it is also employed in traditional medicine for a diverse range of objectives, a practice that has been substantiated by existing scientific investigations on its physiological impacts in the majority of instances. Piperine contains various bioactive effects, such as antibacterial activity, in addition to several physiological benefits that could help overall human health, such as immunomodulatory, hepatoprotective, antioxidant, antimetastatic, anticancer, and many more properties that have been established. Clinical trials revealed that this phytochemical has exceptional antioxidant, anticancer, and drug availability-enhancing properties, as well as immunomodulatory potential. The different components of evidence indicate the therapeutic potential of piperine and underscore the importance of incorporating it into both broad health-promoting interventions and supplementary treatment pharmaceutical formulations. This inclusion can enhance the bioavailability of other therapeutic medications, including those used in chemotherapy.
Collapse
Affiliation(s)
- Vidhya Rekha Umapathy
- Public Health Dentistry, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research (MAHER), Chennai, IND
| | - Anandhi Dhanavel
- Biochemistry, Meenakshi Academy of Higher Education and Research (MAHER), Chennai, IND
| | - R Kesavan
- Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Chennai, IND
| | | | - Bhuminathan S
- Public Health Dentistry, Sree Balaji Dental College & Hospital, Chennai, IND
| | - Vijayalakshmi P
- Biotechnology, Holy Cross College (Autonomous) Tiruchirappalli, Tiruchirappalli, IND
| |
Collapse
|
2
|
Pascual G, Majem B, Benitah SA. Targeting lipid metabolism in cancer metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189051. [PMID: 38101461 DOI: 10.1016/j.bbcan.2023.189051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
This review delves into the most recent research on the metabolic adaptability of cancer cells and examines how their metabolic functions can impact their progression into metastatic forms. We emphasize the growing significance of lipid metabolism and dietary lipids within the tumor microenvironment, underscoring their influence on tumor progression. Additionally, we present an outline of the interplay between metabolic processes and the epigenome of cancer cells, underscoring the importance regarding the metastatic process. Lastly, we examine the potential of targeting metabolism as a therapeutic approach in combating cancer progression, shedding light on innovative drugs/targets currently undergoing preclinical evaluation.
Collapse
Affiliation(s)
- Gloria Pascual
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Blanca Majem
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
3
|
Menendez JA, Lupu R. Fatty acid synthase: A druggable driver of breast cancer brain metastasis. Expert Opin Ther Targets 2022; 26:427-444. [PMID: 35545806 DOI: 10.1080/14728222.2022.2077189] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Brain metastasis (BrM) is a key contributor to morbidity and mortality in breast cancer patients, especially among high-risk epidermal growth factor receptor 2-positive (HER2+) and triple-negative/basal-like molecular subtypes. Optimal management of BrM is focused on characterizing a "BrM dependency map" to prioritize targetable therapeutic vulnerabilities. AREAS COVERED We review recent studies addressing the targeting of BrM in the lipid-deprived brain environment, which selects for brain-tropic breast cancer cells capable of cell-autonomously generating fatty acids by upregulating de novo lipogenesis via fatty acid synthase (FASN). Disruption of FASN activity impairs breast cancer growth in the brain, but not extracranially, and mapping of the molecular causes of organ-specific patterns of metastasis has uncovered an enrichment of lipid metabolism signatures in brain metastasizing cells. Targeting SREBP1-the master regulator of lipogenic gene transcription-curtails the ability of breast cancer cells to survive in the brain microenvironment. EXPERT OPINION Targeting FASN represents a new therapeutic opportunity for patients with breast cancer and BrM. Delivery of brain-permeable FASN inhibitors and identifying strategies to target metabolic plasticity that might compensate for impaired brain FASN activity are two potential roadblocks that may hinder FASN-centered strategies against BrM.
Collapse
Affiliation(s)
- Javier A Menendez
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | - Ruth Lupu
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic, Rochester, MN 55905, USA.,Department of Biochemistry and Molecular Biology Laboratory, Mayo Clinic Minnesota, Rochester, MN 55905, USA.,Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Munir R, Lisec J, Swinnen JV, Zaidi N. Too complex to fail? Targeting fatty acid metabolism for cancer therapy. Prog Lipid Res 2021; 85:101143. [PMID: 34856213 DOI: 10.1016/j.plipres.2021.101143] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/19/2022]
Abstract
Given the central role of fatty acids in cancer pathophysiology, the exploitation of fatty acid metabolism as a potential antineoplastic therapy has gained much attention. Several natural and synthetic compounds targeting fatty acid metabolism were hitherto identified, and their effectiveness against cancer cell proliferation and survival was determined. This review will discuss the most clinically viable inhibitors or drugs targeting various proteins or enzymes mapped on nine interconnected fatty acid metabolism-related processes. We will discuss the general significance of each of these processes and the effects of their inhibition on cancer cell progression. Moreover, their mechanisms of action, limitations, and future perspectives will be assessed.
Collapse
Affiliation(s)
- Rimsha Munir
- Cancer Biology Lab, Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan; Hormone Lab Lahore, Pakistan
| | - Jan Lisec
- Bundesanstalt für Materialforschung und -prüfung (BAM), Department of Analytical Chemistry, Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Nousheen Zaidi
- Cancer Biology Lab, Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan; Cancer Research Center (CRC), University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
5
|
Schroeder B, Vander Steen T, Espinoza I, Venkatapoorna CMK, Hu Z, Silva FM, Regan K, Cuyàs E, Meng XW, Verdura S, Arbusà A, Schneider PA, Flatten KS, Kemble G, Montero J, Kaufmann SH, Menendez JA, Lupu R. Fatty acid synthase (FASN) regulates the mitochondrial priming of cancer cells. Cell Death Dis 2021; 12:977. [PMID: 34675185 PMCID: PMC8531299 DOI: 10.1038/s41419-021-04262-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/12/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022]
Abstract
Inhibitors of the lipogenic enzyme fatty acid synthase (FASN) have attracted much attention in the last decade as potential targeted cancer therapies. However, little is known about the molecular determinants of cancer cell sensitivity to FASN inhibitors (FASNis), which is a major roadblock to their therapeutic application. Here, we find that pharmacological starvation of endogenously produced FAs is a previously unrecognized metabolic stress that heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors. Evaluation of the death decision circuits controlled by the BCL-2 family of proteins revealed that FASN inhibition is accompanied by the upregulation of the pro-death BH3-only proteins BIM, PUMA, and NOXA. Cell death triggered by FASN inhibition, which causally involves a palmitate/NADPH-related redox imbalance, is markedly diminished by concurrent loss of BIM or PUMA, suggesting that FASN activity controls cancer cell survival by fine-tuning the BH3 only proteins-dependent mitochondrial threshold for apoptosis. FASN inhibition results in a heightened mitochondrial apoptosis priming, shifting cells toward a primed-for-death state "addicted" to the anti-apoptotic protein BCL-2. Accordingly, co-administration of a FASNi synergistically augments the apoptosis-inducing activity of the dual BCL-XL/BCL-2 inhibitor ABT-263 (navitoclax) and the BCL-2 specific BH3-mimetic ABT-199 (venetoclax). FASN inhibition, however, fails to sensitize breast cancer cells to MCL-1- and BCL-XL-selective inhibitors such as S63845 and A1331852. A human breast cancer xenograft model evidenced that oral administration of the only clinically available FASNi drastically sensitizes FASN-addicted breast tumors to ineffective single-agents navitoclax and venetoclax in vivo. In summary, a novel FASN-driven facet of the mitochondrial priming mechanistically links the redox-buffering mechanism of FASN activity to the intrinsic apoptotic threshold in breast cancer cells. Combining next-generation FASNis with BCL-2-specific BH3 mimetics that directly activate the apoptotic machinery might generate more potent and longer-lasting antitumor responses in a clinical setting.
Collapse
Affiliation(s)
- Barbara Schroeder
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.,Mayo Clinic Cancer Center, Rochester, MN, 55905, USA.,Helmholtz Pioneer Campus, Heimholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1 D-85764 Neuherberg, Munich, Germany
| | - Travis Vander Steen
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ingrid Espinoza
- Department of Preventive Medicine, John D. Bower School of Population Health, University of Mississippi Medical Center, Jackson, MS, 39216, USA.,Cancer Institute, School of Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Chandra M Kurapaty Venkatapoorna
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Nutrition, Dietetics, and Hospital Management, Auburn University, Auburn, AL, 36849, USA
| | - Zeng Hu
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.,Radiation Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Fernando Martín Silva
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Kevin Regan
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Elisabet Cuyàs
- Girona Biomedical Research Institute, 17190, Salt, Girona, Spain.,Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism & Cancer Group, Catalan Institute of Oncology, 17007, Girona, Spain
| | - X Wei Meng
- Deparment of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sara Verdura
- Girona Biomedical Research Institute, 17190, Salt, Girona, Spain.,Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism & Cancer Group, Catalan Institute of Oncology, 17007, Girona, Spain
| | - Aina Arbusà
- Girona Biomedical Research Institute, 17190, Salt, Girona, Spain.,Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism & Cancer Group, Catalan Institute of Oncology, 17007, Girona, Spain
| | | | - Karen S Flatten
- Deparment of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - George Kemble
- Sagimet Biosciences (formerly 3-V Biosciences), San Mateo, CA, 94402, USA
| | - Joan Montero
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Scott H Kaufmann
- Mayo Clinic Cancer Center, Rochester, MN, 55905, USA.,Deparment of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Javier A Menendez
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN, 55905, USA. .,Girona Biomedical Research Institute, 17190, Salt, Girona, Spain.
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA. .,Mayo Clinic Cancer Center, Rochester, MN, 55905, USA. .,Department of Biochemistry and Molecular Biology Laboratory, Mayo Clinic Laboratory, Rochester, MN, 55905, USA.
| |
Collapse
|
6
|
Targeting Cancer Metabolism and Current Anti-Cancer Drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:15-48. [PMID: 33725343 DOI: 10.1007/978-3-030-55035-6_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Several studies have exploited the metabolic hallmarks that distinguish between normal and cancer cells, aiming at identifying specific targets of anti-cancer drugs. It has become apparent that metabolic flexibility allows cancer cells to survive during high anabolic demand or the depletion of nutrients and oxygen. Cancers can reprogram their metabolism to the microenvironments by increasing aerobic glycolysis to maximize ATP production, increasing glutaminolysis and anabolic pathways to support bioenergetic and biosynthetic demand during rapid proliferation. The increased key regulatory enzymes that support the relevant pathways allow us to design small molecules which can specifically block activities of these enzymes, preventing growth and metastasis of tumors. In this review, we discuss metabolic adaptation in cancers and highlight the crucial metabolic enzymes involved, specifically those involved in aerobic glycolysis, glutaminolysis, de novo fatty acid synthesis, and bioenergetic pathways. Furthermore, we also review the success and the pitfalls of the current anti-cancer drugs which have been applied in pre-clinical and clinical studies.
Collapse
|
7
|
Menendez JA, Peirce SK, Papadimitropoulou A, Cuyàs E, Steen TV, Verdura S, Vellon L, Chen WY, Lupu R. Progesterone receptor isoform-dependent cross-talk between prolactin and fatty acid synthase in breast cancer. Aging (Albany NY) 2020; 12:24671-24692. [PMID: 33335078 PMCID: PMC7803566 DOI: 10.18632/aging.202289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/27/2020] [Indexed: 04/13/2023]
Abstract
Progesterone receptor (PR) isoforms can drive unique phenotypes in luminal breast cancer (BC). Here, we hypothesized that PR-B and PR-A isoforms differentially modify the cross-talk between prolactin and fatty acid synthase (FASN) in BC. We profiled the responsiveness of the FASN gene promoter to prolactin in T47Dco BC cells constitutively expressing PR-A and PR-B, in the PR-null variant T47D-Y cell line, and in PR-null T47D-Y cells engineered to stably re-express PR-A (T47D-YA) or PR-B (T47D-YB). The capacity of prolactin to up-regulate FASN gene promoter activity in T47Dco cells was lost in T47D-Y and TD47-YA cells. Constitutively up-regulated FASN gene expression in T47-YB cells and its further stimulation by prolactin were both suppressed by the prolactin receptor antagonist hPRL-G129R. The ability of the FASN inhibitor C75 to decrease prolactin secretion was more conspicuous in T47-YB cells. In T47D-Y cells, which secreted notably less prolactin and downregulated prolactin receptor expression relative to T47Dco cells, FASN blockade resulted in an augmented secretion of prolactin and up-regulation of prolactin receptor expression. Our data reveal unforeseen PR-B isoform-specific regulatory actions in the cross-talk between prolactin and FASN signaling in BC. These findings might provide new PR-B/FASN-centered predictive and therapeutic modalities in luminal intrinsic BC subtypes.
Collapse
MESH Headings
- 4-Butyrolactone/analogs & derivatives
- 4-Butyrolactone/pharmacology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Cell Line, Tumor
- Databases, Genetic
- Fatty Acid Synthase, Type I/antagonists & inhibitors
- Fatty Acid Synthase, Type I/genetics
- Fatty Acid Synthase, Type I/metabolism
- Humans
- Interleukin-6/metabolism
- Prolactin/metabolism
- Prolactin/pharmacology
- Promoter Regions, Genetic
- Protein Isoforms
- RNA, Messenger/metabolism
- Receptor Cross-Talk
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Receptors, Prolactin/antagonists & inhibitors
- Receptors, Prolactin/genetics
- Receptors, Prolactin/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Javier A. Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | | | | | - Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Travis Vander Steen
- Mayo Clinic, Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Rochester, MN 55905, USA
| | - Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Luciano Vellon
- Stem Cells Laboratory, Institute of Biology and Experimental Medicine (IBYME-CONICET), Buenos Aires, Argentina
| | - Wen Y. Chen
- Department of Biological Sciences, Clemson University, Greenville, SC 29634, USA
| | - Ruth Lupu
- Mayo Clinic, Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Rochester, MN 55905, USA
- Mayo Clinic Minnesota, Department of Biochemistry and Molecular Biology Laboratory, Rochester, MN 55905, USA
- Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Turrini E, Sestili P, Fimognari C. Overview of the Anticancer Potential of the "King of Spices" Piper nigrum and Its Main Constituent Piperine. Toxins (Basel) 2020; 12:E747. [PMID: 33256185 PMCID: PMC7761056 DOI: 10.3390/toxins12120747] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
The main limits of current anticancer therapy are relapses, chemoresistance, and toxic effects resulting from its poor selectivity towards cancer cells that severely impair a patient's quality of life. Therefore, the discovery of new anticancer drugs remains an urgent challenge. Natural products represent an excellent opportunity due to their ability to target heterogenous populations of cancer cells and regulate several key pathways involved in cancer development, and their favorable toxicological profile. Piper nigrum is one of the most popular spices in the world, with growing fame as a source of bioactive molecules with pharmacological properties. The present review aims to provide a comprehensive overview of the anticancer potential of Piper nigrum and its major active constituents-not limited to the well-known piperine-whose undeniable anticancer properties have been reported for different cancer cell lines and animal models. Moreover, the chemosensitizing effects of Piper nigrum in association with traditional anticancer drugs are depicted and its toxicological profile is outlined. Despite the promising results, human studies are missing, which are crucial for supporting the efficacy and safety of Piper nigrum and its single components in cancer patients.
Collapse
Affiliation(s)
- Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| | - Piero Sestili
- Department of Biomolecular Sciences (DISB), Università degli Studi di Urbino Carlo Bo, Via I Maggetti 26, 61029 Urbino, Italy;
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| |
Collapse
|
9
|
Fatty Acid Synthase Is a Key Enabler for Endocrine Resistance in Heregulin-Overexpressing Luminal B-Like Breast Cancer. Int J Mol Sci 2020; 21:ijms21207661. [PMID: 33081219 PMCID: PMC7588883 DOI: 10.3390/ijms21207661] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
HER2 transactivation by the HER3 ligand heregulin (HRG) promotes an endocrine-resistant phenotype in the estrogen receptor-positive (ER+) luminal-B subtype of breast cancer. The underlying biological mechanisms that link them are, however, incompletely understood. Here, we evaluated the putative role of the lipogenic enzyme fatty acid synthase (FASN) as a major cause of HRG-driven endocrine resistance in ER+/HER2-negative breast cancer cells. MCF-7 cells engineered to stably overexpress HRG (MCF-7/HRG), an in vitro model of tamoxifen/fulvestrant-resistant luminal B-like breast cancer, showed a pronounced up-regulation of FASN gene/FASN protein expression. Autocrine HRG up-regulated FASN expression via HER2 transactivation and downstream activation of PI-3K/AKT and MAPK-ERK1/2 signaling pathways. The HRG-driven FASN-overexpressing phenotype was fully prevented in MCF-7 cells expressing a structural deletion mutant of HRG that is sequestered in a cellular compartment and lacks the ability to promote endocrine-resistance in an autocrine manner. Pharmacological inhibition of FASN activity blocked the estradiol-independent and tamoxifen/fulvestrant-refractory ability of MCF-7/HRG cells to anchorage-independently grow in soft-agar. In vivo treatment with a FASN inhibitor restored the anti-tumor activity of tamoxifen and fulvestrant against fast-growing, hormone-resistant MCF-7/HRG xenograft tumors in mice. Overall, these findings implicate FASN as a key enabler for endocrine resistance in HRG+/HER2- breast cancer and highlight the therapeutic potential of FASN inhibitors for the treatment of endocrine therapy-resistant luminal-B breast cancer.
Collapse
|
10
|
Lopes-Coelho F, André S, Félix A, Serpa J. Breast cancer metabolic cross-talk: Fibroblasts are hubs and breast cancer cells are gatherers of lipids. Mol Cell Endocrinol 2018; 462:93-106. [PMID: 28119133 DOI: 10.1016/j.mce.2017.01.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/23/2016] [Accepted: 01/19/2017] [Indexed: 12/13/2022]
Abstract
The cellular components of microenvironment are partners of cancer cells, sharing soluble factors and organic molecules to accomplish tumor energy and biomass demands. We tested the role of fibroblasts in fatty acids metabolism in breast cancer, addressing fatty acid synthase (FASN) expression and activity, the expression of lipids chaperons (FABPs) and transporters (FATPs) and lipids cellular content. We showed that the amount of lipids increased in cancer cells exposed to fibroblasts conditioned media, showing that lipids transfer is crucial in this metabolic cross-talk. Accordingly, it was seen in those cancer cells a concomitant decrease in the expression of FABP2 and FABP3 and an increase in FATP1 expression, whose function is independent of FABPs. The in vivo experiment corroborates the role of CAFs in tumor growth. Our study is one more step toward the understanding of metabolic dynamics between cancer cells and CAFs, disclosing FATP1 as a putative target to disturb the transfer of lipids between CAFs and breast cancer cells.
Collapse
Affiliation(s)
- Filipa Lopes-Coelho
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal; Unidade de Investigação Em Patobiologia Molecular Do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisbon, Portugal
| | - Saudade André
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal; Pathology Department, IPOLFG, Rua Prof Lima Basto, 1099-023, Lisbon, Portugal
| | - Ana Félix
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal; Pathology Department, IPOLFG, Rua Prof Lima Basto, 1099-023, Lisbon, Portugal
| | - Jacinta Serpa
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal; Unidade de Investigação Em Patobiologia Molecular Do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisbon, Portugal.
| |
Collapse
|
11
|
Menendez JA, Lupu R. Fatty acid synthase (FASN) as a therapeutic target in breast cancer. Expert Opin Ther Targets 2017; 21:1001-1016. [PMID: 28922023 DOI: 10.1080/14728222.2017.1381087] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Ten years ago, we put forward the metabolo-oncogenic nature of fatty acid synthase (FASN) in breast cancer. Since the conception of this hypothesis, which provided a model to explain how FASN is intertwined with various signaling networks to cell-autonomously regulate breast cancer initiation and progression, FASN has received considerable attention as a therapeutic target. However, despite the ever-growing evidence demonstrating the involvement of FASN as part of the cancer-associated metabolic reprogramming, translation of the basic science-discovery aspects of FASN blockade to the clinical arena remains a challenge. Areas covered: Ten years later, we herein review the preclinical lessons learned from the pharmaceutical liabilities of the first generation of FASN inhibitors. We provide an updated view of the current development and clinical testing of next generation FASN-targeted drugs. We also discuss new clinico-molecular approaches that should help us to convert roadblocks into roadways that will propel forward our therapeutic understanding of FASN. Expert opinion: With the recent demonstration of target engagement and early signs of clinical activity with the first orally available, selective, potent and reversible FASN inhibitor, we can expect Big pharma to revitalize their interest in lipogenic enzymes as well-credentialed targets for oncology drug development in breast cancer.
Collapse
Affiliation(s)
- Javier A Menendez
- a ProCURE (Program Against Cancer Therapeutic Resistance) , Metabolism & Cancer Group, Catalan Institute of Oncology , Girona , Spain.,b Girona Biomedical Research Institute (IDIBGI) , Parc Hospitalari Martí i Julià , Girona , Spain
| | - Ruth Lupu
- c Department of Medicine and Experimental Pathology , Mayo Clinic , Rochester , MN , USA.,d Mayo Clinic Cancer Center , Rochester , MN , USA
| |
Collapse
|
12
|
Stepanova DS, Semenova G, Kuo YM, Andrews AJ, Ammoun S, Hanemann CO, Chernoff J. An Essential Role for the Tumor-Suppressor Merlin in Regulating Fatty Acid Synthesis. Cancer Res 2017; 77:5026-5038. [PMID: 28729415 DOI: 10.1158/0008-5472.can-16-2834] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 05/17/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022]
Abstract
Neurofibromatosis type 2 (NF2) is an autosomal dominant disorder characterized by the development of multiple tumors in the central nervous system, most notably schwannomas, and meningiomas. Mutational inactivation of the NF2 gene encoding the protein Merlin is found in most sporadic and inherited schwannomas, but the molecular mechanisms underlying neoplastic changes in schwannoma cells remain unclear. We report here that Nf2-deficient cells display elevated expression levels of key enzymes involved in lipogenesis and that this upregulation is caused by increased activity of Torc1. Inhibition or knockdown of fatty acid synthase (FASN), the enzyme that catalyzes the formation of palmitic acid from malonyl-CoA, drove NF2-deficient cells into apoptosis. Treatment of NF2-mutant cells with agents that inhibit the production of malonyl-CoA reduced their sensitivity to FASN inhibitors. Collectively, these results suggest that the altered lipid metabolism found in NF2-mutant cells renders them sensitive to elevated levels of malonyl-CoA, as occurs following blockade of FASN, suggesting new targeted strategies in the treatment of NF2-deficient tumors. Cancer Res; 77(18); 5026-38. ©2017 AACR.
Collapse
Affiliation(s)
- Dina S Stepanova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Galina Semenova
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yin-Ming Kuo
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Andrew J Andrews
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Sylwia Ammoun
- Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, United Kingdom
| | - C Oliver Hanemann
- Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, United Kingdom
| | - Jonathan Chernoff
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
13
|
Effect of Curcumin on Fatty Acid Synthase Expression and Enzyme Activity in Breast Cancer Cell Line SKBR3. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2017. [DOI: 10.5812/ijcm.8173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Menendez JA, Lupu R. Fatty acid synthase regulates estrogen receptor-α signaling in breast cancer cells. Oncogenesis 2017; 6:e299. [PMID: 28240737 PMCID: PMC5337623 DOI: 10.1038/oncsis.2017.4] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/29/2016] [Accepted: 07/08/2016] [Indexed: 02/06/2023] Open
Abstract
Fatty acid synthase (FASN), the key enzyme for endogenous synthesis of fatty acids, is overexpressed and hyperactivated in a biologically aggressive subset of sex steroid-related tumors, including breast carcinomas. Using pharmacological and genetic approaches, we assessed the molecular relationship between FASN signaling and estrogen receptor alpha (ERα) signaling in breast cancer. The small compound C75, a synthetic slow-binding inhibitor of FASN activity, induced a dramatic augmentation of estradiol (E2)-stimulated, ERα-driven transcription. FASN and ERα were both necessary for the synergistic activation of ERα transcriptional activity that occurred following co-exposure to C75 and E2: first, knockdown of FASN expression using RNAi (RNA interference) drastically lowered (>100 fold) the amount of E2 required for optimal activation of ERα-mediated transcriptional activity; second, FASN blockade synergistically increased E2-stimulated ERα-mediated transcriptional activity in ERα-negative breast cancer cells stably transfected with ERα, but not in ERα-negative parental cells. Non-genomic, E2-regulated cross-talk between the ERα and MAPK pathways participated in these phenomena. Thus, treatment with the pure antiestrogen ICI 182 780 or the potent and specific inhibitor of MEK/ERK, U0126, was sufficient to abolish the synergistic nature of the interaction between FASN blockade and E2-stimulated ERα transactivation. FASN inhibition suppressed E2-stimulated breast cancer cell proliferation and anchorage-independent colony formation while promoting the reduction of ERα protein. FASN blockade resulted in the increased expression and nuclear accumulation of the cyclin-dependent kinase inhibitors p21WAF1/CIP1 and p27Kip1, two critical mediators of the therapeutic effects of antiestrogen in breast cancer, while inactivating AKT, a key mediator of E2-promoted anchorage-independent growth. The ability of FASN to regulate E2/ERα signaling may represent a promising strategy for anticancer treatment involving a new generation of FASN inhibitors.
Collapse
Affiliation(s)
- J A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain
| | - R Lupu
- Mayo Clinic, Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Rochester, MN, USA.,Mayo Clinic Cancer Center, Rochester, MN, USA
| |
Collapse
|
15
|
Corominas-Faja B, Vellon L, Cuyàs E, Buxó M, Martin-Castillo B, Serra D, García J, Lupu R, Menendez JA. Clinical and therapeutic relevance of the metabolic oncogene fatty acid synthase in HER2+ breast cancer. Histol Histopathol 2016; 32:687-698. [PMID: 27714708 DOI: 10.14670/hh-11-830] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fatty acid synthase (FASN) is a key lipogenic enzyme for de novo fatty acid biosynthesis and a druggable metabolic oncoprotein that is activated in most human cancers. We evaluated whether the HER2-driven lipogenic phenotype might represent a biomarker for sensitivity to pharmacological FASN blockade. A majority of clinically HER2-positive tumors were scored as FASN overexpressors in a series of almost 200 patients with invasive breast carcinoma. Re-classification of HER2-positive breast tumors based on FASN gene expression predicted a significantly inferior relapse-free and distant metastasis-free survival in HER2+/FASN+ patients. Notably, non-tumorigenic MCF10A breast epithelial cells engineered to overexpress HER2 upregulated FASN gene expression, and the FASN inhibitor C75 abolished HER2-induced anchorage-independent growth and survival. Furthermore, in the presence of high concentrations of C75, HER2-negative MCF-7 breast cancer cells overexpressing HER2 (MCF-7/HER2) had significantly higher levels of apoptosis than HER2-negative cells. Finally, C75 at non-cytotoxic concentrations significantly reduced the capacity of MCF-7/HER2 cells to form mammospheres, an in vitro indicator of cancer stem-like cells. Collectively, our findings strongly suggest that the HER2-FASN lipogenic axis delineates a group of breast cancer patients that might benefit from treatment with therapeutic regimens containing FASN inhibitors.
Collapse
Affiliation(s)
- Bruna Corominas-Faja
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Luciano Vellon
- IBYME, CONICET-Laboratorio de Immunohematología, Buenos Aires, Argentina
| | - Elisabet Cuyàs
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Maria Buxó
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Begoña Martin-Castillo
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain.,Unit of Clinical Research, Catalan Institute of Oncology, Girona, Spain
| | - Dolors Serra
- Department of Biochemistry and Molecular Biology, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi García
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Departament de Química Orgànica, Facultat de Química, Institut de Biomedicina de la UB (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Ruth Lupu
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Rochester, MN, USA.,Mayo Clinic Cancer Center, Rochester, MN, USA.
| | - Javier A Menendez
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
| |
Collapse
|
16
|
Stepanova DS, Chernoff J, Shimanovskiy NL. Search for Chemical Compounds for Pharmacotherapy of Neurofibromatosis Type 2. Pharm Chem J 2015. [DOI: 10.1007/s11094-015-1194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Guo D, Bell EH, Mischel P, Chakravarti A. Targeting SREBP-1-driven lipid metabolism to treat cancer. Curr Pharm Des 2015; 20:2619-26. [PMID: 23859617 DOI: 10.2174/13816128113199990486] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/24/2013] [Indexed: 01/17/2023]
Abstract
Metabolic reprogramming is a hallmark of cancer. Oncogenic growth signaling regulates glucose, glutamine and lipid metabolism to meet the bioenergetics and biosynthetic demands of rapidly proliferating tumor cells. Emerging evidence indicates that sterol regulatory element-binding protein 1 (SREBP-1), a master transcription factor that controls lipid metabolism, is a critical link between oncogenic signaling and tumor metabolism. We recently demonstrated that SREBP-1 is required for the survival of mutant EGFR-containing glioblastoma, and that this pro-survival metabolic pathway is mediated, in part, by SREBP-1-dependent upregulation of the fatty acid synthesis and low density lipoprotein (LDL) receptor (LDLR). These results have identified EGFR/PI3K/Akt/SREBP-1 signaling pathway that promotes growth and survival in glioblastoma, and potentially other cancer types. Here, we summarize recent insights in the understanding of cancer lipid metabolism, and discuss the evidence linking SREBP-1 with PI3K/Akt signaling-controlled glycolysis and with Myc-regulated glutaminolysis to lipid metabolism. We also discuss the development of potential drugs targeting the SREBP-1- driven lipid metabolism as anti-cancer agents.
Collapse
Affiliation(s)
| | | | | | - Arnab Chakravarti
- Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center and Arthur G. James Cancer Hospital, Columbus, OH 43210, USA.
| |
Collapse
|
18
|
Hao Q, Li T, Zhang X, Gao P, Qiao P, Li S, Geng Z. Expression and roles of fatty acid synthase in hepatocellular carcinoma. Oncol Rep 2014; 32:2471-6. [PMID: 25231933 DOI: 10.3892/or.2014.3484] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/30/2014] [Indexed: 11/06/2022] Open
Abstract
Cell metabolism abnormalities are closely related to tumor occurrence and development. Fatty acid synthase (FASN) is the key molecule for catalyzing fatty acid synthesis. Increasing evidence indicates that FASN is highly expressed in a number of malignant tumors; it can promote the synthesis of endogenous fatty acids in tumor cells and then the synthesized fatty acids provide energy for the proliferation of tumor cells. However, there has been no systematic study focusing on FASN expression and function in hepatocellular carcinoma (HCC). The aim of the present study was to verify the high expression of FASN in HCC cells at the histological and cellular levels, and to construct FASN shRNA eukaryotic expression vector for interfering FASN expression in HCC cell line SK-Hep-1, in an effort to explore the role of FASN in the proliferation, apoptosis, invasion and migration of HCC cells. In the present study, we demonstrated that FASN was highly expressed in HCC tissues compared with tumor-adjacent tissue and normal liver cell line 7702 (P<0.05). FASN expression in the high metastatic MHCC97H and SK-Hep-1 cell lines was increased compared with low metastatic HCC cell lines (P<0.05). Then, we constructed a FASN shRNA eukaryotic expression vector; after HCC SK-Hep-1 cells were transfected, the cell proliferation, migration and invasion were inhibited, but FASN had no impact on the apoptosis of HCC cells. Collectively, these data indicate that FASN is possibly involved in the occurrence and metastasis of HCC. Thus, inhibition of FASN may be a promising approach for the treatment of HCC.
Collapse
Affiliation(s)
- Qiwei Hao
- Department of Hepatobiliary Surgery, Second Hospital of Yulin City, Yulin, Shaanxi 719000, P.R. China
| | - Tao Li
- Department of Hepatobiliary Surgery, Second Hospital of Yulin City, Yulin, Shaanxi 719000, P.R. China
| | - Xiong Zhang
- Department of Hepatobiliary Surgery, Second Hospital of Yulin City, Yulin, Shaanxi 719000, P.R. China
| | - Ping Gao
- Department of Hepatobiliary Surgery, Second Hospital of Yulin City, Yulin, Shaanxi 719000, P.R. China
| | - Peiyu Qiao
- Department of Hepatobiliary Surgery, Second Hospital of Yulin City, Yulin, Shaanxi 719000, P.R. China
| | - Sheng Li
- Department of Hepatobiliary Surgery, Second Hospital of Yulin City, Yulin, Shaanxi 719000, P.R. China
| | - Zhimin Geng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, College of Medicine, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
19
|
Cruz MD, Wali RK, Bianchi LK, Radosevich AJ, Crawford SE, Jepeal L, Goldberg MJ, Weinstein J, Momi N, Roy P, Calderwood AH, Backman V, Roy HK. Colonic mucosal fatty acid synthase as an early biomarker for colorectal neoplasia: modulation by obesity and gender. Cancer Epidemiol Biomarkers Prev 2014; 23:2413-21. [PMID: 25155760 DOI: 10.1158/1055-9965.epi-14-0026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND We have previously reported that colonic pericryptal microvascular blood flow is augmented in the premalignant colonic epithelium, highlighting the increased metabolic demand of the proliferative epithelium as a marker of field carcinogenesis. However, its molecular basis is unexplored. In this study, we assessed the expression of a regulator of the "lipogenic switch," fatty acid synthase (FASN), in early colon carcinogenesis for its potential biomarker utility for concurrent neoplasia. METHODS FASN expression (IHC) in the colonic epithelium from azoxymethane and polyposis in rat colon (Pirc) models of colorectal cancer was studied. FASN mRNA expression from endoscopically normal rectal mucosa was evaluated and correlated with colonoscopic findings (pathologic confirmation of neoplasia). RESULTS FASN expression progressively increased from premalignant to malignant stage in the azoxymethane model (1.9- to 2.5-fold; P < 0.0001) and was also higher in the adenomas compared with adjacent uninvolved mucosa (1.8- to 3.4-fold; P < 0.001) in the Pirc model. Furthermore, FASN was significantly overexpressed in rectal biopsies from patients harboring adenomas compared with those with no adenomas. These effects were accentuated in male (∼2-fold) and obese patients (1.4-fold compared with those with body mass index < 30). Overall, the performance of rectal FASN was excellent (AUROC of 0.81). CONCLUSIONS FASN is altered in the premalignant colonic mucosa and may serve as a marker for colonic neoplasia present elsewhere. The enhanced effects in men and obesity may have implications for identifying patient subgroups at risk for early-onset neoplasia. IMPACT These findings support the role of rectal FASN expression as a reliable biomarker of colonic neoplasia.
Collapse
Affiliation(s)
- Mart Dela Cruz
- Section of Gastroenterology, Boston University Medical Center, Boston, Massachusetts
| | - Ramesh K Wali
- Section of Gastroenterology, Boston University Medical Center, Boston, Massachusetts.
| | - Laura K Bianchi
- Department of Medicine, NorthShore University HealthSystem, Evanston, Illinois
| | - Andrew J Radosevich
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois
| | - Susan E Crawford
- Department of Pathology, St. Louis University, St. Louis, Missouri
| | - Lisa Jepeal
- Section of Gastroenterology, Boston University Medical Center, Boston, Massachusetts
| | - Michael J Goldberg
- Department of Medicine, NorthShore University HealthSystem, Evanston, Illinois
| | - Jaclyn Weinstein
- Section of Gastroenterology, Boston University Medical Center, Boston, Massachusetts
| | - Navneet Momi
- Section of Gastroenterology, Boston University Medical Center, Boston, Massachusetts
| | - Priya Roy
- Section of Gastroenterology, Boston University Medical Center, Boston, Massachusetts
| | - Audrey H Calderwood
- Section of Gastroenterology, Boston University Medical Center, Boston, Massachusetts
| | - Vadim Backman
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois
| | - Hemant K Roy
- Section of Gastroenterology, Boston University Medical Center, Boston, Massachusetts
| |
Collapse
|
20
|
Qin H, Ruan ZH. The Role of Monoacylglycerol Lipase (MAGL) in the Cancer Progress. Cell Biochem Biophys 2014; 70:33-6. [DOI: 10.1007/s12013-014-9899-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Cheng CS, Wang Z, Chen J. Targeting FASN in Breast Cancer and the Discovery of Promising Inhibitors from Natural Products Derived from Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:232946. [PMID: 24778702 PMCID: PMC3976840 DOI: 10.1155/2014/232946] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/27/2013] [Accepted: 01/15/2014] [Indexed: 01/06/2023]
Abstract
Molecular targeted therapy has been developed for cancer chemoprevention and treatment. Cancer cells process a fundamental change in its bioenergetic metabolism from normal cells on an altered lipid metabolism, also known as the de novo fatty acid synthesis, for sustaining their high proliferation rates. Fatty acid synthesis is now associated with clinically aggressive tumor behavior and tumor cell growth and has become a novel target pathway for chemotherapy development. Although the underlying mechanisms of the altered de novo fatty acid synthesis still remains unclear, recent progress has shown that by targeting Fatty acid synthase (FASN), a key enzyme that catalyzes the synthesis of endogenous long chain fatty acid could be a critical target for drug discovery. However, relatively few FASN inhibitors have been discovered. With the long history of clinical practices and numerous histological case study reports, traditional Chinese medicine enjoys an important role in seeking bioactive anticancer natural compounds. Herein, we will give an overall picture of the current progress of molecular targeted therapy in cancer fatty acid synthesis, describe the advances in the research on natural products-derived FASN inhibitors and their potential for enhancing our understanding of fatty acids in tumor biology, and may provide new therapeutic moieties for breast cancer patient care.
Collapse
Affiliation(s)
- Chien-Shan Cheng
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Zhiyu Wang
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
22
|
Cao XZ, Xiang HL, Quan MF, He LH. Inhibition of cell growth by BrMC through inactivation of Akt in HER-2/neu-overexpressing breast cancer cells. Oncol Lett 2014; 7:1632-1638. [PMID: 24765191 PMCID: PMC3997727 DOI: 10.3892/ol.2014.1889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 01/16/2014] [Indexed: 12/12/2022] Open
Abstract
We previously reported that chrysin (ChR) and its analogs induced cell cycle arrest and apoptosis in human estrogen receptor-positive/-negative breast cancer cells. However, it was unknown whether 8-bromo-7-methoxychrysin (BrMC), a novel synthetic ChR analog, inhibited the cell growth of human epidermal growth factor receptor 2 (HER-2)/neu-overexpressing breast cancers. In the present study, it was demonstrated that BrMC preferentially inhibited the cell viability of HER-2/neu-overexpressing MDA-MB-453 and BT-474 cells. Western blot analysis revealed that HER-2/neu expression and tyrosine phosphorylation were inhibited by BrMC in a concentration-dependent manner; whereas the proteasome inhibitor, MG-132, significantly prevented BrMC-induced HER-2/neu depletion and cell death in MDA-MB-453 cells. This directly indicated that BrMC-induced HER-2/neu depletion and cell growth inhibition was mediated by a proteasomal pathway. BrMC significantly downregulated the expression of cyclin D1, cyclin E and CDK4, followed by the suppression of protein kinase B phosphorylation and downstream effectors, GSK-3β and β-catenin. A colony formation assay also confirmed the growth-inhibitory effects of BrMC. Thus, these findings clearly demonstrate the anticancer activity of BrMC against human HER-2/neu-overexpressing breast cancer cells. Thus, these findings clearly demonstrate the anticancer activity of BrMC against human HER 2/neu-overexpressing breast cancer cells, and highlight BrMC as a promising candidate for breast cancer therapy.
Collapse
Affiliation(s)
- Xiao-Zheng Cao
- Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Hong-Lin Xiang
- Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Mei-Fang Quan
- Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Li-Hua He
- Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
23
|
Do MT, Kim HG, Choi JH, Khanal T, Park BH, Tran TP, Jeong TC, Jeong HG. Antitumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells. Food Chem 2013; 141:2591-9. [DOI: 10.1016/j.foodchem.2013.04.125] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 03/13/2013] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
|
24
|
Do MT, Hwang YP, Kim HG, Na M, Jeong HG. Mollugin inhibits proliferation and induces apoptosis by suppressing fatty acid synthase in HER2-overexpressing cancer cells. J Cell Physiol 2013; 228:1087-97. [PMID: 23065756 DOI: 10.1002/jcp.24258] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/03/2012] [Indexed: 01/21/2023]
Abstract
Mollugin is a naphthohydroquine found in the roots of Rubia cordifolia, and has been reported to have a variety of biological activities, including anti-inflammatory and apoptotic effects. In the present study, we investigated the molecular mechanisms by which mollugin exerts anti-tumor effect in HER2-overexpressing cancer cells. Our results showed that mollugin exhibited potent inhibitory effects on cancer cell proliferation, especially in HER2-overexpressing SK-BR-3 human breast cancer cells and SK-OV-3 human ovarian cancer cells in a dose- and time-dependent manner without affecting immortalized normal mammary epithelial cell line MCF-10A. Furthermore, we found that a blockade of Akt/SREBP-1c signaling through mollugin treatment significantly reduced FAS expression and subsequently suppressed cell proliferation and induced apoptosis in HER2-overexpressing cancer cells. Mollugin treatment caused a dose-dependent inhibition of HER2 gene expression at the transcriptional level, potentially in part through suppression of NF-κB activation. The combination of mollugin with a MEK1/2 inhibitor may be required in order to achieve optimal efficacy in HER2-overexpressing cancers. These data provide evidence that mollugin inhibits proliferation and induces apoptosis in HER2-overexpressing cancer cells by blocking expression of the FAS gene through modulation of a HER2/Akt/SREBP-1c signaling pathway. Our findings suggest that mollugin is a novel modulator of the HER2 pathway in HER2-overexpressing cancer cells with a potential role in the treatment and prevention of human breast and ovarian cancer with HER2 overexpression.
Collapse
Affiliation(s)
- Minh Truong Do
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | | | | | | | | |
Collapse
|
25
|
Jung SY, Jeon HK, Choi JS, Kim YJ. Reduced expression of FASN through SREBP-1 down-regulation is responsible for hypoxic cell death in HepG2 cells. J Cell Biochem 2013; 113:3730-9. [PMID: 22786746 DOI: 10.1002/jcb.24247] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cells under hypoxic stress either activate an adaptive response or undergo cell death. Although some mechanisms have been reported, the exact mechanism behind hypoxic cell death remains unclear. Recently, increased expression of fatty acid synthase (FASN) has been observed in various human cancers. In highly proliferating cells, tumor-associated FASN is considered necessary for both membrane lipids production and post-translational protein modification, but the exact mechanisms are not fully understood. Further, FASN overexpression is associated with aggressive and malignant cancer diseases and FASN inhibition induces apoptosis in cancer cells. For this reason, FASN is emerging as a key target for the potential diagnosis and treatment of various cancers. Here, we observed decreased FASN expression under hypoxic cell death conditions in HepG2 cells. Thus, we examined the effect of decreased FASN expression on hypoxia-induced cell death in HepG2 cells and also investigated the mechanism responsible for reduction of FASN expression under hypoxic cell death conditions. As a result, reduction of FASN expression resulted in hypoxic cell death via malonyl-CoA accumulation. In addition, SREBP-1 restored FASN reduction and hypoxia-induced apoptosis. Taken together, we suggest that hypoxic cell death is promoted by the reduced expression of FASN through SREBP-1 down-regulation.
Collapse
Affiliation(s)
- Seung-Youn Jung
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea
| | | | | | | |
Collapse
|
26
|
Sakharkar MK, Shashni B, Sharma K, Dhillon SK, Ranjekar PR, Sakharkar KR. Therapeutic implications of targeting energy metabolism in breast cancer. PPAR Res 2013; 2013:109285. [PMID: 23431283 PMCID: PMC3575613 DOI: 10.1155/2013/109285] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/23/2012] [Indexed: 12/12/2022] Open
Abstract
PPARs are ligand activated transcription factors. PPARγ agonists have been reported as a new and potentially efficacious treatment of inflammation, diabetes, obesity, cancer, AD, and schizophrenia. Since cancer cells show dysregulation of glycolysis they are potentially manageable through changes in metabolic environment. Interestingly, several of the genes involved in maintaining the metabolic environment and the central energy generation pathway are regulated or predicted to be regulated by PPARγ. The use of synthetic PPARγ ligands as drugs and their recent withdrawal/restricted usage highlight the lack of understanding of the molecular basis of these drugs, their off-target effects, and their network. These data further underscores the complexity of nuclear receptor signalling mechanisms. This paper will discuss the function and role of PPARγ in energy metabolism and cancer biology in general and its emergence as a promising therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Meena K. Sakharkar
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8572, Japan
| | - Babita Shashni
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8572, Japan
| | - Karun Sharma
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8572, Japan
| | - Sarinder K. Dhillon
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Kishore R. Sakharkar
- Omicsvista, Singapore 120417
- Rajiv Gandhi Institute of Information Technology and Biotechnology, Bharati Vidyapeeth University, Pune 411046, India
| |
Collapse
|
27
|
Vazquez-Martin A, Corominas-Faja B, Cufi S, Vellon L, Oliveras-Ferraros C, Menendez OJ, Joven J, Lupu R, Menendez JA. The mitochondrial H(+)-ATP synthase and the lipogenic switch: new core components of metabolic reprogramming in induced pluripotent stem (iPS) cells. Cell Cycle 2013; 12:207-18. [PMID: 23287468 PMCID: PMC3575450 DOI: 10.4161/cc.23352] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Induced pluripotent stem (iPS) cells share some basic properties, such as self-renewal and pluripotency, with cancer cells, and they also appear to share several metabolic alterations that are commonly observed in human tumors. The cancer cells' glycolytic phenotype, first reported by Otto Warburg, is necessary for the optimal routing of somatic cells to pluripotency. However, how iPS cells establish a Warburg-like metabolic phenotype and whether the metabolic pathways that support the bioenergetics of iPS cells are produced by the same mechanisms that are selected during the tumorigenic process remain largely unexplored. We recently investigated whether the reprogramming-competent metabotype of iPS cells involves changes in the activation/expression status of the H(+)-ATPase, which is a core component of mitochondrial oxidative phosphorylation that is repressed at both the activity and protein levels in human carcinomas, and of the lipogenic switch, which refers to a marked overexpression and hyperactivity of the acetyl-CoA carboxylase (ACACA) and fatty acid synthase (FASN) lipogenic enzymes that has been observed in nearly all examined cancer types. A comparison of a starting population of mouse embryonic fibroblasts and their iPS cell progeny revealed that somatic cell reprogramming involves a significant increase in the expression of ATPase inhibitor factor 1 (IF1), accompanied by extremely low expression levels of the catalytic β-F1-ATPase subunit. The pharmacological inhibition of ACACA and FASN activities markedly decreases reprogramming efficiency, and ACACA and FASN expression are notably upregulated in iPS cells. Importantly, iPS cells exhibited a significant intracellular accumulation of neutral lipid bodies; however, these bodies may be a reflection of intense lysosomal/autophagocytic activity rather than bona fide lipid droplet formation in iPS cells, as they were largely unresponsive to pharmacological modulation of PPARgamma and FASN activities. The AMPK agonist metformin, which endows somatic cells with a bioenergetic infrastructure that is protected against reprogramming, was found to drastically elongate fibroblast mitochondria, fully reverse the high IF1/β-F1-ATPase ratio and downregulate the ACACA/FASN lipogenic enzymes in iPS cells. The mitochondrial H(+)-ATP synthase and the ACACA/FASN-driven lipogenic switch are newly characterized as instrumental metabolic events that, by coupling the Warburg effect to anabolic metabolism, enable de-differentiation during the reprogramming of somatic cells to iPS cells.
Collapse
Affiliation(s)
- Alejandro Vazquez-Martin
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology; Girona, Spain
- Girona Biomedical Research Institute; Girona, Spain
| | - Bruna Corominas-Faja
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology; Girona, Spain
- Girona Biomedical Research Institute; Girona, Spain
| | - Sílvia Cufi
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology; Girona, Spain
- Girona Biomedical Research Institute; Girona, Spain
| | - Luciano Vellon
- Reprogramming Unit; Fundación INBIOMED; San Sebastián; Gipuzkua, Spain
| | - Cristina Oliveras-Ferraros
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology; Girona, Spain
- Girona Biomedical Research Institute; Girona, Spain
| | - Octavio J. Menendez
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology; Girona, Spain
- Girona Biomedical Research Institute; Girona, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica (URB-CRB); Institut d’Investigació Sanitària Pere Virgili; Universitat Rovira i Virgili; Reus, Spain
| | - Ruth Lupu
- Department of Medicine and Pathology; Division of Experimental Pathology; Mayo Clinic Cancer Center; Mayo Clinic; Rochester, MN USA
| | - Javier A. Menendez
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology; Girona, Spain
- Girona Biomedical Research Institute; Girona, Spain
| |
Collapse
|
28
|
Song HJ, Sneddon AA, Heys SD, Wahle KWJ. Regulation of fatty acid synthase (FAS) and apoptosis in estrogen-receptor positive and negative breast cancer cells by conjugated linoleic acids. Prostaglandins Leukot Essent Fatty Acids 2012; 87:197-203. [PMID: 23142364 DOI: 10.1016/j.plefa.2012.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 08/31/2012] [Accepted: 09/13/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Conjugated linoleic acids (CLAs) are natural dairy food components that exhibit a unique body of potential health benefits in animals and man, including anti-cardiovascular disease and anti-cancer effects. Several studies have demonstrated that fatty acid synthase (FAS) levels (protein and mRNA) are over expressed in many carcinomas. Sterol regulatory element binding proteins (SREBPs) are transcription factors that regulate genes involved in lipid metabolism, including FAS. METHODS Breast cancer cell lines, MCF-7 and MDA-MB-231 were treated with CLAs to investigate the regulation of SREBP-1c and FAS expression. RESULTS In MDA-MB-231 cells, SREBP-1c and FAS were co-ordinately decreased by treatment with 25 μM CLA 9-11 and 10-12. In MCF-7 cells, the decrease in SREBP-1c and FAS expression was dependant on the concentration of CLA used. CONCLUSIONS The data suggest a differential effect of CLAs on SREBP-1c and FAS in estrogen receptor-positive (MCF-7) compared to estrogen receptor-negative (MDA-MB-231) breast cancer cells.
Collapse
Affiliation(s)
- H-J Song
- School of Life Science, The Robert Gordon University, Aberdeen, AB10 1JQ, UK
| | | | | | | |
Collapse
|
29
|
Del Barco S, Vazquez-Martin A, Cufí S, Oliveras-Ferraros C, Bosch-Barrera J, Joven J, Martin-Castillo B, Menendez JA. Metformin: multi-faceted protection against cancer. Oncotarget 2012; 2:896-917. [PMID: 22203527 PMCID: PMC3282095 DOI: 10.18632/oncotarget.387] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The biguanide metformin, a widely used drug for the treatment of type 2 diabetes, may exert cancer chemopreventive effects by suppressing the transformative and hyperproliferative processes that initiate carcinogenesis. Metformin's molecular targets in cancer cells (e.g., mTOR, HER2) are similar to those currently being used for directed cancer therapy. However, metformin is nontoxic and might be extremely useful for enhancing treatment efficacy of mechanism-based and biologically targeted drugs. Here, we first revisit the epidemiological, preclinical, and clinical evidence from the last 5 years showing that metformin is a promising candidate for oncology therapeutics. Second, the anticancer effects of metformin by both direct (insulin-independent) and indirect (insulin-dependent) mechanisms are discussed in terms of metformin-targeted processes and the ontogenesis of cancer stem cells (CSC), including Epithelial-to-Mesenchymal Transition (EMT) and microRNAs-regulated dedifferentiation of CSCs. Finally, we present preliminary evidence that metformin may regulate cellular senescence, an innate safeguard against cellular immortalization. There are two main lines of evidence that suggest that metformin's primary target is the immortalizing step during tumorigenesis. First, metformin activates intracellular DNA damage response checkpoints. Second, metformin attenuates the anti-senescence effects of the ATP-generating glycolytic metabotype-the Warburg effect-, which is required for self-renewal and proliferation of CSCs. If metformin therapy presents an intrinsic barrier against tumorigenesis by lowering the threshold for stress-induced senescence, metformin therapeutic strategies may be pivotal for therapeutic intervention for cancer. Current and future clinical trials will elucidate whether metformin has the potential to be used in preventive and treatment settings as an adjuvant to current cancer therapeutics.
Collapse
Affiliation(s)
- Sonia Del Barco
- Medical Oncology, Catalan Institute of Oncology, Girona, Catalonia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Inhibition of Cell Growth and Induction of Apoptosis by Antrodia camphorata in HER-2/neu-Overexpressing Breast Cancer Cells through the Induction of ROS, Depletion of HER-2/neu, and Disruption of the PI3K/Akt Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:702857. [PMID: 22701509 PMCID: PMC3371823 DOI: 10.1155/2012/702857] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/02/2012] [Indexed: 01/19/2023]
Abstract
Previously, we demonstrated that a submerged fermentation culture of Antrodia camphorata (AC) promotes cell-cycle arrest and apoptosis in human estrogen receptor-positive/negative breast cancer cells. However, whether AC is effective against HER-2/neu-overexpressing breast cancers has not been thoroughly elucidated. In the present study, we showed that AC exhibited a significant cytotoxic effect against HER-2/neu-overexpressing MDA-MB-453 and BT-474 cells. Immunoblot analysis demonstrated that HER-2/neu and their tyrosine phosphorylation were inhibited by AC in a dose-dependent manner. An increase in intracellular reactive oxygen species (ROS) was observed in AC-treated cells, whereas antioxidant N-acetylcysteine (NAC) significantly prevented AC induced HER-2/neu depletion and cell death, which directly indicates that AC-induced HER-2/neu depletion and cell death was mediated by ROS generation. Also, AC significantly downregulated the expression of cyclin D1, cyclin E, and CDK4 followed by the suppression of PI3K/Akt, and their downstream effectors GSK-3β and β-catenin. Notably, AC-treatment induced apoptotic cell death, which was associated with sub-G1 accumulation, DNA fragmentation, mitochondrial dysfunction, cytochrome c release, caspase-3/-9 activation, PARP degradation, and Bcl-2/Bax dysregulation. Assays for colony formation also confirmed the growth-inhibitory effects of AC. This is the first report confirming the anticancer activity of this potentially beneficial mushroom against human HER-2/neu-overexpressing breast cancers.
Collapse
|
31
|
Kuchiba A, Morikawa T, Yamauchi M, Imamura Y, Liao X, Chan AT, Meyerhardt JA, Giovannucci E, Fuchs CS, Ogino S. Body mass index and risk of colorectal cancer according to fatty acid synthase expression in the nurses' health study. J Natl Cancer Inst 2012; 104:415-20. [PMID: 22312135 DOI: 10.1093/jnci/djr542] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fatty acid synthase (FASN) plays an important role in energy metabolism of fatty acids and is overexpressed in some colon cancers. We investigated whether associations between body mass index (BMI) and risk of colorectal cancer varied according to FASN expression. During follow-up of 109,051 women in the ongoing prospective Nurses' Health Study, a total of 1351 incident colon and rectal cancers were diagnosed between 1986 and 2004. We constructed tissue microarrays of the available resected tumor samples (n = 536), and FASN expression was analyzed by immunohistochemistry. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated using Cox proportional hazards regression models. All statistical tests were two-sided. High BMI was associated with an increased risk of FASN-negative (no or weak expression) colorectal cancer compared with normal BMI (high BMI [≥ 30 kg/m(2)], ie, obese vs normal BMI [18.5-22.9 kg/m(2)], HR = 2.25, 95% CI = 1.49 to 3.40, P(trend) < .001) but not with FASN-positive (moderate to strong expression) colorectal cancer. A statistically significant heterogeneity in colorectal cancer risks was observed between FASN-negative and FASN-positive tumors (P(heterogeneity) = .033). The age-adjusted incidence rates for FASN-positive and FASN-negative colorectal cancers were 10.9 and 7.1, respectively, per 100,000 person-years. This molecular pathological epidemiology study supports a role of energy metabolism in colorectal cancer pathogenesis.
Collapse
Affiliation(s)
- Aya Kuchiba
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
The “HER2–PI3K/Akt–FASN Axis” Regulated Malignant Phenotype of Colorectal Cancer Cells. Lipids 2012; 47:403-11. [DOI: 10.1007/s11745-011-3649-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 12/15/2011] [Indexed: 12/23/2022]
|
33
|
Vazquez-Martin A, López-Bonetc E, Cufí S, Oliveras-Ferraros C, Del Barco S, Martin-Castillo B, Menendez JA. Repositioning chloroquine and metformin to eliminate cancer stem cell traits in pre-malignant lesions. Drug Resist Updat 2011; 14:212-23. [PMID: 21600837 DOI: 10.1016/j.drup.2011.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 01/07/2023]
Abstract
Ideal oncology drugs would be curative after a short treatment course if they could eliminate epithelium-originated carcinomas at their non-invasive, pre-malignant stages. Such ideal molecules, which are expected to molecularly abrogate all the instrumental mechanisms acquired by migrating cancer stem cells (CSCs) to by-pass tumour suppressor barriers, might already exist. We here illustrate how system biology strategies for repositioning existing FDA-approved drugs may accelerate our therapeutic capacity to eliminate CSC traits in pre-invasive intraepithelial neoplasias. First, we describe a signalling network signature that overrides bioenergetics stress- and oncogene-induced senescence (OIS) phenomena in CSCs residing at pre-invasive lesions. Second, we functionally map the anti-malarial chloroquine and the anti-diabetic metformin ("old drugs") to their recently recognized CSC targets ("new uses") within the network. By discussing the preclinical efficacy of chloroquine and metformin to inhibiting the genesis and self-renewal of CSCs we finally underscore the expected translational impact of the "old drugs-new uses" repurposing strategy to open a new CSC-targeted chemoprevention era.
Collapse
Affiliation(s)
- Alejandro Vazquez-Martin
- Unit of Translational Research, Catalan Institute of Oncology-Girona, Avenida de Francia s/n, E-17007 Girona, Catalonia, Spain
| | | | | | | | | | | | | |
Collapse
|
34
|
Lin VCH, Chou CH, Lin YC, Lin JN, Yu CC, Tang CH, Lin HY, Way TD. Osthole suppresses fatty acid synthase expression in HER2-overexpressing breast cancer cells through modulating Akt/mTOR pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:4786-4793. [PMID: 20218616 DOI: 10.1021/jf100352c] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
While fatty acid synthase (FASN) has been shown to be expressed in many human solid tumors, FASN has also been identified in preneoplastic lesions. HER2, which has also been identified in preneoplastic breast lesions, has been shown to upregulate FASN expression. Osthole, an active constituent isolated from the fruit of Cnidium monnieri (L.) Cusson, a traditional Chinese medicine, was found to be effective in suppressing FASN expression in HER2-overexpressing breast cells. Osthole preferentially inhibited proliferation and induced apoptosis in HER2-overexpressing cancer cells. Moreover, osthole inhibited the phosphorylation of Akt and mTOR. The use of Akt-overexpression revealed that the modulation of Akt and mTOR was required for osthole-induced FASN suppression. Finally, we showed that osthole could enhance paclitaxel-induced cytotoxicity in HER2-overexpressing cancer cells. These results suggested that osthole has the potential to advance as chemopreventive or chemotherapeutic agent for cancers that overexpress HER2.
Collapse
Affiliation(s)
- Victor Chia-Hsiang Lin
- Department of Urology, E-Da Hospital, Department of Nursing, I-Shou University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Silva SDD, Cunha IW, Nishimoto IN, Soares FA, Carraro DM, Kowalski LP, Graner E. Clinicopathological significance of ubiquitin-specific protease 2a (USP2a), fatty acid synthase (FASN), and ErbB2 expression in oral squamous cell carcinomas. Oral Oncol 2009; 45:e134-9. [DOI: 10.1016/j.oraloncology.2009.02.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/12/2009] [Accepted: 02/12/2009] [Indexed: 10/20/2022]
|
36
|
Menendez JA. Fine-tuning the lipogenic/lipolytic balance to optimize the metabolic requirements of cancer cell growth: molecular mechanisms and therapeutic perspectives. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1801:381-91. [PMID: 19782152 DOI: 10.1016/j.bbalip.2009.09.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 08/24/2009] [Accepted: 09/14/2009] [Indexed: 12/16/2022]
Abstract
Evolving evidence suggest that metabolic requirements for cell proliferation are identical in all normal and cancer cells. HER2 oncogene-overexpressors, a highly aggressive subtype of human cancer cells, constitute one of the best examples of how malignant cells maximize their ability to acquire and metabolize nutrients in a manner conductive to proliferation rather than efficient ATP production. HER2-overexpressors optimize their requirements of rapid cancer cell growth by fine-tuning a double [lipogenic/lipolytic]-edged metabolic sword. On the one edge, HER2 oncogene overexpression triggers redundant signaling cascades to ensure that all the major enzymes involved in de novo fatty acid (FA) synthesis will facilitate aerobic glycolysis instead of oxidative phosphorylation for energy production (Warburg effect). HER2 also establishes a positive bidirectional relationship with the key lipogenic enzyme Fatty Acid Synthase (FASN) that rapidly senses and respond to any disturbance in the flux of lipogenic substrates (e.g. NADPH and acetyl-CoA) and lipogenesis end-products (i.e. palmitate). On the other edge, HER2 overexpression arranges detoxifying mechanisms by upregulating PPARgamma, a well established positive regulator role of adipogenesis and lipid storage in cell types with active lipid metabolism. PPARgamma establishes a lipogenesis/lipolysis joining-point that enables HER2-positive cancer cells to avoid endogenous palmitate toxicity while securing palmitate into fat stores to avoid palmitate feedback on FASN functioning. The ability of HER2 to supercharge lipogenesis (by activating regulatory circuits that activate and fuel the lipogenic enzyme FASN) while averting lipotoxicity (by promoting conversion and storage of excess FAs to triglycerides in a PPARgamma-dependent manner) supports the notion that best adapted cancer phenotypes are addicted to oncogenic lipid metabolism for cell proliferation and survival. It is conceptually attractive to assume that we can crash HER2-driven rapid cell proliferation by inhibiting "motor refueling" (upon blockade of lipogenic enzymes), by losing the "lipolytic brake" (upon blockade of PPARgamma) and/or by sticking the "lipogenic gas pedal" (upon supplementation with dietary FAs).
Collapse
Affiliation(s)
- Javier A Menendez
- Catalan Institute of Oncology (ICO)-Health Services Division of Catalonia, Dr. Josep Trueta University Hospital of Girona, Girona, Catalonia, Spain.
| |
Collapse
|
37
|
Anderson BM, Ma DWL. Are all n-3 polyunsaturated fatty acids created equal? Lipids Health Dis 2009; 8:33. [PMID: 19664246 PMCID: PMC3224740 DOI: 10.1186/1476-511x-8-33] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 08/10/2009] [Indexed: 12/14/2022] Open
Abstract
N-3 Polyunsaturated fatty acids have been shown to have potential beneficial effects for chronic diseases including cancer, insulin resistance and cardiovascular disease. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in particular have been studied extensively, whereas substantive evidence for a biological role for the precursor, alpha-linolenic acid (ALA), is lacking. It is not enough to assume that ALA exerts effects through conversion to EPA and DHA, as the process is highly inefficient in humans. Thus, clarification of ALA's involvement in health and disease is essential, as it is the principle n-3 polyunsaturated fatty acid consumed in the North American diet and intakes of EPA and DHA are typically very low. There is evidence suggesting that ALA, EPA and DHA have specific and potentially independent effects on chronic disease. Therefore, this review will assess our current understanding of the differential effects of ALA, EPA and DHA on cancer, insulin resistance, and cardiovascular disease. Potential mechanisms of action will also be reviewed. Overall, a better understanding of the individual role for ALA, EPA and DHA is needed in order to make appropriate dietary recommendations regarding n-3 polyunsaturated fatty acid consumption.
Collapse
Affiliation(s)
- Breanne M Anderson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G2W1 Canada.
| | | |
Collapse
|
38
|
Sabbisetti V, Di Napoli A, Seeley A, Amato AM, O'Regan E, Ghebremichael M, Loda M, Signoretti S. p63 promotes cell survival through fatty acid synthase. PLoS One 2009; 4:e5877. [PMID: 19517019 PMCID: PMC2691576 DOI: 10.1371/journal.pone.0005877] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 05/05/2009] [Indexed: 11/25/2022] Open
Abstract
There is increasing evidence that p63, and specifically ΔNp63, plays a central role in both development and tumorigenesis by promoting epithelial cell survival. However, few studies have addressed the molecular mechanisms through which such important function is exerted. Fatty acid synthase (FASN), a key enzyme that synthesizes long-chain fatty acids and is involved in both embryogenesis and cancer, has been recently proposed as a direct target of p53 family members, including p63 and p73. Here we show that knockdown of either total or ΔN-specific p63 isoforms in squamous cell carcinoma (SCC9) or immortalized prostate epithelial (iPrEC) cells caused a decrease in cell viability by inducing apoptosis without affecting the cell cycle. p63 silencing significantly reduced both the expression and the activity of FASN. Importantly, stable overexpression of either FASN or myristoylated AKT (myr-AKT) was able to partially rescue cells from cell death induced by p63 silencing. FASN induced AKT phosphorylation and a significant reduction in cell viability was observed when FASN-overexpressing SCC9 cells were treated with an AKT inhibitor after p63 knockdown, indicating that AKT plays a major role in FASN-mediated survival. Activated AKT did not cause any alteration in the FASN protein levels but induced its activity, suggesting that the rescue from apoptosis documented in the p63-silenced cells expressing myr-AKT cells may be partially mediated by FASN. Finally, we demonstrated that p63 and FASN expression are positively associated in clinical squamous cell carcinoma samples as well as in the developing prostate. Taken together, our findings demonstrate that FASN is a functionally relevant target of p63 and is required for mediating its pro-survival effects.
Collapse
Affiliation(s)
- Venkata Sabbisetti
- Department of Pathology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Arianna Di Napoli
- Department of Pathology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Apryle Seeley
- Department of Pathology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Angela M. Amato
- Department of Pathology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Musie Ghebremichael
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Massimo Loda
- Department of Pathology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
39
|
Liu X, Abdelrahim M, Abudayyeh A, Lei P, Safe S. The nonsteroidal anti-inflammatory drug tolfenamic acid inhibits BT474 and SKBR3 breast cancer cell and tumor growth by repressing erbB2 expression. Mol Cancer Ther 2009; 8:1207-17. [PMID: 19435870 DOI: 10.1158/1535-7163.mct-08-1097] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tolfenamic acid (TA) is a nonsteroidal anti-inflammatory drug that inhibits pancreatic cancer cell and tumor growth through decreasing expression of specificity protein (Sp) transcription factors. TA also inhibits growth of erbB2-overexpressing BT474 and SKBR3 breast cancer cells; however, in contrast to pancreatic cancer cells, TA induced down-regulation of erbB2 but not Sp proteins. TA-induced erbB2 down-regulation was accompanied by decreased erbB2-dependent kinase activities, induction of p27, and decreased expression of cyclin D1. TA also decreased erbB2 mRNA expression and promoter activity, and this was due to decreased mRNA stability in BT474 cells and, in both cell lines, TA decreased expression of the YY1 and AP-2 transcription factors required for basal erbB2 expression. In addition, TA also inhibited tumor growth in athymic nude mice in which BT474 cells were injected into the mammary fat pad. TA represents a novel and promising new anticancer drug that targets erbB2 by decreasing transcription of this oncogene.
Collapse
Affiliation(s)
- Xinyi Liu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-4466, USA
| | | | | | | | | |
Collapse
|
40
|
Puig T, Porta R, Colomer R. [Fatty acid synthase: a new anti-tumor target]. Med Clin (Barc) 2009; 132:359-63. [PMID: 19268984 DOI: 10.1016/j.medcli.2008.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 07/09/2008] [Indexed: 12/30/2022]
Abstract
Fatty acid synthase (FASN), an enzyme capable of de novo fatty acid synthesis, is highly expressed and activated in most human carcinomas. FASN is associated with poor prognosis in prostate and breast cancer and its inhibition is selectively cytotoxic to human cancer cells. Thus, FASN and fatty acid metabolism have become an important focus for the diagnostic and treatment of cancer. In this sense, there is an increasing interest in identifying and developing new antitumor compounds that inhibit FASN.
Collapse
Affiliation(s)
- Teresa Puig
- Oncología Médica, Instituto Catalán de Oncología (ICO-Girona) Instituto de Investigación Biomédica de Girona (IdIBGi), Hospital Universitari Dr. Josep Trueta, Girona, España.
| | | | | |
Collapse
|
41
|
Vazquez-Martin A, Ortega-Delgado FJ, Fernandez-Real JM, Menendez JA. The tyrosine kinase receptor HER2 (erbB-2): from oncogenesis to adipogenesis. J Cell Biochem 2009; 105:1147-52. [PMID: 18814184 DOI: 10.1002/jcb.21917] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recent experimental evidences begin to support the notion that the proto-oncogene HER2 (erbB-2) might unexpectedly function to modulate the adipogenic conversion of preadipocytes. Two opposing scenarios have been proposed, however, to explain the influence of HER2 on adipocyte differentiation. In one hand, down-modulation of HER2 expression and pharmacological reduction of HER2 activity have been related to enhanced adipocyte differentiation. On the contrary, an increased abundance in HER2 has been described in differentiated adipocytes compared with preadipocytes. Considering that expression and activity of the lipogenic enzyme Fatty Acid Synthase (FASN) become up-regulated during adipogenic conversion, we recently hypothesized that a "HER2 --> FASN axis" -a "lipogenic benefit" that has been shown to enhance cancer cell proliferation, survival, chemoresistance and metastasis in biologically aggressive subgroups of breast carcinomas-might also naturally work during the differentiation of preadipocytes. To definitely clarify if the discrepancy between the opposing theories for a role of HER2 during adipocyte differentiation related to the experimental approach utilized to compare the abundance of HER2 in undifferentiated and differentiated adipocytes (i.e., cell lysates containing equivalent protein content versus cell lysates generated from similar cell numbers), we here took advantage of a high content microscopy approach. Using an automated confocal imaging platform, we monitored the expression status of the adipogenic marker FASN and its timing relationship with HER2 not only in individual 3T3-L1 cells but further in whole cultures of 3T3-L1 preadipocytes undergoing adipogenic conversion. Our findings not only confirm a non-oncogenic role for HER2 in the process of adipose differentiation but further suggest that HER2 might represent a previously unrecognized target to manage obesity via the lipogenic enzyme FASN.
Collapse
Affiliation(s)
- Alejandro Vazquez-Martin
- Catalan Institute of Oncology (ICO), Girona Biomedical Research Institute (IdIBGi), Hospital Universitari de Girona Dr. Josep Trueta, Girona, Catalonia, Spain
| | | | | | | |
Collapse
|
42
|
Silva SD, Perez DE, Nishimoto IN, Alves FA, Pinto CAL, Kowalski LP, Graner E. Fatty acid synthase expression in squamous cell carcinoma of the tongue: clinicopathological findings. Oral Dis 2008; 14:376-82. [PMID: 18410580 DOI: 10.1111/j.1601-0825.2007.01395.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Overexpression of fatty acid synthase (FAS), the cytosolic enzyme responsible for the conversion of dietary carbohydrates to fatty acids, has been reported in several human malignancies and pointed as a potential prognostic marker for some tumors. This study investigated whether FAS immunohistochemical expression is correlated with the clinicopathological characteristics of oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS The clinical features of 102 patients with OSCC of the tongue treated in a single institution were obtained from the medical records and all histopathological diagnoses were reviewed. The expression of FAS was determined by the standard immunoperoxidase technique in formalin-fixed and paraffin-embedded specimens and correlated with the clinicopathological characteristics of the tumors. RESULTS Eighty-one cases (79.41%) were positive for FAS. Microscopic characteristics such as histological grade (P < 0.05), lymphatic permeation (P < 0.001), perineural infiltration (P < 0.05), and nodal metastasis (P < 0.02) were associated with FAS status. A significantly lower survival probability for patients with advanced clinical stage (log-rank test, P < 0.001), lymph nodes metastasis (log-rank test, P < 0.001), presence of vascular permeation (log-rank test, P = 0.05), and perineural invasion (log-rank test, P = 0.01) was observed in the studied samples. CONCLUSION The expression of FAS in OSCC of the tongue is associated with the microscopic characteristics that determine disease progression and prognosis.
Collapse
Affiliation(s)
- S D Silva
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, University of Campinas (UNICAMP), São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
43
|
Silva SD, Cunha IW, Rangel ALCA, Jorge J, Zecchin KG, Agostini M, Kowalski LP, Coletta RD, Graner E. Differential expression of fatty acid synthase (FAS) and ErbB2 in nonmalignant and malignant oral keratinocytes. Virchows Arch 2008; 453:57-67. [PMID: 18528705 DOI: 10.1007/s00428-008-0626-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 02/26/2008] [Accepted: 05/05/2008] [Indexed: 12/24/2022]
Abstract
The aim of this study was to investigate fatty acid synthase (FAS) and ErbB2 expression in nonmalignant oral epithelium and oral or head and neck squamous cell carcinomas (OSCC/HNSCC). Morphologically normal, hyperkeratotic, and dysplastic oral epithelium as well as well-differentiated and poorly differentiated OSCC were immunohistochemically evaluated for FAS, ErbB2, and Ki-67. These proteins were also analyzed in a tissue microarray with 55 HNSCC. SCC-9 cells were used to study FAS and ErbB2 during differentiation. FAS expression was higher in hyperkeratosis, dysplasias, and OSCC than in normal epithelium. Well-differentiated OSCC/HNSCC were more positive for FAS than the poorly differentiated tumors. ErbB2 was observed at the surface of nonmalignant and well-differentiated OSCC/HNSCC keratinocytes and in the cytoplasm of poorly differentiated cells. Ki-67 index was progressively higher from normal oral epithelium to OSCC, inversely correlated with cell surface ErbB2, and positively correlated with intracytoplasmic ErbB2. Finally, SCC-9 cell cultures were enriched in membrane ErbB2-positive cells after differentiation by anchorage deprivation. In conclusion, FAS is overexpressed in OSCC/HNSCC and hyperkeratotic oral epithelium and ErbB2 is found at the cell surface of differentiating keratinocytes and in the cytoplasm of poorly differentiated tumor cells. Ki-67 index is higher in epithelial dysplasias and OSCC than in morphologically normal oral epithelium.
Collapse
Affiliation(s)
- Sabrina D Silva
- Departament of Oral Diagnosis, School of Dentistry of Piracicaba, State University of Campinas, Av. Limeira 901, CP 52, Areão, Piracicaba, CEP SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zeng L, Wu GZ, Goh KJ, Lee YM, Ng CC, You AB, Wang J, Jia D, Hao A, Yu Q, Li B. Saturated fatty acids modulate cell response to DNA damage: implication for their role in tumorigenesis. PLoS One 2008; 3:e2329. [PMID: 18523653 PMCID: PMC2402972 DOI: 10.1371/journal.pone.0002329] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 04/24/2008] [Indexed: 12/02/2022] Open
Abstract
DNA damage triggers a network of signaling events that leads to cell cycle arrest or apoptosis. This DNA damage response acts as a mechanism to prevent cancer development. It has been reported that fatty acids (FAs) synthesis is increased in many human tumors while inhibition of fatty acid synthase (FASN) could suppress tumor growth. Here we report that saturated fatty acids (SFAs) play a negative role in DNA damage response. Palmitic acid, as well as stearic acid and myristic acid, compromised the induction of p21 and Bax expression in response to double stranded breaks and ssDNA, while inhibition or knockdown of FASN enhanced these cellular events. SFAs appeared to regulate p21 and Bax expression via Atr-p53 dependent and independent pathways. These effects were only observed in primary mouse embryonic fibroblasts and osteoblasts, but not in immortalized murine NIH3T3, or transformed HCT116 and MCF-7 cell lines. Accordingly, SFAs showed some positive effects on proliferation of MEFs in response to DNA damage. These results suggest that SFAs, by negatively regulating the DNA damage response pathway, might promote cell transformation, and that increased synthesis of SFAs in precancer/cancer cells might contribute to tumor progression and drug resistance.
Collapse
Affiliation(s)
- Li Zeng
- Cancer and Developmental Biology Division, Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | - Guang-Zhi Wu
- Cancer and Developmental Biology Division, Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
- China-Japan Union Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| | - Kim Jee Goh
- Cancer and Developmental Biology Division, Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | - Yew Mun Lee
- Cancer and Developmental Biology Division, Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | - Chuo Chung Ng
- Cancer and Developmental Biology Division, Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | - Ang Ben You
- Cancer and Developmental Biology Division, Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | - Jianhe Wang
- Cancer and Developmental Biology Division, Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | - Deyong Jia
- The Key Laboratory of Experimental Teratology, Ministry of Education, Faculty of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Aijun Hao
- The Key Laboratory of Experimental Teratology, Ministry of Education, Faculty of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Qiang Yu
- Laboratory of Molecular Pharmacology, Genome Institute of Singapore, Singapore, Republic of Singapore
| | - Baojie Li
- Cancer and Developmental Biology Division, Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
- * E-mail:
| |
Collapse
|
45
|
Silva SD, Perez DE, Alves FA, Nishimoto IN, Pinto CAL, Kowalski LP, Graner E. ErbB2 and fatty acid synthase (FAS) expression in 102 squamous cell carcinomas of the tongue: Correlation with clinical outcomes. Oral Oncol 2008; 44:484-90. [PMID: 17825601 DOI: 10.1016/j.oraloncology.2007.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 06/09/2007] [Accepted: 06/11/2007] [Indexed: 10/22/2022]
Abstract
The oncoprotein ErbB2 (HER-2/neu) is a tyrosine kinase cell surface receptor overexpressed in several human malignancies, including oral squamous cell carcinoma (OSCC). ErbB2 was recently shown to regulate the expression of fatty acid synthase (FAS), a multifunctional enzyme complex responsible for the de novo biosynthesis of saturated fatty acids. Here we evaluated the relationship between the immunohistochemical expression of ErbB2, FAS, and Ki-67 with the clinicopathologic characteristics of tongue squamous cell carcinoma (SCC). One hundred and two patients with tongue SCC treated from 1990 to 1995 were studied. Clinical and treatment data were obtained from the medical records and histopathological features revised. Paraffin-embedded tissues were submitted to standard immunohistochemical reactions for ErbB2, FAS and Ki-67. A strong positive correlation between ErbB2 labeling at the cell membrane and FAS expression was found in the tongue SCC samples (p<0.0001). The intracytoplasmatic expression of ErbB2 as well as Ki-67 nuclear staining were significantly associated with a high risk of recurrence by predicting both disease free survival (log-rank test, p=0.0096 and p=0.0047, respectively) and overall survival (log-rank test, p=0.0029 and p=0.0001, respectively). Taken together, our results suggest that the immunolocalization of ErbB2 at the cell surface of malignant oral keratinocytes is linked to FAS expression whereas the intracytoplasmatic ErbB2 or Ki-67 staining predict high risk of recurrence of tongue SCC.
Collapse
Affiliation(s)
- Sabrina D Silva
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, University of Campinas, Av. Limeira 901, CP52, Areão, Piracicaba, CEP 13414-018, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
46
|
Vazquez-Martin A, Colomer R, Brunet J, Lupu R, Menendez JA. Overexpression of fatty acid synthase gene activates HER1/HER2 tyrosine kinase receptors in human breast epithelial cells. Cell Prolif 2008; 41:59-85. [PMID: 18211286 DOI: 10.1111/j.1365-2184.2007.00498.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES More than 50 years ago, we learned that breast cancer cells (and those of many other types of tumour) endogenously synthesize 95% of fatty acids (FAs) de novo, despite having adequate nutritional lipid supply. Today, we know that breast cancer cells benefit from this phenomenon in terms of enhanced cell proliferation, survival, chemoresistance and metastasis. However, the exact role of the major lipogenic enzyme fatty acid synthase (FASN) as cause, correlate or facilitator of breast cancer remains unidentified. MATERIALS AND METHODS To evaluate a causal effect of FASN-catalysed endogenous FA biosynthesis in the natural history of breast cancer disease, HBL100 cells (an SV40-transformed in vitro model for near-normal gene expression in the breast epithelium), and MCF10A cells (a non-transformed, near diploid, spontaneously immortalized human mammary epithelial cell line) were acutely forced to overexpress the human FASN gene. RESULTS Following transient transfection with plasmid pCMV6-XL4 carrying full-length human FASN cDNA (gi: NM 004104), HBL100 cells enhanced their endogenous lipid synthesis while acquiring canonical oncogenic properties such as increased size and number of colonies in semisolid (i.e. soft-agar) anchorage-independent cultures. Anchorage-dependent cell proliferation assays in low serum (0.1% foetal bovine serum), MTT-based assessment of cell metabolic status and cell death ELISA-based detection of apoptosis-induced DNA-histone fragmentation, together revealed that sole activation of endogenous FA biosynthesis was sufficient to significantly enhance breast epithelial cell proliferation and survival. When analysing molecular mechanisms by which acute activation of de novo FA biosynthesis triggered a transformed phenotype, HBL100 cells, transiently transfected with pCMV6-XL4/FASN, were found to exhibit a dramatic increase in the number of phosphor-tyrosine (Tyr)-containing proteins, as detected by 4G10 antiphosphor-Tyr monoclonal antibody. Phosphor-Tyr-specific antibodies recognizing the phosphorylation status of either the 1173 Tyr residue of epidermal growth factor receptor (HER1) or the 1248 Tyr residue of HER2, further revealed that FASN-induced Tyr-phosphorylation at approximately 180 kDa region mainly represented that of these key members of the HER (erbB) network, which remained switched-off in mock-transfected HBL100 cells. ELISA and immunoblotting procedures demonstrated that FASN overactivation significantly increased (> 200%) expression levels of epidermal growth factor receptor and HER2 proteins in HBL100 cells. Proteome Profilertrade mark antibody arrays capable of simultaneously detecting relative levels of phosphorylation of 42 phospho-receptor Tyr-kinases (RTKs) confirmed that acute activation of endogenous FA biosynthesis specifically promoted hyper-Tyr-phosphorylation of HER1 and HER2 in MCF10A cells. This FASN-triggered HER1/HER2-breast cancer-like phenotype was specifically inhibitable either by FASN inhibitor C75 or by Tyr-kinase inhibitors (TKIs) gefitinib (Iressa) and lapatinib (Tykerb) but not by chemotherapeutic agents such as cisplatin. Transient overexpression of FASN dramatically increased HBL100 breast epithelial cells' sensitivity to cytotoxic effects of C75, gefitinib and lapatinib (approximately 8, 10 and > 15 times, respectively), while significantly decreasing (approximately 3 times) cisplatin efficacy. CONCLUSIONS Although we cannot definitely establish FASN as a novel oncogene in breast cancer, this study reveals for the first time that exacerbated endogenous FA biosynthesis in non-cancerous epithelial cells is sufficient to induce a cancer-like phenotype functionally dependent on the HER1/HER2 duo. These findings may perhaps radically amend our current perspective of endogenously synthesized fat, as on its own, it appears to actively increase signal-to-noise ratio in the HER1/HER2-driven progression of human breast epithelial cells towards malignancy.
Collapse
Affiliation(s)
- A Vazquez-Martin
- Catalan Institute of Oncology, Health Services Division of Catalonia, Catalonia, Spain
| | | | | | | | | |
Collapse
|
47
|
Abstract
Many bacterial pathogens, including Staphylococcus aureus, use a variety of pore-forming toxins as important virulence factors. Staphylococcal alpha-toxin, a prototype beta-barrel pore-forming toxin, triggers the release of proinflammatory mediators and induces primarily necrotic death in susceptible cells. However, whether host factors released in response to staphylococcal infections may increase cell resistance to alpha-toxin is not known. Here we show that prior exposure to interferons (IFNs) prevents alpha-toxin-induced membrane permeabilization, the depletion of ATP, and cell death. Moreover, pretreatment with IFN-alpha decreases alpha-toxin-induced secretion of interleukin 1beta (IL-1beta). IFN-alpha, IFN-beta, and IFN-gamma specifically protect cells from alpha-toxin, whereas tumor necrosis factor alpha (TNF-alpha), IL-6, and IL-4 have no effects. Furthermore, we show that IFN-alpha-induced protection from alpha-toxin is not dependent on caspase-1 or mitogen-activated protein kinases, but requires protein synthesis and fatty acid synthase activity. Our results demonstrate that IFNs may increase cell resistance to staphylococcal alpha-toxin via the regulation of lipid metabolism and suggest that interferons play a protective role during staphylococcal infections.
Collapse
|
48
|
Diosgenin, a naturally occurring steroid, suppresses fatty acid synthase expression in HER2-overexpressing breast cancer cells through modulating Akt, mTOR and JNK phosphorylation. FEBS Lett 2007; 581:5735-42. [PMID: 18022396 DOI: 10.1016/j.febslet.2007.11.021] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 11/06/2007] [Accepted: 11/08/2007] [Indexed: 11/22/2022]
Abstract
Fatty acid synthase (FAS) expression is markedly elevated in HER2-overexpressing breast cancer cells. In this study, diosgenin, a plant-derived steroid, was found to be effective in suppressing FAS expression in HER2-overexpressing breast cancer cells. Diosgenin preferentially inhibited proliferation and induced apoptosis in HER2-overexpressing cancer cells. Furthermore, diosgenin inhibited the phosphorylation of Akt and mTOR, and enhanced phosphorylation of JNK. The use of pharmacological inhibitors revealed that the modulation of Akt, mTOR and JNK phosphorylation was required for diosgenin-induced FAS suppression. Finally, we showed that diosgenin could enhance paclitaxel-induced cytotoxicity in HER2-overexpressing cancer cells. These results suggested that diosgenin has the potential to advance as chemopreventive or chemotherapeutic agent for cancers that overexpress HER2.
Collapse
|
49
|
Abstract
There is a renewed interest in the ultimate role of fatty acid synthase (FASN)--a key lipogenic enzyme catalysing the terminal steps in the de novo biogenesis of fatty acids--in cancer pathogenesis. Tumour-associated FASN, by conferring growth and survival advantages rather than functioning as an anabolic energy-storage pathway, appears to necessarily accompany the natural history of most human cancers. A recent identification of cross-talk between FASN and well-established cancer-controlling networks begins to delineate the oncogenic nature of FASN-driven lipogenesis. FASN, a nearly-universal druggable target in many human carcinomas and their precursor lesions, offers new therapeutic opportunities for metabolically treating and preventing cancer.
Collapse
Affiliation(s)
- Javier A Menendez
- Translational Research Unit, Catalan Institute of Oncology (ICO), Health Services Division of Catalonia, Girona Biomedical Research Institute (IdIBGi), Medical Oncology, Josep Trueta University Hospital of Girona, 17,007 Girona, Catalonia, Spain
| | | |
Collapse
|
50
|
Hegde PS, Rusnak D, Bertiaux M, Alligood K, Strum J, Gagnon R, Gilmer TM. Delineation of molecular mechanisms of sensitivity to lapatinib in breast cancer cell lines using global gene expression profiles. Mol Cancer Ther 2007; 6:1629-40. [PMID: 17513611 DOI: 10.1158/1535-7163.mct-05-0399] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lapatinib (GW572016) is a small-molecule dual inhibitor of epidermal growth factor receptor (ErbB1) and ErbB2 receptor kinase activities currently in phase III clinical trials. We used phosphoprotein and microarray analyses to carry out targeted pathway studies of phosphorylation and gene expression changes in human breast cancer cell lines in the presence or absence of lapatinib. Studies were done in four breast cancer cell lines, two of which were responsive and two of which were nonresponsive to lapatinib. Responsive cell lines, BT474 and SKBr3, constitutively overexpress ErbB2 and show an IC(50) of 25 or 32 nmol/L for lapatinib, respectively. In contrast, nonresponsive MDA-MB-468 and T47D cells expressed a low basal level of ErbB2 and showed IC(50) values in the micromolar range. Cells responsive to lapatinib exhibited strong differential effects on multiple genes in the AKT pathway. After 12 h of exposure to 1.0 micromol/L of lapatinib, AKT1, MAPK9, HSPCA, IRAK1, and CCND1 transcripts were down-regulated 7- to 25-fold in responsive BT474 and SKBr3 cells. In contrast, lapatinib weakly down-regulated the AKT pathway in nonresponsive breast cancer cell lines (<5-fold down-regulation of most genes in the pathway). Furthermore, the proapoptotic gene FOXO3A, which is negatively regulated by AKT, was up-regulated 7- and 25-fold in lapatinib-responsive SKBr3 and BT474 cells, respectively. Phosphorylated Akt and Akt-mediated phosphorylation of FOXO3A also decreased in responsive breast cancer cell lines exposed to lapatinib. Gene expression profiling also revealed that lapatinib stimulated the expression of estrogen and progesterone receptors and modulated the expression of genes involved in cell cycle control, glycolysis, and fatty acid metabolism. In BT474 and T47D cells, which expressed moderate basal levels of the estrogen and progesterone receptors, 1.0 micromol/L of lapatinib induced expression by 7- to 11-fold. These data provide insight into the mechanism of action of lapatinib in breast cancer cells.
Collapse
Affiliation(s)
- Priti S Hegde
- Department of Genomic and Proteomic Sciences, GlaxoSmithKline, Inc., Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | |
Collapse
|