1
|
Huang YL, De Gregorio C, Silva V, Elorza ÁA, Léniz P, Aliaga-Tobar V, Maracaja-Coutinho V, Budini M, Ezquer F, Ezquer M. Administration of Secretome Derived from Human Mesenchymal Stem Cells Induces Hepatoprotective Effects in Models of Idiosyncratic Drug-Induced Liver Injury Caused by Amiodarone or Tamoxifen. Cells 2023; 12:cells12040636. [PMID: 36831304 PMCID: PMC9954258 DOI: 10.3390/cells12040636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Drug-induced liver injury (DILI) is one of the leading causes of acute liver injury. While many factors may contribute to the susceptibility to DILI, obese patients with hepatic steatosis are particularly prone to suffer DILI. The secretome derived from mesenchymal stem cell has been shown to have hepatoprotective effects in diverse in vitro and in vivo models. In this study, we evaluate whether MSC secretome could improve DILI mediated by amiodarone (AMI) or tamoxifen (TMX). Hepatic HepG2 and HepaRG cells were incubated with AMI or TMX, alone or with the secretome of MSCs obtained from human adipose tissue. These studies demonstrate that coincubation of AMI or TMX with MSC secretome increases cell viability, prevents the activation of apoptosis pathways, and stimulates the expression of priming phase genes, leading to higher proliferation rates. As proof of concept, in a C57BL/6 mouse model of hepatic steatosis and chronic exposure to AMI, the MSC secretome was administered endovenously. In this study, liver injury was significantly attenuated, with a decrease in cell infiltration and stimulation of the regenerative response. The present results indicate that MSC secretome administration has the potential to be an adjunctive cell-free therapy to prevent liver failure derived from DILI caused by TMX or AMI.
Collapse
Affiliation(s)
- Ya-Lin Huang
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Cristian De Gregorio
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Verónica Silva
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Álvaro A. Elorza
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Ciencias de la Vida, Universidad Andres Bello, Santiago 7610658, Chile
| | - Patricio Léniz
- Unidad de Cirugía Plástica, Reparadora y Estética, Clínica Alemana, Santiago 7610658, Chile
| | - Víctor Aliaga-Tobar
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua 7610658, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
| | - Mauricio Budini
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago 7610658, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
- Correspondence: (F.E.); (M.E.); Tel.: +56-990-699-272 (F.E.); +56-976-629-880 (M.E.)
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
- Correspondence: (F.E.); (M.E.); Tel.: +56-990-699-272 (F.E.); +56-976-629-880 (M.E.)
| |
Collapse
|
2
|
Zhang Y, Li W, Bian Y, Li Y, Cong L. Multifaceted roles of aerobic glycolysis and oxidative phosphorylation in hepatocellular carcinoma. PeerJ 2023; 11:e14797. [PMID: 36748090 PMCID: PMC9899054 DOI: 10.7717/peerj.14797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
Liver cancer is a common malignancy with high morbidity and mortality rates. Changes in liver metabolism are key factors in the development of primary hepatic carcinoma, and mitochondrial dysfunction is closely related to the occurrence and development of tumours. Accordingly, the study of the metabolic mechanism of mitochondria in primary hepatic carcinomas has gained increasing attention. A growing body of research suggests that defects in mitochondrial respiration are not generally responsible for aerobic glycolysis, nor are they typically selected during tumour evolution. Conversely, the dysfunction of mitochondrial oxidative phosphorylation (OXPHOS) may promote the proliferation, metastasis, and invasion of primary hepatic carcinoma. This review presents the current paradigm of the roles of aerobic glycolysis and OXPHOS in the occurrence and development of hepatocellular carcinoma (HCC). Mitochondrial OXPHOS and cytoplasmic glycolysis cooperate to maintain the energy balance in HCC cells. Our study provides evidence for the targeting of mitochondrial metabolism as a potential therapy for HCC.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Oncology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Wenhuan Li
- Department of Oncology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Yuan Bian
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yan Li
- Department of Oncology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Lei Cong
- Department of Oncology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China,Department of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
3
|
Chen X, Abdallah MF, Grootaert C, Rajkovic A. Bioenergetic Status of the Intestinal and Hepatic Cells after Short Term Exposure to Fumonisin B1 and Aflatoxin B1. Int J Mol Sci 2022; 23:ijms23136945. [PMID: 35805950 PMCID: PMC9267062 DOI: 10.3390/ijms23136945] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Fumonisin B1 (FB1) and aflatoxin B1 (AFB1) are frequent contaminants of staple foods such as maize. Oral exposure to these toxins poses health hazards by disrupting cellular signaling. However, little is known regarding the multifaced mitochondrial dysfunction-linked toxicity of FB1 and AFB1. Here, we show that after exposure to FB1 and AFB1, mitochondrial respiration significantly decreased by measuring the oxygen consumption rate (OCR), mitochondrial membrane potential (MMP) and reactive oxygen species (ROS). The current work shows that the integrity of mitochondria (MMP and ROS), that is the central component of cell apoptosis, is disrupted by FB1 and AFB1 in undifferentiated Caco-2 and HepG2 cells as in vitro models for human intestine and liver, respectively. It hypothesizes that FB1 and AFB1 could disrupt the mitochondrial electron transport chain (ETC) to induce mitochondrial dysfunction and break the balance of transferring H+ between the mitochondrial inner membrane and mitochondrial matrix, however, the proton leak is not increasing and, as a result, ATP synthesis is blocked. At the sub-toxic exposure of 1.0 µg/mL for 24 h, i.e., a viability of 95% in Caco-2 and HepG2 cells, the mitochondrial respiration was, however, stimulated. This suggests that the treated cells could reserve energy for mitochondrial respiration with the exposure of FB1 and AFB1, which could be a survival advantage.
Collapse
Affiliation(s)
- Xiangrong Chen
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (X.C.); (M.F.A.); (C.G.)
| | - Mohamed F. Abdallah
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (X.C.); (M.F.A.); (C.G.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Charlotte Grootaert
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (X.C.); (M.F.A.); (C.G.)
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (X.C.); (M.F.A.); (C.G.)
- Correspondence: ; Tel.: +32-09-264-99-04
| |
Collapse
|
4
|
Schmidt CA, McLaughlin KL, Boykov IN, Mojalagbe R, Ranganathan A, Buddo KA, Lin CT, Fisher-Wellman KH, Neufer PD. Aglycemic growth enhances carbohydrate metabolism and induces sensitivity to menadione in cultured tumor-derived cells. Cancer Metab 2021; 9:3. [PMID: 33468237 PMCID: PMC7816515 DOI: 10.1186/s40170-021-00241-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most prevalent form of liver malignancy and carries poor prognoses due to late presentation of symptoms. Treatment of late-stage HCC relies heavily on chemotherapeutics, many of which target cellular energy metabolism. A key platform for testing candidate chemotherapeutic compounds is the intrahepatic orthotopic xenograft (IOX) model in rodents. Translational efficacy from the IOX model to clinical use is limited (in part) by variation in the metabolic phenotypes of the tumor-derived cells that can be induced by selective adaptation to subculture conditions. Methods In this study, a detailed multilevel systems approach combining microscopy, respirometry, potentiometry, and extracellular flux analysis (EFA) was utilized to examine metabolic adaptations that occur under aglycemic growth media conditions in HCC-derived (HEPG2) cells. We hypothesized that aglycemic growth would result in adaptive “aerobic poise” characterized by enhanced capacity for oxidative phosphorylation over a range of physiological energetic demand states. Results Aglycemic growth did not invoke adaptive changes in mitochondrial content, network complexity, or intrinsic functional capacity/efficiency. In intact cells, aglycemic growth markedly enhanced fermentative glycolytic substrate-level phosphorylation during glucose refeeding and enhanced responsiveness of both fermentation and oxidative phosphorylation to stimulated energy demand. Additionally, aglycemic growth induced sensitivity of HEPG2 cells to the provitamin menadione at a 25-fold lower dose compared to control cells. Conclusions These findings indicate that growth media conditions have substantial effects on the energy metabolism of subcultured tumor-derived cells, which may have significant implications for chemotherapeutic sensitivity during incorporation in IOX testing panels. Additionally, the metabolic phenotyping approach used in this study provides a practical workflow that can be incorporated with IOX screening practices to aid in deciphering the metabolic underpinnings of chemotherapeutic drug sensitivity. Supplementary Information The online version contains supplementary material available at 10.1186/s40170-021-00241-0.
Collapse
Affiliation(s)
- Cameron A Schmidt
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA.,Dept. of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Kelsey L McLaughlin
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA.,Dept. of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Ilya N Boykov
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA.,Dept. of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Rafiq Mojalagbe
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA
| | | | - Katherine A Buddo
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA.,Dept. of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Chien-Te Lin
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA.,Dept. of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Kelsey H Fisher-Wellman
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA. .,Dept. of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA. .,Dept. of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
5
|
Wu L, Cao KX, Ni ZH, Li WD, Chen ZP, Cheng HB, Liu X. Effects of Dahuang zhechong pill on doxorubicin-resistant SMMC-7721 xenografts in mice. JOURNAL OF ETHNOPHARMACOLOGY 2018; 222:71-78. [PMID: 29609009 DOI: 10.1016/j.jep.2018.03.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dahuang zhechong pill (DHZCP) is a famous traditional Chinese medicinal prescription from the "Synopsis of Prescriptions of the Golden Chamber (Jin Kui Yao Lue)",Lue)", an ancient Chinese medical classic. DHZCP is commonly used for clinical treatment of liver cancer by promoting blood circulation to dissolve blood stasis and by removing pathogenic vegetations.vegetations. DHZCP-based treatment has been derived from Traditional Chinese Medicine (TCM) and is officially recorded in the Chinese Pharmacopoeia. AIM OF THE STUDY The aim of this study was to investigate the ability of DHZCP to reverse doxorubicin (DOX) resistance of SMMC-7721 cells in a xenograft mouse model, and to explore the underlying mechanisms. MATERIALS AND METHODS Liquid chromatography-mass spectrometry was used to verify the composition of DHZCP. H&E staining was used to observe the pathological changes in hepatocellular carcinoma samples. Intracellular DOX accumulation was observed as intrinsic fluorescence by microscopy. Cell apoptosis was detected by the TUNEL assay. Human antibody arrays were used to analyze the expression of apoptotic- and angiogenic-related proteins. ATP levels were assessed and western blots were used to detect the protein expression of key enzymes of energy metabolism. RESULTS DHZCP significantly reduced the tumor volume and weight of subcutaneous xenografts of drug-resistant hepatoma cells, and combining DHZCP with lower doses of DOX significantly increased the content of DOX in tumor tissue, increased the apoptosis of hepatoma cells, and reversed Dox resistance. With respect to 43 apoptosis-associated proteins, DHZCP regulated the expression of 5 of them. When combined with low-dose DOX, the expression of 40 apoptosis-related proteins was significantly altered. With respect to 23 angiogenesis-associated proteins, DHZCP upregulated the expression of endostatin and inhibited the expression of matrix metallopeptidase 9. When combined with low-dose DOX, DHZCP significantly downregulated protein expression of urokinase receptor, as well as vascular endothelial growth factor receptors 2 and 3. Especially, DHZCP significantly inhibited the expression of key enzymes of the tricarboxylic acid cycle and of oxidative phosphorylation, reducing the level of ATP in tumor tissue. CONCLUSIONS DHZCP inhibited the growth of DOX-resistant hepatocellular carcinoma subcutaneous xenografts in nude mice and promoted increased apoptosis caused by DOX, thus reversing DOX resistance. This was associated with a decline in energy metabolism and regulated expression of pro-apoptotic proteins.
Collapse
Affiliation(s)
- Li Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Ke Xin Cao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Zi Hui Ni
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Wei Dong Li
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Zhi Peng Chen
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Hai Bo Cheng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, China.
| | - Xiao Liu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Wu L, Zhao J, Cao K, Liu X, Cai H, Wang J, Li W, Chen Z. Oxidative phosphorylation activation is an important characteristic of DOX resistance in hepatocellular carcinoma cells. Cell Commun Signal 2018; 16:6. [PMID: 29402287 PMCID: PMC5799923 DOI: 10.1186/s12964-018-0217-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/24/2018] [Indexed: 12/22/2022] Open
Abstract
Background Despite the implications for tumor growth and cancer drug resistance, the mechanisms underlying differences in energy metabolism among cells remain unclear. Methods To analyze differences between cell types, cell viability, ATP and α-ketoglutaric acid levels, the oxygen consumption rate and extracellular acidification rate, and the expression of key enzymes involved in α-KG metabolism and transfer were examined. Additionally, UPLC-MS/MS was used to determine the doxorubicin (DOX) content in SMMC-7721 and SMMC-7721/DOX cells. Results We found that energy metabolism in SMMC-7721 cells is mainly dependent on the glycolysis pathway, whereas SMMC-7721/DOX cells depend more heavily on the oxidative phosphorylation pathway. Cell viability and intracellular ATP levels in SMMC-7721/DOX cells were significantly reduced by rotenone and oligomycin, inhibitors of oxidative phosphorylation. However, SMMC-7721 cell properties were more strongly influenced by an inhibitor of glycolysis, 2-deoxy-d-glucose. Furthermore, the suppressive effect of α-KG on ATP synthase plays an important role in the low levels of oxidative phosphorylation in SMMC-7721 cells; this effect could be strengthened by the metabolic poison methotrexate and reversed by l-(−)-malic acid, an accelerator of the malate-aspartate cycle. Conclusions The inhibitory effect of α-KG on ATP synthase was uncoupled with the tricarboxylic acid cycle and oxidative phosphorylation in SMMC-7721 cells; accordingly, energy metabolism was mainly determined by glycolysis. In drug-resistant cells, a remarkable reduction in the inhibitory effects of α-KG on ATP synthase resulted in better coordination among the TCA cycle, oxidative phosphorylation, and glycolysis, providing novel potential strategies for clinical treatment of liver cancer resistance.
Collapse
Affiliation(s)
- Li Wu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China. .,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China. .,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China.
| | - Jiayu Zhao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Kexin Cao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Xiao Liu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Hao Cai
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Jiaqi Wang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China.,Affiliated Hospital of Integrated Traditional Chinese and Western Medicine in Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Weidong Li
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Zhipeng Chen
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China. .,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Dahuang Zhechong Pill Combined with Doxorubicin Induces Cell Death through Regulating Energy Metabolism in Human Hepatocellular Carcinoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:6279576. [PMID: 28785292 PMCID: PMC5529653 DOI: 10.1155/2017/6279576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 06/06/2017] [Indexed: 01/12/2023]
Abstract
Many physiological activities such as cell survival, proliferation, defense, adaptation, and metabolism need to consume energy. Hepatoma cells can quickly start stress responses like multidrug resistance (MDR) requiring adenosine triphosphate (ATP) consumption after administration of chemotherapeutics. We employed CCK-8 assay to evaluate cell viability and the flow cytometry to confirm apoptosis and necrosis. ELISA kit was used to determine intracellular levels of ATP in lysates. Western blot was employed to analyze the expressions of key enzymes involved in energy metabolism. We found that doxorubicin (DOX) potently stimulated apoptosis at a low dose and even induced necrosis at a high dose in SMMC-7721. DHZCP combined with DOX at low or middle dose enhanced the synergistic antihepatoma effect. Results indicated that Dahuang Zhechong Pill (DHZCP) inhibited the expressions of several key enzymes involved in oxidative phosphorylation and reduced intracellular ATP levels. The combination of DHZCP with DOX reversed the elevation of intracellular ATP levels, and a significantly synergistic antitumor effect was observed. DHZCP could not only strengthen the therapeutic effects of chemotherapeutic drugs but also decrease the doses of chemotherapeutic drugs and the incidences of adverse reactions, providing novel strategies for clinical treatment of liver cancer.
Collapse
|
8
|
Gene Network Analysis of Glucose Linked Signaling Pathways and Their Role in Human Hepatocellular Carcinoma Cell Growth and Survival in HuH7 and HepG2 Cell Lines. BIOMED RESEARCH INTERNATIONAL 2015; 2015:821761. [PMID: 26380295 PMCID: PMC4561296 DOI: 10.1155/2015/821761] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/06/2015] [Indexed: 12/14/2022]
Abstract
Cancer progression may be affected by metabolism. In this study, we aimed to analyze the effect of glucose on the proliferation and/or survival of human hepatocellular carcinoma (HCC) cells. Human gene datasets regulated by glucose were compared to gene datasets either dysregulated in HCC or regulated by other signaling pathways. Significant numbers of common genes suggested putative involvement in transcriptional regulations by glucose. Real-time proliferation assays using high (4.5 g/L) versus low (1 g/L) glucose on two human HCC cell lines and specific inhibitors of selected pathways were used for experimental validations. High glucose promoted HuH7 cell proliferation but not that of HepG2 cell line. Gene network analyses suggest that gene transcription by glucose could be mediated at 92% through ChREBP in HepG2 cells, compared to 40% in either other human cells or rodent healthy liver, with alteration of LKB1 (serine/threonine kinase 11) and NOX (NADPH oxidases) signaling pathways and loss of transcriptional regulation of PPARGC1A (peroxisome-proliferator activated receptors gamma coactivator 1) target genes by high glucose. Both PPARA and PPARGC1A regulate transcription of genes commonly regulated by glycolysis, by the antidiabetic agent metformin and by NOX, suggesting their major interplay in the control of HCC progression.
Collapse
|
9
|
Silva AD, Sartori D, Macedo F, Ribeiro L, Fungaro M, Mantovani M. Effects of β-glucan extracted from Agaricus blazei on the expression of ERCC5, CASP9, and CYP1A1 genes and metabolic profile in HepG2 cells. Hum Exp Toxicol 2013; 32:647-54. [DOI: 10.1177/0960327112468173] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The polysaccharide β-glucan has biological properties that stimulate the immune system and can prevent chronic pathologies, including cancer. It has been shown to prevent damage to DNA caused by the chemical and physical agents to which humans are exposed. However, the mechanism of β-glucan remains poorly understood. The objective of the present study was to verify the protective effect of β-glucan on the expression of the genes ERCC5 (involved in excision repair of DNA damage), CASP9 (involved in apoptosis), and CYP1A1 (involved in the metabolism of xenobiotics) using real-time polymerase chain reaction and perform metabolic profile measurements on the HepG2 cells. Cells were exposed to only benzo[a]pyrene (B[a]P), β-glucan, or a combination of B[a]P with β-glucan. The results demonstrated that 50 µg/mL β-glucan significantly repressed the expression of the ERCC5 gene when compared with the untreated control cells in these conditions. No change was found in the CASP9 transcript level. However, the CYP1A1 gene expression was also induced by HepG2 cells exposed to B[a]P only or in association with β-glucan, showing its effective protector against damage caused by B[a]P, while HepG2 cells exposed to only β-glucan did not show CYP1A1 modulation. The metabolic profiles showed moderate bioenergetic metabolism with an increase in the metabolites involved in bioenergetic metabolism (alanine, glutamate, creatine and phosphocholine) in cells treated with β-glucan and to a lesser extent treated with B[a]P. Thus, these results demonstrate that the chemopreventive activity of β-glucan may modulate bioenergetic metabolism and gene expression.
Collapse
Affiliation(s)
| | - D. Sartori
- Universidade Estadual de Londrina, Londrina, Brazil
| | - F.C. Macedo
- Universidade Estadual de Londrina, Londrina, Brazil
| | - L.R. Ribeiro
- Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil
| | | | | |
Collapse
|
10
|
Riedel A, Pignitter M, Hochkogler CM, Rohm B, Walker J, Bytof G, Lantz I, Somoza V. Caffeine dose-dependently induces thermogenesis but restores ATP in HepG2 cells in culture. Food Funct 2012; 3:955-64. [PMID: 22710994 DOI: 10.1039/c2fo30053b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Caffeine has been hypothesised as a thermogenic agent that might help to maintain a healthy body weight. Since very little is known about its actions on cellular energy metabolism, we investigated the effect of caffeine on mitochondrial oxidative phosphorylation, cellular energy supply and thermogenesis in HepG2 cells, and studied its action on fatty acid uptake and lipid accumulation in 3T3-L1 adipocytes at concentrations ranging from 30-1500 μM. In HepG2 cells, caffeine induced a depolarisation of the inner mitochondrial membrane, a feature of mitochondrial thermogenesis, both directly and after 24 h incubation. Increased concentrations of uncoupling protein-2 (UCP-2) also indicated a thermogenic activity of caffeine. Energy generating pathways, such as mitochondrial respiration, fatty acid oxidation and anaerobic lactate production, were attenuated by caffeine treatment. Nevertheless, HepG2 cells demonstrated a higher energy charge potential after exposure to caffeine that might result from energy restoration through attenuation of energy consuming pathways, as typically found in hibernating animals. In 3T3-L1 cells, in contrast, caffeine increased fatty acid uptake, but did not affect lipid accumulation. We provide evidence that caffeine stimulates thermogenesis but concomitantly causes energy restoration that may compensate enhanced energy expenditure.
Collapse
Affiliation(s)
- Annett Riedel
- Department of Nutritional and Physiological Chemistry, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
11
|
l-Lactate metabolism in HEP G2 cell mitochondria due to the l-lactate dehydrogenase determines the occurrence of the lactate/pyruvate shuttle and the appearance of oxaloacetate, malate and citrate outside mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1679-90. [PMID: 22659615 DOI: 10.1016/j.bbabio.2012.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 05/22/2012] [Accepted: 05/24/2012] [Indexed: 01/03/2023]
Abstract
As part of an ongoing study of l-lactate metabolism both in normal and in cancer cells, we investigated whether and how l-lactate metabolism occurs in mitochondria of human hepatocellular carcinoma (Hep G2) cells. We found that Hep G2 cell mitochondria (Hep G2-M) possess an l-lactate dehydrogenase (ml-LDH) restricted to the inner mitochondrial compartments as shown by immunological analysis, confocal microscopy and by assaying ml-LDH activity in solubilized mitochondria. Cytosolic and mitochondrial l-LDHs were found to differ from one another in their saturation kinetics. Having shown that l-lactate itself can enter Hep G2 cells, we found that Hep G2-M swell in ammonium l-lactate, but not in ammonium pyruvate solutions, in a manner inhibited by mersalyl, this showing the occurrence of a carrier-mediated l-lactate transport in these mitochondria. Occurrence of the l-lactate/pyruvate shuttle and the appearance outside mitochondria of oxaloacetate, malate and citrate arising from l-lactate uptake and metabolism together with the low oxygen consumption and membrane potential generation are in favor of an anaplerotic role for l-LAC in Hep G2-M.
Collapse
|
12
|
Domenis R, Bisetto E, Rossi D, Comelli M, Mavelli I. Glucose-modulated mitochondria adaptation in tumor cells: a focus on ATP synthase and inhibitor Factor 1. Int J Mol Sci 2012; 13:1933-1950. [PMID: 22408432 PMCID: PMC3292001 DOI: 10.3390/ijms13021933] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/06/2012] [Accepted: 01/30/2012] [Indexed: 11/16/2022] Open
Abstract
Warburg's hypothesis has been challenged by a number of studies showing that oxidative phosphorylation is repressed in some tumors, rather than being inactive per se. Thus, treatments able to shift energy metabolism by activating mitochondrial pathways have been suggested as an intriguing basis for the optimization of antitumor strategies. In this study, HepG2 hepatocarcinoma cells were cultivated with different metabolic substrates under conditions mimicking "positive" (activation/biogenesis) or "negative" (silencing) mitochondrial adaptation. In addition to the expected up-regulation of mitochondrial biogenesis, glucose deprivation caused an increase in phosphorylating respiration and a rise in the expression levels of the ATP synthase β subunit and Inhibitor Factor 1 (IF1). Hyperglycemia, on the other hand, led to a markedly decreased level of the transcriptional coactivator PGC-α suggesting down-regulation of mitochondrial biogenesis, although no change in mitochondrial mass and no impairment of phosphorylating respiration were observed. Moreover, a reduction in mitochondrial networking and in ATP synthase dimer stability was produced. No effect on β-ATP synthase expression was elicited. Notably, hyperglycemia caused an increase in IF1 expression levels, but it did not alter the amount of IF1 associated with ATP synthase. These results point to a new role of IF1 in relation to high glucose utilization by tumor cells, in addition to its well known effect upon mitochondrial ATP synthase regulation.
Collapse
Affiliation(s)
- Rossana Domenis
- Department of Medical and Biological Sciences, University of Udine, p.le Kolbe 4, 33100 Udine, Italy; E-Mails: (R.D.); (E.B.); (D.R.); (M.C.)
- M.A.T.I. Centre of Excellence, University of Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Elena Bisetto
- Department of Medical and Biological Sciences, University of Udine, p.le Kolbe 4, 33100 Udine, Italy; E-Mails: (R.D.); (E.B.); (D.R.); (M.C.)
- M.A.T.I. Centre of Excellence, University of Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Davide Rossi
- Department of Medical and Biological Sciences, University of Udine, p.le Kolbe 4, 33100 Udine, Italy; E-Mails: (R.D.); (E.B.); (D.R.); (M.C.)
- M.A.T.I. Centre of Excellence, University of Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Marina Comelli
- Department of Medical and Biological Sciences, University of Udine, p.le Kolbe 4, 33100 Udine, Italy; E-Mails: (R.D.); (E.B.); (D.R.); (M.C.)
- M.A.T.I. Centre of Excellence, University of Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Irene Mavelli
- Department of Medical and Biological Sciences, University of Udine, p.le Kolbe 4, 33100 Udine, Italy; E-Mails: (R.D.); (E.B.); (D.R.); (M.C.)
- M.A.T.I. Centre of Excellence, University of Udine, p.le Kolbe 4, 33100 Udine, Italy
| |
Collapse
|
13
|
Mitochondrial bioenergetic profile and responses to metabolic inhibition in human hepatocarcinoma cell lines with distinct differentiation characteristics. J Bioenerg Biomembr 2011; 43:493-505. [PMID: 21882038 DOI: 10.1007/s10863-011-9380-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 08/03/2011] [Indexed: 12/23/2022]
Abstract
The classical view of tumour cell bioenergetics has been recently revised. Then, the definition of the mitochondrial profile is considered of fundamental importance for the development of anti-cancer therapies, but it still needs to be clarified. We investigated two human hepatocellular carcinoma cell lines: the partially differentiated HepG2 and the undifferentiated JHH-6. High resolution respirometry revealed a marked impairment/uncoupling of OXPHOS in JHH-6 compared with HepG2, with the phosphorylation system limiting the capacity for electron transport much more in JHH-6. Blocking glycolysis or mitochondrial ATP synthase we demonstrated that in JHH-6 ATP synthase functions in reverse and consumes glycolytic ATP, thereby sustaining ΔΨm. A higher expression level of ATP synthase Inhibitor Factor 1 (IF1), a higher extent of IF1 bound to ATP synthase and a lower ATPase/synthase capacity were documented in JHH-6. Thus, here IF1 appears to down-regulate the reverse mode of ATPsynthase activity, thereby playing a crucial role in controlling energy waste and ΔΨm. These results, while confirming the over-expression of IF1 in cancer cells, are the first to indicate an inverse link between cell differentiation status and IF1 (expression level and regulatory function).
Collapse
|
14
|
Varum S, Rodrigues AS, Moura MB, Momcilovic O, Easley CA, Ramalho-Santos J, Van Houten B, Schatten G. Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One 2011; 6:e20914. [PMID: 21698063 PMCID: PMC3117868 DOI: 10.1371/journal.pone.0020914] [Citation(s) in RCA: 528] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/16/2011] [Indexed: 12/11/2022] Open
Abstract
Background Human pluripotent stem cells have the ability to generate all cell types present in the adult organism, therefore harboring great potential for the in vitro study of differentiation and for the development of cell-based therapies. Nonetheless their use may prove challenging as incomplete differentiation of these cells might lead to tumoregenicity. Interestingly, many cancer types have been reported to display metabolic modifications with features that might be similar to stem cells. Understanding the metabolic properties of human pluripotent stem cells when compared to their differentiated counterparts can thus be of crucial importance. Furthermore recent data has stressed distinct features of different human pluripotent cells lines, namely when comparing embryo-derived human embryonic stem cells (hESCs) and induced pluripotent stem cells (IPSCs) reprogrammed from somatic cells. Methodology/Principal Findings We compared the energy metabolism of hESCs, IPSCs, and their somatic counterparts. Focusing on mitochondria, we tracked organelle localization and morphology. Furthermore we performed gene expression analysis of several pathways related to the glucose metabolism, including glycolysis, the pentose phosphate pathway and the tricarboxylic acid (TCA) cycle. In addition we determined oxygen consumption rates (OCR) using a metabolic extracellular flux analyzer, as well as total intracellular ATP levels by high performance liquid chromatography (HPLC). Finally we explored the expression of key proteins involved in the regulation of glucose metabolism. Conclusions/Findings Our results demonstrate that, although the metabolic signature of IPSCs is not identical to that of hESCs, nonetheless they cluster with hESCs rather than with their somatic counterparts. ATP levels, lactate production and OCR revealed that human pluripotent cells rely mostly on glycolysis to meet their energy demands. Furthermore, our work points to some of the strategies which human pluripotent stem cells may use to maintain high glycolytic rates, such as high levels of hexokinase II and inactive pyruvate dehydrogenase (PDH).
Collapse
Affiliation(s)
- Sandra Varum
- Pittsburgh Development Center, Magee Womens Research Institute, Pittsburgh, Pennsylvania, United States of America
- Center for Neuroscience and Cell Biology and Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana S. Rodrigues
- Pittsburgh Development Center, Magee Womens Research Institute, Pittsburgh, Pennsylvania, United States of America
- Center for Neuroscience and Cell Biology and Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Michelle B. Moura
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Olga Momcilovic
- Pittsburgh Development Center, Magee Womens Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Charles A. Easley
- Pittsburgh Development Center, Magee Womens Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - João Ramalho-Santos
- Center for Neuroscience and Cell Biology and Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Gerald Schatten
- Pittsburgh Development Center, Magee Womens Research Institute, Pittsburgh, Pennsylvania, United States of America
- Department of Obstetrics, Gynecology & Reproductive Sciences, and Cell Biology-Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
15
|
Abstract
The detailed knowledge of mammalian cell metabolism and its adjustments to different cell properties and perturbations, such as disease and drug exposure, is of enormous value in the deeper understanding of pathological processes and drug mechanisms, as well as in the development of new and improved methods for diagnosis, follow-up of disease progression and treatment response. This review covers recent developments in the use of NMR-based metabonomics to characterize cellular metabolomes and interpret them in terms of metabolic changes taking place in a wide range of situations. The analytical methodology available is briefly presented and the applications developed so far are reviewed. These include differences in cell properties (e.g., drug resistance, cell cycle stage, specific growth conditions and genetic characteristics) and changes induced in response to different perturbations (e.g., disease, drug exposure and irradiation).
Collapse
|
16
|
The role of CYP3A4 in amiodarone-associated toxicity on HepG2 cells. Biochem Pharmacol 2011; 81:432-41. [DOI: 10.1016/j.bcp.2010.11.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/02/2010] [Accepted: 11/02/2010] [Indexed: 11/23/2022]
|
17
|
Elachouri G, Vidoni S, Zanna C, Pattyn A, Boukhaddaoui H, Gaget K, Yu-Wai-Man P, Gasparre G, Sarzi E, Delettre C, Olichon A, Loiseau D, Reynier P, Chinnery PF, Rotig A, Carelli V, Hamel CP, Rugolo M, Lenaers G. OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution. Genome Res 2010; 21:12-20. [PMID: 20974897 DOI: 10.1101/gr.108696.110] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Eukaryotic cells harbor a small multiploid mitochondrial genome, organized in nucleoids spread within the mitochondrial network. Maintenance and distribution of mitochondrial DNA (mtDNA) are essential for energy metabolism, mitochondrial lineage in primordial germ cells, and to prevent mtDNA instability, which leads to many debilitating human diseases. Mounting evidence suggests that the actors of the mitochondrial network dynamics, among which is the intramitochondrial dynamin OPA1, might be involved in these processes. Here, using siRNAs specific to OPA1 alternate spliced exons, we evidenced that silencing of the OPA1 variants including exon 4b leads to mtDNA depletion, secondary to inhibition of mtDNA replication, and to marked alteration of mtDNA distribution in nucleoid and nucleoid distribution throughout the mitochondrial network. We demonstrate that a small hydrophobic 10-kDa peptide generated by cleavage of the OPA1-exon4b isoform is responsible for this process and show that this peptide is embedded in the inner membrane and colocalizes and coimmunoprecipitates with nucleoid components. We propose a novel synthetic model in which a peptide, including two trans-membrane domains derived from the N terminus of the OPA1-exon4b isoform in vertebrates or from its ortholog in lower eukaryotes, might contribute to nucleoid attachment to the inner mitochondrial membrane and promotes mtDNA replication and distribution. Thus, this study places OPA1 as a direct actor in the maintenance of mitochondrial genome integrity.
Collapse
Affiliation(s)
- Ghizlane Elachouri
- INSERM U-583, Institut des Neurosciences de Montpellier, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chevrollier A, Loiseau D, Reynier P, Stepien G. Adenine nucleotide translocase 2 is a key mitochondrial protein in cancer metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:562-7. [PMID: 20950584 DOI: 10.1016/j.bbabio.2010.10.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 12/12/2022]
Abstract
Adenine nucleotide translocase (ANT), a mitochondrial protein that facilitates the exchange of ADP and ATP across the mitochondrial inner membrane, plays an essential role in cellular energy metabolism. Human ANT presents four isoforms (ANT1-4), each with a specific expression depending on the nature of the tissue, cell type, developmental stage and status of cell proliferation. Thus, ANT1 is specific to muscle and brain tissues; ANT2 occurs mainly in proliferative, undifferentiated cells; ANT3 is ubiquitous; and ANT4 is found in germ cells. ANT1 and ANT3 export the ATP produced by oxidative phosphorylation (OxPhos) from the mitochondria into the cytosol while importing ADP. In contrast, the expression of ANT2, which is linked to the rate of glycolytic metabolism, is an important indicator of carcinogenesis. In fact, cancers are characterized by major metabolic changes that switch cells from the normally dual oxidative and glycolytic metabolisms to an almost exclusively glycolytic metabolism. When OxPhos activity is impaired, ANT2 imports glycolytically produced ATP into the mitochondria. In the mitochondrial matrix, the F1F0-ATPase complex hydrolyzes the ATP, pumping out a proton into the intermembrane space. The reverse operations of ANT2 and F1F0-ATPase under glycolytic conditions contribute to maintaining the mitochondrial membrane potential, ensuring cell survival and proliferation. Unlike the ANT1 and ANT3 isoforms, ANT2 is not pro-apoptotic and may therefore contribute to carcinogenesis. Since the expression of ANT2 is closely linked to the mitochondrial bioenergetics of tumors, it should be taken into account for individualizing cancer treatments and for the development of anticancer strategies.
Collapse
|
19
|
Duarte IF, Lamego I, Marques J, Marques MPM, Blaise BJ, Gil AM. Nuclear Magnetic Resonance (NMR) Study of the Effect of Cisplatin on the Metabolic Profile of MG-63 Osteosarcoma Cells. J Proteome Res 2010; 9:5877-86. [DOI: 10.1021/pr100635n] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Iola F. Duarte
- CICECO−Departmento de Química, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal, R&D Unit “Molecular Physical-Chemistry”, Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Portugal, and Université de Lyon, Centre de RMN à Très Hauts Champs, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Inês Lamego
- CICECO−Departmento de Química, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal, R&D Unit “Molecular Physical-Chemistry”, Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Portugal, and Université de Lyon, Centre de RMN à Très Hauts Champs, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Joana Marques
- CICECO−Departmento de Química, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal, R&D Unit “Molecular Physical-Chemistry”, Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Portugal, and Université de Lyon, Centre de RMN à Très Hauts Champs, 5 rue de la Doua, 69100 Villeurbanne, France
| | - M. Paula M. Marques
- CICECO−Departmento de Química, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal, R&D Unit “Molecular Physical-Chemistry”, Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Portugal, and Université de Lyon, Centre de RMN à Très Hauts Champs, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Benjamin J. Blaise
- CICECO−Departmento de Química, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal, R&D Unit “Molecular Physical-Chemistry”, Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Portugal, and Université de Lyon, Centre de RMN à Très Hauts Champs, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Ana M. Gil
- CICECO−Departmento de Química, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal, R&D Unit “Molecular Physical-Chemistry”, Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Portugal, and Université de Lyon, Centre de RMN à Très Hauts Champs, 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
20
|
Bayet-Robert M, Loiseau D, Rio P, Demidem A, Barthomeuf C, Stepien G, Morvan D. Quantitative two-dimensional HRMAS 1H-NMR spectroscopy-based metabolite profiling of human cancer cell lines and response to chemotherapy. Magn Reson Med 2010; 63:1172-83. [PMID: 20432288 DOI: 10.1002/mrm.22303] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
NMR spectroscopy-based metabolomics still needs development in quantification procedures. A method was designed for quantitative two-dimensional high resolution magic angle spinning (HRMAS) proton-NMR spectroscopy-based metabolite profiling of intact cells. It uses referencing of metabolite-related NMR signals to protein-related NMR signals and yields straightforward and automatable metabolite profiling. The method enables exploitation of only two-dimensionally visible metabolites and combination of one- and two-dimensional spectra, thus providing an appreciable number of screened metabolites. With this procedure, 32 intracellular metabolites were attributed and quantified in human normal fibroblasts and tumor cells. The phenotype of several tumor cell lines (MCF7, PC3, 143B, and HepG2) was characterized by high levels of glutathione in cell lines with the higher proliferation rate, high levels of creatine, low levels of free amino acids, increased levels of phospholipid derivatives (mostly phosphocholine), and lower lactate content in cell lines with the higher proliferation rate. Other metabolites such as fatty acids differed widely among tumor cell lines. The response of tumor cell lines to chemotherapy also was evaluated by differential metabolite profiling, bringing insights into drug cytotoxicity and tumor cell adaptive mechanisms. The method may prove widely applicable to tumor cell phenotyping.
Collapse
|