1
|
Chen L, Hu Y, Zhang M, Liu L, Ma J, Xu Z, Zhang J, Gu H, Chen K. METTL14 affects UVB-induced human dermal fibroblasts photoaging via miR-100-3p biogenesis in an m 6A-dependent manner. Aging Cell 2024; 23:e14123. [PMID: 38380598 PMCID: PMC11113260 DOI: 10.1111/acel.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/18/2024] [Accepted: 02/04/2024] [Indexed: 02/22/2024] Open
Abstract
Exposure to ultraviolet radiation can lead to skin photoaging, which increases the risk of skin tumors. This study aims to investigate how microRNA m6A modification contributes to skin photoaging. This study found that skin fibroblasts exposed to a single UVB dose of 30 mJ/cm2 exhibited characteristics of photoaging. The m6A level of total RNA decreased in photoaged cells with a down-regulated level of METTL14, and overexpression of METTL14 displayed a photoprotective function. Moreover, miR-100-3p was a downstream target of METTL14. And METTL14 could affect pri-miR-100 processing to mature miR-100-3p in an m6A-dependent manner via DGCR8. Furthermore, miR-100-3p targeted at 3' end untranslated region of ERRFI1 mRNA with an inhibitory effect on translation. Additionally, photoprotective effects of overexpression of METTL14 were reversed by miR-100-3p inhibitor or overexpression of ERRFI1. In UVB-induced photoaging of human skin fibroblasts, METTL14-dependent m6A can regulate miR-100-3p maturation via DGCR8 and affect skin fibroblasts photoaging through miR-100-3p/ERRFI1 axis.
Collapse
Affiliation(s)
- Lihao Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Yu Hu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Min Zhang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Lihao Liu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Jing Ma
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Zhuohong Xu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Jiaan Zhang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Heng Gu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Kun Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| |
Collapse
|
2
|
Song X, Wang L, Tang W, Yuan L, Liu Q, Li J, Fan D. Selumetinib overcomes gefitinib primary and acquired resistance by regulating MIG6/STAT3 in NSCLC. Arch Pharm Res 2023; 46:924-938. [PMID: 38032449 DOI: 10.1007/s12272-023-01471-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023]
Abstract
Gefitinib, as the first-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), has achieved great advances in the treatment of non-small cell lung cancer (NSCLC), but drug resistance will inevitably occur. Therefore, exploring the resistance mechanism of gefitinib and developing new combination treatment strategies are of great importance. In our study, the results showed that selumetinib (AZD6244) synergistically inhibited the proliferation of NSCLC with gefitinib. Selumetinib also enhanced gefitinib-induced apoptosis and migration inhibition ability in gefitinib-resistant lung cancer cell lines. Subsequently, the negative regulation between MIG6 and STAT3 was observed and verified through the STRING database and western blotting assays. Sustained activation of STAT3 was significantly downregulated when co-treatment with selumetinib in gefitinib-resistant cells. However, the downregulation of p-STAT3, resulting from the combination of selumetinib and gefitinib was counteracted by the deletion of MIG6, suggesting that selumetinib enhanced gefitinib sensitivity by regulating MIG6/STAT3 in NSCLC. In contrast, p-STAT3 was further inhibited after treatment with gefitinib and selumetinib when MIG6 was overexpressed. Furthermore, the combined administration of selumetinib and gefitinib effectively promoted the sensitivity of lung cancer xenografts to gefitinib in vivo, and the tumor inhibition rate reached 81.49%, while the tumor inhibition rate of the gefitinib monotherapy group was only 31.95%. Overall, MIG6/STAT3 negative regulation plays an important role in the sustained activation of STAT3 and the resistance to EGFR-TKIs. Our study also suggests that EGFR-TKIs combined with MEK1/2 inhibitors, such as selumetinib, may be beneficial to those NSCLC patients who develop a primary or acquired resistance to EGFR-TKIs, providing theoretical support for combining TKIs and selumetinib in clinical cancer treatment.
Collapse
Affiliation(s)
- Xiaoping Song
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Biotech. and Biomed. Research Institute, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Lina Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Biotech. and Biomed. Research Institute, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Wei Tang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266100, China
| | - Luyao Yuan
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Qingchao Liu
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Biotech. and Biomed. Research Institute, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266100, China.
| | - Daidi Fan
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
- Biotech. and Biomed. Research Institute, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
3
|
Cao F, Jiang Y, Chang L, Du H, Chang D, Pan C, Huang X, Yu D, Zhang M, Fan Y, Bian X, Li K. High-throughput functional screen identifies YWHAZ as a key regulator of pancreatic cancer metastasis. Cell Death Dis 2023; 14:431. [PMID: 37452033 PMCID: PMC10349114 DOI: 10.1038/s41419-023-05951-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Pancreatic cancer is a leading cause of cancer death due to its early metastasis and limited response to the current therapies. Metastasis is a complicated multistep process, which is determined by complex genetic alterations. Despite the identification of many metastasis-related genes, distinguishing the drivers from numerous passengers and establishing the causality in cancer pathophysiology remains challenging. Here, we established a high-throughput and piggyBac transposon-based genetic screening platform, which enables either reduced or increased expression of chromosomal genes near the incorporation site of the gene search vector cassette that contains a doxycycline-regulated promoter. Using this strategy, we identified YWHAZ as a key regulator of pancreatic cancer metastasis. We demonstrated that functional activation of Ywhaz by the gene search vector led to enhanced metastatic capability in mouse pancreatic cancer cells. The metastasis-promoting role of YWHAZ was further validated in human pancreatic cancer cells. Overexpression of YWHAZ resulted in more aggressive metastatic phenotypes in vitro and a shorter survival rate in vivo by modulating epithelial-to-mesenchymal transition. Hence, our study established a high-throughput screening method to investigate the functional relevance of novel genes and validated YWHAZ as a key regulator of pancreatic cancer metastasis.
Collapse
Affiliation(s)
- Fang Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yunpeng Jiang
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lin Chang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Endoscopy Center, Peking University Cancer Hospital & Institute, Beijing, China
- Department of Pathology, Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, China
| | - Hongzhen Du
- Department of Pathology, Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, China
| | - De Chang
- Department of Pulmonary and Critical Care Medicine, 7th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chunxiao Pan
- Department of Pathology, Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, China
| | - Xiaozheng Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Donglin Yu
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Mi Zhang
- Department of Pulmonary and Critical Care Medicine, 7th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yongna Fan
- Department of Pathology, Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, China
| | - Xiaocui Bian
- Department of Pathology, Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, China.
| | - Kailong Li
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
4
|
Li C, Edeni D, Platkin S, Liu R, Li J, Hossain M, Rahman M, Islam H, Phillips JL, Xu D. Effect of Gene 33/Mig6/ERRFI1 on hexavalent chromium-induced transformation of human bronchial epithelial cells depends on the length of exposure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2023; 40:227-247. [PMID: 36715065 DOI: 10.1080/26896583.2022.2147358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hexavalent chromium (Cr(VI)) compounds are environmental and occupational lung carcinogens. The present study followed the chronic effect of Cr(VI) on the neoplastic transformation of BEAS-2B lung bronchial epithelial cells with or without deletion of Gene 33 (Mig6, EFFRI1), a multifunctional adaptor protein. We find that Gene 33-deleted cells exhibit increased anchorage-independent growth compared to control cells after transformed by 8-week but not 24-week Cr(VI) exposure. Gene 33-deleted cells show a higher level of cell proliferation and are more resistant to acute Cr(VI) toxicity compared to control cells after transformed by 8-week but not 24-week Cr(VI) exposure, despite that 24-week-transformed cells have increased resistance to acute Cr(VI) toxicity. However, Gene 33-deleted cells show increased migration after transformed by both 8-week and 24-week Cr(VI) exposures. Furthermore, only cells transformed by 24 weeks of Cr(VI) exposure can form subcutaneous tumors in nude mice. Although no significant difference in the size of tumors formed by the two cell types, there is a marked difference in the histological manifestation and more MMP3 expression in tumors from Gene 33-deleted cells. Our results demonstrate progressive neoplastic transformation of BEAS-2B cells and the adaptation of these cells to Gene 33 deletion during chronic exposure to Cr(VI).
Collapse
Affiliation(s)
- Cen Li
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Dina Edeni
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Sarah Platkin
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Raymond Liu
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Jiangwei Li
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Maheen Hossain
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Mozibur Rahman
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Humayun Islam
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - John L Phillips
- Department of Urology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Dazhong Xu
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| |
Collapse
|
5
|
DNA damage alters EGFR signaling and reprograms cellular response via Mre-11. Sci Rep 2022; 12:5760. [PMID: 35388101 PMCID: PMC8986772 DOI: 10.1038/s41598-022-09779-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/24/2022] [Indexed: 12/01/2022] Open
Abstract
To combat the various DNA lesions and their harmful effects, cells have evolved different strategies, collectively referred as DNA damage response (DDR). The DDR largely relies on intranuclear protein networks, which sense DNA lesions, recruit DNA repair enzymes, and coordinates several aspects of the cellular response, including a temporary cell cycle arrest. In addition, external cues mediated by the surface EGF receptor (EGFR) through downstream signaling pathways contribute to the cellular DNA repair capacity. However, cell cycle progression driven by EGFR activation should be reconciled with cell cycle arrest necessary for effective DNA repair. Here, we show that in damaged cells, the expression of Mig-6 (mitogen-inducible gene 6), a known regulator of EGFR signaling, is reduced resulting in heightened EGFR phosphorylation and downstream signaling. These changes in Mig-6 expression and EGFR signaling do not occur in cells deficient of Mre-11, a component of the MRN complex, playing a central role in double-strand break (DSB) repair or when cells are treated with the MRN inhibitor, mirin. RNAseq and functional analysis reveal that DNA damage induces a shift in cell response to EGFR triggering that potentiates DDR-induced p53 pathway and cell cycle arrest. These data demonstrate that the cellular response to EGFR triggering is skewed by components of the DDR, thus providing a plausible explanation for the paradox of the known role played by a growth factor such as EGFR in the DNA damage repair.
Collapse
|
6
|
Cui Y, Kang Y, Zhang P, Wang Y, Yang Z, Lu C, Zhang P. Mig-6 could inhibit cell proliferation and induce apoptosis in esophageal squamous cell carcinoma. Thorac Cancer 2021; 13:54-60. [PMID: 34845855 PMCID: PMC8720621 DOI: 10.1111/1759-7714.14223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND To investigate the expression and biological functions of mitogen-induced gene 6 (Mig-6) in esophageal squamous cell carcinoma (ESCC). METHODS The expression of Mig-6 in ESCC tissues and normal esophageal epithelial tissues were measured by immunohistochemistry (IHC) assay. MTT test was applied to detect the proliferative ability of ESCC cells after Mig-6 was upregulated by transfection. A fluid cytology assay was used to detect apoptosis of ESCC cells. Agilent whole human genome oligo microarray was used to screen different expressed genes and the possible signaling pathways which might be involved. RESULTS The expression of Mig-6 protein was lower in ESCC tissues compared to normal esophageal epithelial tissues. Mig-6 could restrain the ESCC cell growth and induce cell apoptosis. PPAR, CAMs and MAPK signaling pathways might be involved. CONCLUSIONS Mig-6 might be a new tumor suppressor gene and a possible target for the specific therapy of ESCC.
Collapse
Affiliation(s)
- Yuantao Cui
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Ying Kang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Peng Zhang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Yuanguo Wang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Zhaoyu Yang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Chao Lu
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Peng Zhang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
7
|
ERRFI1 induces apoptosis of hepatocellular carcinoma cells in response to tryptophan deficiency. Cell Death Discov 2021; 7:274. [PMID: 34608122 PMCID: PMC8490388 DOI: 10.1038/s41420-021-00666-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022] Open
Abstract
Tryptophan metabolism is an essential regulator of tumor immune evasion. However, the effect of tryptophan metabolism on cancer cells remains largely unknown. Here, we find that tumor cells have distinct responses to tryptophan deficiency in terms of cell growth, no matter hepatocellular carcinoma (HCC) cells, lung cancer cells, or breast cancer cells. Further study shows that ERRFI1 is upregulated in sensitive HCC cells, but not in resistant HCC cells, in response to tryptophan deficiency, and ERRFI1 expression level positively correlates with HCC patient overall survival. ERRFI1 knockdown recovers tryptophan deficiency-suppressed cell growth of sensitive HCC cells. In contrast, ERRFI1 overexpression sensitizes resistant HCC cells to tryptophan deficiency. Moreover, ERRFI1 induces apoptosis by binding PDCD2 in HCC cells, PDCD2 knockdown decreases the ERRFI1-induced apoptosis in HCC cells. Thus, we conclude that ERRFI1-induced apoptosis increases the sensitivity of HCC cells to tryptophan deficiency and ERRFI1 interacts with PDCD2 to induce apoptosis in HCC cells.
Collapse
|
8
|
Mehrpooya M, Asgarbeik S, Vahidi A, Amoli MM, Hosseini SK. Evaluation of ERRFI1 +808 T/G variant and its mRNA expression in coronary artery in-stent restenosis. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Gene 33/Mig6/ERRFI1, an Adapter Protein with Complex Functions in Cell Biology and Human Diseases. Cells 2021; 10:cells10071574. [PMID: 34206547 PMCID: PMC8306081 DOI: 10.3390/cells10071574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Gene 33 (also named Mig6, RALT, and ERRFI1) is an adapter/scaffold protein with a calculated molecular weight of about 50 kD. It contains multiple domains known to mediate protein–protein interaction, suggesting that it has the potential to interact with many cellular partners and have multiple cellular functions. The research over the last two decades has confirmed that it indeed regulates multiple cell signaling pathways and is involved in many pathophysiological processes. Gene 33 has long been viewed as an exclusively cytosolic protein. However, recent evidence suggests that it also has nuclear and chromatin-associated functions. These new findings highlight a significantly broader functional spectrum of this protein. In this review, we will discuss the function and regulation of Gene 33, as well as its association with human pathophysiological conditions in light of the recent research progress on this protein.
Collapse
|
10
|
Yu Y, Chen Q, Zhang X, Yang J, Lin K, Ji C, Xu A, Yang L, Miao L. Long noncoding RNA ANRIL promotes the malignant progression of cholangiocarcinoma by epigenetically repressing ERRFI1 expression. Cancer Sci 2020; 111:2297-2309. [PMID: 32378752 PMCID: PMC7385372 DOI: 10.1111/cas.14447] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have recently been verified to have significant regulatory functions in many types of human cancers. The lncRNA ANRIL is transcribed from the INK4b-ARF-INK4a gene cluster in the opposite direction. Whether ANRIL can act as an oncogenic molecule in cholangiocarcinoma (CCA) remains unknown. Our data show that ANRIL knockdown greatly inhibited CCA cell proliferation and migration in vitro and in vivo. According to the results of RNA sequencing analysis, ANRIL knockdown dramatically altered target genes associated with the cell cycle, cell proliferation, and apoptosis. By binding to a component of the epigenetic modification complex enhancer of zeste homolog 2 (EZH2), ANRIL could maintain lysine residue 27 of histone 3 (H3K27me3) levels in the promoter of ERBB receptor feedback inhibitor 1 (ERRFI1), which is a tumor suppressor gene in CCA. In this way, ERRFI1 expression was suppressed in CCA cells. These data verified the key role of the epigenetic regulation of ANRIL in CCA oncogenesis and indicate its potential as a target for CCA intervention.
Collapse
Affiliation(s)
- Yang Yu
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Qiaoyu Chen
- Department of Pathology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Xunlei Zhang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Jian Yang
- Department of Urology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kaibo Lin
- Department of Assisted Reproduction, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Congfei Ji
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Aibing Xu
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Lei Yang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Lin Miao
- Medical Centre for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Bellini M, Pest MA, Miranda-Rodrigues M, Qin L, Jeong JW, Beier F. Overexpression of MIG-6 in the cartilage induces an osteoarthritis-like phenotype in mice. Arthritis Res Ther 2020; 22:119. [PMID: 32430054 PMCID: PMC7236969 DOI: 10.1186/s13075-020-02213-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is the most common form of arthritis and characterized by degeneration of the articular cartilage. Mitogen-inducible gene 6 (Mig-6) has been identified as a negative regulator of the epidermal growth factor receptor (EGFR). Cartilage-specific Mig-6 knockout (KO) mice display increased EGFR signaling, an anabolic buildup of the articular cartilage, and formation of chondro-osseous nodules. Since our understanding of the EGFR/Mig-6 network in the cartilage remains incomplete, we characterized mice with cartilage-specific overexpression of Mig-6 in this study. METHODS Utilizing knee joints from cartilage-specific Mig-6-overexpressing (Mig-6over/over) mice (at multiple time points), we evaluated the articular cartilage using histology, immunohistochemical staining, and semi-quantitative histopathological scoring (OARSI) at multiple ages. MicroCT analysis was employed to examine skeletal morphometry, body composition, and bone mineral density. RESULTS Our data show that cartilage-specific Mig-6 overexpression did not cause any major developmental abnormalities in the articular cartilage, although Mig-6over/over mice have slightly shorter long bones compared to the control group. Moreover, there was no significant difference in bone mineral density and body composition in any of the groups. However, our results indicate that Mig-6over/over male mice show accelerated cartilage degeneration at 12 and 18 months of age. Immunohistochemistry for SOX9 demonstrated that the number of positively stained cells in Mig-6over/over mice was decreased relative to controls. Immunostaining for MMP13 appeared increased in areas of cartilage degeneration in Mig-6over/over mice. Moreover, staining for phospho-EGFR (Tyr-1173) and lubricin (PRG4) was decreased in the articular cartilage of Mig-6over/over mice. CONCLUSION Overexpression of Mig-6 in the articular cartilage causes no major developmental phenotype; however, these mice develop earlier OA during aging. These data demonstrate that Mig-6/EGFR pathways are critical for joint homeostasis and might present a promising therapeutic target for OA.
Collapse
Affiliation(s)
- Melina Bellini
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Western University Bone and Joint Institute, London, ON, Canada
| | - Michael A Pest
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Western University Bone and Joint Institute, London, ON, Canada
| | - Manuela Miranda-Rodrigues
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Western University Bone and Joint Institute, London, ON, Canada
- Children's Health Research Institute, London, ON, Canada
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Frank Beier
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.
- Western University Bone and Joint Institute, London, ON, Canada.
- Children's Health Research Institute, London, ON, Canada.
| |
Collapse
|
12
|
Kubota N, Suyama M. An integrated analysis of public genomic data unveils a possible functional mechanism of psoriasis risk via a long-range ERRFI1 enhancer. BMC Med Genomics 2020; 13:8. [PMID: 31969149 PMCID: PMC6977261 DOI: 10.1186/s12920-020-0662-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease, for which genome-wide association studies (GWAS) have identified many genetic variants as risk markers. However, the details of underlying molecular mechanisms, especially which variants are functional, are poorly understood. METHODS We utilized a computational approach to survey psoriasis-associated functional variants that might affect protein functions or gene expression levels. We developed a pipeline by integrating publicly available datasets provided by GWAS Catalog, FANTOM5, GTEx, SNP2TFBS, and DeepBlue. To identify functional variants on exons or splice sites, we used a web-based annotation tool in the Ensembl database. To search for noncoding functional variants within promoters or enhancers, we used eQTL data calculated by GTEx. The data of variants lying on transcription factor binding sites provided by SNP2TFBS were used to predict detailed functions of the variants. RESULTS We discovered 22 functional variant candidates, of which 8 were in noncoding regions. We focused on the enhancer variant rs72635708 (T > C) in the 1p36.23 region; this variant is within the enhancer region of the ERRFI1 gene, which regulates lipid metabolism in the liver and skin morphogenesis via EGF signaling. Further analysis showed that the ERRFI1 promoter spatially contacts with the enhancer, despite the 170 kb distance between them. We found that this variant lies on the AP-1 complex binding motif and may modulate binding levels. CONCLUSIONS The minor allele rs72635708 (rs72635708-C) might affect the ERRFI1 promoter activity, which results in unstable expression of ERRFI1, enhancing the risk of psoriasis via disruption of lipid metabolism and skin cell proliferation. Our study represents a successful example of predicting molecular pathogenesis by integration and reanalysis of public data.
Collapse
Affiliation(s)
- Naoto Kubota
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, 102-0083, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
13
|
Asgarbeik S, Mohammad Amoli M, Enayati S, Bandarian F, Nasli-Esfahani E, Forouzanfar K, Razi F, Angaji SA. The Role of ERRFI1+808T/G Polymorphism in Diabetic Nephropathy. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 8:49-55. [PMID: 32351909 PMCID: PMC7175607 DOI: 10.22088/ijmcm.bums.8.2.49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/06/2019] [Indexed: 11/17/2022]
Abstract
Nephropathy is a common diabetes complication. ERRFI1 gene which participates in various cellular pathways has been proposed as a candidate gene in diabetic nephropathy. This study aimed to investigate the role of +808T/G polymorphism (rs377349) in ERRFI1 gene in diabetic nephropathy. In this case-control study, patients including diabetes with nephropathy (DN=104), type 2 diabetes without nephropathy (DM=100), and healthy controls (HC=106) were included. DNA was extracted from blood, and genotyping of the +808T/G polymorphism was carried out using PCR-RFLP technique. The differences for genotype and allele frequencies for +808T/G polymorphism in ERRFI1 gene between DN vs. HC and DN+DM vs. HC were significant (P<0.05) while no significant difference between DN and DM was observed. The allele frequencies were significantly different in DN vs. HC and DN+DM vs. HC in males but not in females. G allele of +808T/G polymorphism in ERRFI1 gene has no significant role in development and progression of diabetic nephropathy in diabetes patients while it is a risk allele for developing diabetes in Iranian population.
Collapse
Affiliation(s)
- Saeedeh Asgarbeik
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mahsa Mohammad Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Enayati
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bandarian
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Katayoon Forouzanfar
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Abdolhamid Angaji
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
14
|
The Tumor Suppressor MIG6 Controls Mitotic Progression and the G2/M DNA Damage Checkpoint by Stabilizing the WEE1 Kinase. Cell Rep 2018; 24:1278-1289. [DOI: 10.1016/j.celrep.2018.06.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 03/07/2018] [Accepted: 06/13/2018] [Indexed: 12/27/2022] Open
|
15
|
Boopathy GTK, Lynn JLS, Wee S, Gunaratne J, Hong W. Phosphorylation of Mig6 negatively regulates the ubiquitination and degradation of EGFR mutants in lung adenocarcinoma cell lines. Cell Signal 2017; 43:21-31. [PMID: 29196224 DOI: 10.1016/j.cellsig.2017.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/16/2017] [Accepted: 11/27/2017] [Indexed: 12/29/2022]
Abstract
Activating mutations in the kinase domain of epidermal growth factor receptor (EGFR) leads to the constitutively active kinase, improves the EGFR stability and promotes malignant transformation in lung adenocarcinoma. Despite the clinical significance, the mechanism by which the increased kinase activity stabilizes the receptor is not completely understood. Using SILAC phosphoproteomic approach, we identify that Mig6 is highly phosphorylated at S256 in EGFR mutants (19del and L858R). Loss of Mig6 contributes to the efficient degradation of EGFR wildtype and mutants in lung cancer cells. Mig6 regulates the recruitment of c-Cbl to EGFR as the ablation of Mig6 enables efficient ubiquitination of the EGFR mutants through elevated recruitment of c-Cbl. We show that the cells with activating mutants of EGFR inactivate Mig6 through phosphorylation at S256. Inactivated Mig6 causes inefficient ubiquitination of EGFR, leading to defective degradation of the receptor thus contributing to the increased stability of the receptor. Taken together, we show a novel function of Mig6 in regulating the ubiquitination of EGFR.
Collapse
Affiliation(s)
- Gandhi T K Boopathy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore.
| | - Julia Lim Sze Lynn
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Sheena Wee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore.
| |
Collapse
|
16
|
Deng Y, Li J. Rational Optimization of Tumor Suppressor-Derived Peptide Inhibitor Selectivity between Oncogene Tyrosine Kinases ErbB1 and ErbB2. Arch Pharm (Weinheim) 2017; 350. [PMID: 29131383 DOI: 10.1002/ardp.201700181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/23/2017] [Accepted: 10/04/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Yilin Deng
- Weifang People's Hospital affiliated to Weifang Medical University; Weifang; China
| | - Jian Li
- The 89th Hospital of People's Liberation Army; Weifang; China
| |
Collapse
|
17
|
Liu J, Cho SN, Wu SP, Jin N, Moghaddam SJ, Gilbert JL, Wistuba I, DeMayo FJ. Mig-6 deficiency cooperates with oncogenic Kras to promote mouse lung tumorigenesis. Lung Cancer 2017; 112:47-56. [PMID: 29191600 PMCID: PMC5718380 DOI: 10.1016/j.lungcan.2017.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/12/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Lung cancer is the leading cause of cancer related deaths worldwide and mutation activating KRAS is one of the most frequent mutations found in lung adenocarcinoma. Identifying regulators of KRAS may aid in the development of therapies to treat this disease. The mitogen-induced gene 6, MIG-6, is a small adaptor protein modulating signaling in cells to regulate the growth and differentiation in multiple tissues. Here, we investigated the role of Mig-6 in regulating adenocarcinoma progression in the lungs of genetically engineered mice with activation of Kras. MATERIALS AND METHODS Using the CCSPCre mouse to specifically activate expression of the oncogenic KrasG12D in Club cells, we investigated the expression of Mig-6 in CCSPCreKrasG12D-induced lung tumors. To determine the role of Mig-6 in KrasG12D-induced lung tumorigenesis, Mig-6 was conditionally ablated in the Club cells by breeding Mig6f/f mice to CCSPCreKrasG12D mice, yielding CCSPCreMig-6d/dKrasG12D mice (Mig-6d/dKrasG12D). RESULTS We found that Mig-6 expression is decreased in CCSPCreKrasG12D-induced lung tumors. Ablation of Mig-6 in the KrasG12D background led to enhanced tumorigenesis and reduced life expectancy. During tumor progression, there was increased airway hyperplasia, a heightened inflammatory response, reduced apoptosis in KrasG12D mouse lungs, and an increase of total and phosphorylated ERBB4 protein levels. Mechanistically, Mig-6 deficiency attenuates the cell apoptosis of lung tumor expressing KRASG12D partially through activating the ErbB4 pathway. CONCLUSIONS In summary, Mig-6 deficiency promotes the development of KrasG12D-induced lung adenoma through reducing the cell apoptosis in KrasG12D mouse lungs partially by activating the ErbB4 pathway.
Collapse
Affiliation(s)
- Jian Liu
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Sung-Nam Cho
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - San-Pin Wu
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Nili Jin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jennifer L Gilbert
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Francesco J DeMayo
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA.
| |
Collapse
|
18
|
Single-cell RNA sequencing reveals an altered gene expression pattern as a result of CRISPR/cas9-mediated deletion of Gene 33/Mig6 and chronic exposure to hexavalent chromium in human lung epithelial cells. Toxicol Appl Pharmacol 2017; 330:30-39. [PMID: 28688920 DOI: 10.1016/j.taap.2017.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 02/07/2023]
Abstract
Gene 33 (Mig6, ERRFI1) is an adaptor protein with multiple cellular functions. We recently reported that depletion of this protein promotes lung epithelial cell transformation induced by hexavalent chromium [Cr(VI)]. However, the early molecular events that mediate this process are not clear. In the present study, we used single-cell RNA sequencing to compare gene expression profiles between BEAS-2B lung epithelial cells chronically exposed to a sublethal dose of Cr(VI) with or without CRISPR/cas9-mediated deletion of Gene 33. Our data reveal 83 differentially expressed genes. The most notable changes are genes associated with cell adhesion, oxidative stresses, protein ubiquitination, epithelial-mesenchymal transition/metastasis, and WNT signaling. Up-regulation of some neuro-specific genes is also evident, particularly ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), a deubiquitinase and potential biomarker for lung cancer. Gene 33 deletion and/or Cr(VI) exposure did not cause discernable changes in cell morphology. However, Gene 33 deletion led to a modest but significant reduction of cells in the G2/M phase of the cell cycle regardless of Cr(VI) exposure. Gene 33 deletion also significantly reduced cell proliferation. Interestingly, Cr(VI) exposure eliminated the difference in cell proliferation between the two genotypes. Gene 33 deletion also significantly elevated cell migration. Our data indicate that combined Gene 33 deletion and chronic Cr(VI) exposure produces a gene expression pattern and a phenotype resemble those of the transformed lung epithelial cells. Given the known association of UCHL1 with lung cancer, we propose that UCHL1 is an important player in the early stage of lung epithelial cell transformation and tumorigenesis.
Collapse
|
19
|
Li Z, Qu L, Luo W, Tian Y, Zhai H, Xu K, Zhong H. Mig-6 is down-regulated in HCC and inhibits the proliferation of HCC cells via the P-ERK/Cyclin D1 pathway. Exp Mol Pathol 2017; 102:492-499. [PMID: 28506767 DOI: 10.1016/j.yexmp.2017.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/11/2017] [Indexed: 12/15/2022]
Abstract
The ablation of Mig-6 has been shown to induce tumor formation in various tissues. However, the relationships between Mig-6 expression, clinical pathological factors, and prognosis have not been clarified in hepatocellular carcinoma (HCC), and the mechanism by which Mig-6 regulates the proliferation of HCC cells has not been reported. In this study, we investigated the clinical significance of the loss of Mig-6 expression in HCC and the mechanism underlying the inhibition of cell proliferation by Mig-6. The down-regulation of Mig-6 correlated significantly with large tumors, a more advanced BCLC stage, and a more advanced TNM stage, and low Mig-6 expression predicted significantly reduced survival. Low Mig-6 expression and high Cyclin D1 expression were independent predictors for survival. The overexpression of Mig-6 led to significant G1 arrest and growth inhibition in HCC cells, possibly through the inhibition P-ERK and Cyclin D1. These results indicate that Mig-6 expression is low in HCC, which predicts a poor prognosis. Mig-6 may regulate cell proliferation and the cell cycle through the P-ERK/Cyclin D1 pathway.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning province, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lianyue Qu
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, China
| | - Yulong Tian
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning province, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Huan Zhai
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning province, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ke Xu
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongshan Zhong
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning province, The First Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
20
|
Wang H, Guo C, Ren D, Xu T, Cao Y, Xiao W, Jiao W. Let it bind: cyclization of Mig-6 segment 2 to target EGFR signaling in lung cancer. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1849-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Gene 33/Mig6 inhibits hexavalent chromium-induced DNA damage and cell transformation in human lung epithelial cells. Oncotarget 2017; 7:8916-30. [PMID: 26760771 PMCID: PMC4891014 DOI: 10.18632/oncotarget.6866] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/25/2015] [Indexed: 01/01/2023] Open
Abstract
Hexavalent Chromium [Cr(VI)] compounds are human lung carcinogens and environmental/occupational hazards. The molecular mechanisms of Cr(VI) carcinogenesis appear to be complex and are poorly defined. In this study, we investigated the potential role of Gene 33 (ERRFI1, Mig6), a multifunctional adaptor protein, in Cr(VI)-mediated lung carcinogenesis. We show that the level of Gene 33 protein is suppressed by both acute and chronic Cr(VI) treatments in a dose- and time-dependent fashion in BEAS-2B lung epithelial cells. The inhibition also occurs in A549 lung bronchial carcinoma cells. Cr(VI) suppresses Gene 33 expression mainly through post-transcriptional mechanisms, although the mRNA level of gene 33 also tends to be lower upon Cr(VI) treatments. Cr(VI)-induced DNA damage appears primarily in the S phases of the cell cycle despite the high basal DNA damage signals at the G2M phase. Knockdown of Gene 33 with siRNA significantly elevates Cr(VI)-induced DNA damage in both BEAS-2B and A549 cells. Depletion of Gene 33 also promotes Cr(VI)-induced micronucleus (MN) formation and cell transformation in BEAS-2B cells. Our results reveal a novel function of Gene 33 in Cr(VI)-induced DNA damage and lung epithelial cell transformation. We propose that in addition to its role in the canonical EGFR signaling pathway and other signaling pathways, Gene 33 may also inhibit Cr(VI)-induced lung carcinogenesis by reducing DNA damage triggered by Cr(VI).
Collapse
|
22
|
Kim TH, Yoo JY, Jeong JW. Mig-6 Mouse Model of Endometrial Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 943:243-259. [PMID: 27910070 DOI: 10.1007/978-3-319-43139-0_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endometrial cancer is a frequently occurring gynecological disorder. Estrogen-dependent endometrioid carcinoma is the most common type of gynecological cancer. One of the major pathologic phenomena of endometrial cancer is the loss of estrogen (E2) and progesterone (P4) control over uterine epithelial cell proliferation. P4 antagonizes the growth-promoting properties of E2 in the uterus. P4 prevents the development of endometrial cancer associated with unopposed E2 by blocking E2 actions. Mitogen inducible gene 6 (Mig-6, Errfi1, RALT, or gene 33) is an immediate early response gene that can be induced by various mitogens and common chronic stress stimuli. Mig-6 has been identified as an important component of P4-mediated inhibition of E2 signaling in the uterus. Decreased expression of MIG-6 is observed in human endometrial carcinomas. Transgenic mice with Mig-6 ablation in the uterus develop endometrial hyperplasia and E2-dependent endometrial cancer. Thus, MIG-6 has a tumor suppressor function in endometrial tumorigenesis. The following discussion summarizes our current knowledge of Mig-6 mouse models and their role in understanding the molecular mechanisms of endometrial tumorigenesis and in the development of therapeutic approaches for endometrial cancer.
Collapse
Affiliation(s)
- Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI, 49503, USA
| | - Jung-Yoon Yoo
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI, 49503, USA
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
23
|
Scheving LA, Zhang X, Stevenson MC, Weintraub MA, Abbasi A, Clarke AM, Threadgill DW, Russell WE. Loss of hepatocyte ERBB3 but not EGFR impairs hepatocarcinogenesis. Am J Physiol Gastrointest Liver Physiol 2015; 309:G942-54. [PMID: 26492920 PMCID: PMC4683301 DOI: 10.1152/ajpgi.00089.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 10/18/2015] [Indexed: 01/31/2023]
Abstract
Epidermal growth factor receptor (EGFR) and ERBB3 have been implicated in hepatocellular carcinogenesis (HCC). However, it is not known whether altering the activity of either EGFR or ERBB3 affects HCC development. We now show that Egfr(Dsk5) mutant mice, which have a gain-of-function allele that increases basal EGFR kinase activity, develop spontaneous HCC by 10 mo of age. Their tumors show increased activation of EGFR, ERBB2, and ERBB3 as well as AKT and ERK1,2. Hepatocyte-specific models of EGFR and ERBB3 gene ablation were generated to evaluate how the loss of these genes affected tumor progression. Loss of either receptor tyrosine kinase did not alter liver development or regenerative liver growth following carbon tetrachloride injection. However, using a well-characterized model of HCC in which N-nitrosodiethylamine is injected into 14-day-old mice, we discovered that loss of hepatocellular ERBB3 but not EGFR, which occurred after tumor initiation, retarded liver tumor formation and cell proliferation. We found no evidence that this was due to increased apoptosis or diminished phosphatidylinositol-3-kinase activity in the ERBB3-null cells. However, the relative amount of phospho-STAT3 was diminished in tumors derived from these mice, suggesting that ERBB3 may promote HCC through STAT3 activation.
Collapse
Affiliation(s)
- Lawrence A. Scheving
- 1Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Xiuqi Zhang
- 1Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Mary C. Stevenson
- 1Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Michael A. Weintraub
- 1Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Annam Abbasi
- 1Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Andrea M. Clarke
- 1Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - David W. Threadgill
- 6Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas; and ,7Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas
| | - William E. Russell
- 1Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee; ,5Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee;
| |
Collapse
|
24
|
Anastasi S, Lamberti D, Alemà S, Segatto O. Regulation of the ErbB network by the MIG6 feedback loop in physiology, tumor suppression and responses to oncogene-targeted therapeutics. Semin Cell Dev Biol 2015; 50:115-24. [PMID: 26456277 DOI: 10.1016/j.semcdb.2015.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/02/2015] [Indexed: 01/08/2023]
Abstract
The ErbB signaling network instructs the execution of key cellular programs, such as cell survival, proliferation and motility, through the generation of robust signals of defined strength and duration. In contrast, unabated ErbB signaling disrupts tissue homeostasis and leads to cell transformation. Cells oppose the threat inherent in excessive ErbB activity through several mechanisms of negative feedback regulation. Inducible feedback inhibitors (IFIs) are expressed in the context of transcriptional responses triggered by ErbB signaling, thus being uniquely suited to regulate ErbB activity during the execution of complex cellular programs. This review focuses on MIG6, an IFI that restrains ErbB signaling by mediating ErbB kinase suppression and receptor down-regulation. We will review key issues in MIG6 function, regulation and tumor suppressor activity. Subsequently, the role for MIG6 loss in the pathogenesis of tumors driven by ErbB oncogenes as well as in the generation of cellular addiction to ErbB signaling will be discussed. We will conclude by analyzing feedback inhibition by MIG6 in the context of therapies directed against ErbB and non-ErbB oncogenes.
Collapse
Affiliation(s)
- Sergio Anastasi
- Laboratory of Cell Signaling, Regina Elena National Cancer Institute, via E. Chianesi, 53, 00144 Rome, Italy.
| | - Dante Lamberti
- Laboratory of Cell Signaling, Regina Elena National Cancer Institute, via E. Chianesi, 53, 00144 Rome, Italy.
| | - Stefano Alemà
- Institute of Cell Biology and Neurobiology, CNR, 00016 Monterotondo, Italy.
| | - Oreste Segatto
- Laboratory of Cell Signaling, Regina Elena National Cancer Institute, via E. Chianesi, 53, 00144 Rome, Italy.
| |
Collapse
|
25
|
Xu W, Zhu S, Zhou Y, Jin Y, Dai H, Wang X. Upregulation of mitogen-inducible gene 6 triggers antitumor effect and attenuates progesterone resistance in endometrial carcinoma cells. Cancer Gene Ther 2015; 22:536-41. [PMID: 26450625 DOI: 10.1038/cgt.2015.52] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/27/2015] [Accepted: 08/30/2015] [Indexed: 12/30/2022]
Abstract
Researches regarding mitogen-inducible gene 6 (Mig-6) have confirmed its role as a tumor suppressor and progesterone resistance factor in endometrium. In this study, after confirming the downregulation of Mig-6 protein in endometrial carcinoma (EC) tissues, the expression of Mig-6 was upregulated in Ishikawa cells by pCMV6-Mig-6 plasmid. We observed the increased apoptosis, decreased proliferation and invasion potential of Ishikawa cells after upregulation of Mig-6. The proapoptosis ability of P4 significantly enhanced by 39.36%, the antiproliferation ability increased by 37.90% and the anti-invasion ability increased by 48.89%, suggesting the antiprogesterone resistance potential of Mig-6 in endometrium. In addition, the results suggested that Mig-6 may induce Ishikawa cell apoptosis through the mitochondrial pathway, inhibit cell proliferation via the extracellular signal-regulated kinase pathway and the anti-invasion potential may associate with matrix metalloproteinase (MMP)-2 and MMP-9 downexpression. Therefore, upregulation of Mig-6 may add a new strategy to suppress endometrial tumorigenesis and attenuate the progesterone resistance during P4 treatment.
Collapse
Affiliation(s)
- W Xu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University (also named Jiangsu Province Hospital), Nanjing, People's Republic of China
| | - S Zhu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University (also named Jiangsu Province Hospital), Nanjing, People's Republic of China
| | - Y Zhou
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University (also named Jiangsu Province Hospital), Nanjing, People's Republic of China
| | - Y Jin
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University (also named Jiangsu Province Hospital), Nanjing, People's Republic of China
| | - H Dai
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University (also named Jiangsu Province Hospital), Nanjing, People's Republic of China
| | - X Wang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University (also named Jiangsu Province Hospital), Nanjing, People's Republic of China
| |
Collapse
|
26
|
Milewska M, Romano D, Herrero A, Guerriero ML, Birtwistle M, Quehenberger F, Hatzl S, Kholodenko BN, Segatto O, Kolch W, Zebisch A. Mitogen-Inducible Gene-6 Mediates Feedback Inhibition from Mutated BRAF towards the Epidermal Growth Factor Receptor and Thereby Limits Malignant Transformation. PLoS One 2015; 10:e0129859. [PMID: 26065894 PMCID: PMC4466796 DOI: 10.1371/journal.pone.0129859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/13/2015] [Indexed: 01/15/2023] Open
Abstract
BRAF functions in the RAS-extracellular signal-regulated kinase (ERK) signaling cascade. Activation of this pathway is necessary to mediate the transforming potential of oncogenic BRAF, however, it may also cause a negative feedback that inhibits the epidermal growth factor receptor (EGFR). Mitogen-inducible gene-6 (MIG-6) is a potent inhibitor of the EGFR and has been demonstrated to function as a tumor suppressor. As MIG-6 can be induced via RAS-ERK signaling, we investigated its potential involvement in this negative regulatory loop. Focus formation assays were performed and demonstrated that MIG-6 significantly reduces malignant transformation induced by oncogenic BRAF. Although this genetic interaction was mirrored by a physical interaction between MIG-6 and BRAF, we did not observe a direct regulation of BRAF kinase activity by MIG-6. Interestingly, a selective chemical EGFR inhibitor suppressed transformation to a similar degree as MIG-6, whereas combining these approaches had no synergistic effect. By analyzing a range of BRAF mutated and wildtype cell line models, we could show that BRAF V600E causes a strong upregulation of MIG-6, which was mediated at the transcriptional level via the RAS-ERK pathway and resulted in downregulation of EGFR activation. This feedback loop is operational in tumors, as shown by the analysis of almost 400 patients with papillary thyroid cancer (PTC). Presence of BRAF V600E correlated with increased MIG-6 expression on the one hand, and with inactivation of the EGFR and of PI3K/AKT signaling on the other hand. Importantly, we also observed a more aggressive disease phenotype when BRAF V600E coexisted with low MIG-6 expression. Finally, analysis of methylation data was performed and revealed that higher methylation of MIG-6 correlated to its decreased expression. Taken together, we demonstrate that MIG-6 efficiently reduces cellular transformation driven by oncogenic BRAF by orchestrating a negative feedback circuit directed towards the EGFR.
Collapse
Affiliation(s)
| | - David Romano
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Ana Herrero
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | - Marc Birtwistle
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Franz Quehenberger
- Institute of Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Stefan Hatzl
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Boris N. Kholodenko
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Oreste Segatto
- Laboratory of Immunology, Regina Elena Cancer Institute, Rome, Italy
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Armin Zebisch
- Division of Hematology, Medical University of Graz, Graz, Austria
- * E-mail:
| |
Collapse
|
27
|
Maity TK, Venugopalan A, Linnoila I, Cultraro CM, Giannakou A, Nemati R, Zhang X, Webster JD, Ritt D, Ghosal S, Hoschuetzky H, Simpson RM, Biswas R, Politi K, Morrison DK, Varmus HE, Guha U. Loss of MIG6 Accelerates Initiation and Progression of Mutant Epidermal Growth Factor Receptor-Driven Lung Adenocarcinoma. Cancer Discov 2015; 5:534-49. [PMID: 25735773 DOI: 10.1158/2159-8290.cd-14-0750] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 02/20/2015] [Indexed: 12/19/2022]
Abstract
UNLABELLED Somatic mutations in the EGFR kinase domain drive lung adenocarcinoma. We have previously identified MIG6, an inhibitor of ERBB signaling and a potential tumor suppressor, as a target for phosphorylation by mutant EGFRs. Here, we demonstrate that MIG6 is a tumor suppressor for the initiation and progression of mutant EGFR-driven lung adenocarcinoma in mouse models. Mutant EGFR-induced lung tumor formation was accelerated in Mig6-deficient mice, even with Mig6 haploinsufficiency. We demonstrate that constitutive phosphorylation of MIG6 at Y394/Y395 in EGFR-mutant human lung adenocarcinoma cell lines is associated with an increased interaction of MIG6 with mutant EGFR, which may stabilize EGFR protein. MIG6 also fails to promote mutant EGFR degradation. We propose a model whereby increased tyrosine phosphorylation of MIG6 decreases its capacity to inhibit mutant EGFR. Nonetheless, the residual inhibition is sufficient for MIG6 to delay mutant EGFR-driven tumor initiation and progression in mouse models. SIGNIFICANCE This study demonstrates that MIG6 is a potent tumor suppressor for mutant EGFR-driven lung tumor initiation and progression in mice and provides a possible mechanism by which mutant EGFR can partially circumvent this tumor suppressor in human lung adenocarcinoma.
Collapse
Affiliation(s)
- Tapan K Maity
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Abhilash Venugopalan
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Ilona Linnoila
- Cell and Cancer Biology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Constance M Cultraro
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Andreas Giannakou
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Roxanne Nemati
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Xu Zhang
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Joshua D Webster
- Laboratory of Cancer Biology and Genetics, NCI, Bethesda, Maryland
| | - Daniel Ritt
- Laboratory of Cell and Developmental Signaling, NCI, Frederick, Maryland
| | - Sarani Ghosal
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | | | - R Mark Simpson
- Laboratory of Cancer Biology and Genetics, NCI, Bethesda, Maryland
| | - Romi Biswas
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Katerina Politi
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, NCI, Frederick, Maryland
| | - Harold E Varmus
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Udayan Guha
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland. Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
28
|
Pest MA, Russell BA, Zhang YW, Jeong JW, Beier F. Disturbed cartilage and joint homeostasis resulting from a loss of mitogen-inducible gene 6 in a mouse model of joint dysfunction. Arthritis Rheumatol 2014; 66:2816-27. [PMID: 24966136 DOI: 10.1002/art.38758] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 06/19/2014] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Mitogen-inducible gene 6 (MIG-6) regulates epidermal growth factor receptor (EGFR) signaling in synovial joint tissues. Whole-body knockout of the Mig6 gene in mice has been shown to induce osteoarthritis and joint degeneration. To evaluate the role of chondrocytes in this process, Mig6 was conditionally deleted from Col2a1-expressing cell types in the cartilage of mice. METHODS Bone and cartilage in the synovial joints of cartilage-specific Mig6-deleted (knockout [KO]) mice and control littermates were compared. Histologic staining and immunohistochemical analyses were used to evaluate joint pathology as well as the expression of key extracellular matrix and regulatory proteins. Calcified tissue in synovial joints was assessed by micro-computed tomography (micro-CT) and whole-skeleton staining. RESULTS Formation of long bones was found to be normal in KO animals. Cartilage thickness and proteoglycan staining of articular cartilage in the knee joints of 12-week-old KO mice were increased as compared to controls, with higher cellularity throughout the tissue. Radiopaque chondro-osseous nodules appeared in the knees of KO animals by 12 weeks of age and progressed to calcified bone-like tissue by 36 weeks of age. Nodules were also observed in the spine of 36-week-old animals. Erosion of bone at ligament entheses was evident by 12 weeks of age, by both histologic and micro-CT assessment. CONCLUSION MIG-6 expression in chondrocytes is important for the maintenance of cartilage and joint homeostasis. Dysregulation of EGFR signaling in chondrocytes results in anabolic activity in cartilage, but erosion of ligament entheses and the formation of ectopic chondro-osseous nodules severely disturb joint physiology.
Collapse
|
29
|
CIP4 promotes lung adenocarcinoma metastasis and is associated with poor prognosis. Oncogene 2014; 34:3527-35. [PMID: 25174397 PMCID: PMC4978543 DOI: 10.1038/onc.2014.280] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/28/2022]
Abstract
Aberrant Epidermal growth factor receptor (EGFR) signaling in non-small cell lung cancer (NSCLC) is linked to tumor progression, metastasis, and poor survival rates. Here, we report the role of Cdc42-interacting protein 4 (CIP4) in the regulation of NSCLC cell invasiveness and tumor metastasis. CIP4 was highly expressed in a panel of NSCLC cell lines and normal lung epithelial cell lines. Stable knock-down (KD) of CIP4 in lung adenocarcinoma H1299 cells, expressing wild-type EGFR, led to increased EGFR levels on the cell surface, and defects in sustained activation of Erk kinase in H1299 cells treated with EGF. CIP4 localized to leading edge projections in NSCLC cells, and CIP4 KD cells displayed defects in EGF-induced cell motility and invasion through extracellular matrix. This correlated with reduced expression and activity of matrix metalloproteinase-2 (MMP-2) in CIP4 KD cells compared to control. In xenograft assays, CIP4 silencing had no effect on tumor growth, but resulted in significant defects in spontaneous metastases to the lungs from these subcutaneous tumors. This correlated with reduced expression of the Erk target gene Zeb1, and the Zeb1 target gene MMP-2 in CIP4 KD tumors compared to control. CIP4 also enhanced rates of metastasis to the liver and lungs in an intrasplenic experimental metastasis model. In human NSCLC tumor sections, CIP4 expression was elevated ≥ 2-fold in 43% of adenocarcinomas and 32% of squamous carcinomas compared to adjacent normal lung tissues. Analysis of microarray data for NSCLC patients also revealed that high CIP4 transcript levels correlated with reduced overall survival. Together, these results identify CIP4 as a positive regulator of NSCLC metastasis, and a potential poor prognostic biomarker in lung adenocarcinoma.
Collapse
|
30
|
Milewska M, Kolch W. Mig-6 participates in the regulation of cell senescence and retinoblastoma protein phosphorylation. Cell Signal 2014; 26:1870-7. [PMID: 24815188 DOI: 10.1016/j.cellsig.2014.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 12/13/2022]
Abstract
Mitogen-inducible gene-6 (Mig-6) is a cytosolic multiadaptor protein that is best known for its role as a negative feedback regulator of epidermal growth factor receptor (EGFR) mediated signalling. Alternative roles of Mig-6 are becoming increasingly recognised. Consistently with this, Mig-6 was demonstrated to be involved in a broad spectrum of cellular events including tumour suppression which may include the induction of cellular senescence. Here, we investigated the mechanisms of Mig-6 induced premature cell senescence. Endogenous Mig-6 is poorly expressed in young fibroblasts, whilst its expression rises in cells presenting with typical features of senescence. Overexpression of Mig-6 is sufficient to trigger premature cellular senescence of early passage diploid lung fibroblasts (WI-38). Interestingly, Mig-6 overexpression reduced retinoblastoma protein (pRb) phosphorylation at the inactivating Ser249/Thr252 sites. We also found that phosphorylation of these sites in pRb is increased in the presence of the B-Raf V600E oncogenic mutation. We further show that Mig-6 overexpression reduces B-Raf V600E mediated pRb inactivation and preserves pRb function.
Collapse
Affiliation(s)
- Malgorzata Milewska
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
31
|
LI ZIXUAN, QU LIANYUE, ZHONG HONGSHAN, XU KE, QIU XUESHAN, WANG ENHUA. Low expression of Mig-6 is associated with poor survival outcome in NSCLC and inhibits cell apoptosis via ERK-mediated upregulation of Bcl-2. Oncol Rep 2014; 31:1707-14. [DOI: 10.3892/or.2014.3050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 02/07/2014] [Indexed: 11/05/2022] Open
|
32
|
Borad MJ, Champion MD, Egan JB, Liang WS, Fonseca R, Bryce AH, McCullough AE, Barrett MT, Hunt K, Patel MD, Young SW, Collins JM, Silva AC, Condjella RM, Block M, McWilliams RR, Lazaridis KN, Klee EW, Bible KC, Harris P, Oliver GR, Bhavsar JD, Nair AA, Middha S, Asmann Y, Kocher JP, Schahl K, Kipp BR, Barr Fritcher EG, Baker A, Aldrich J, Kurdoglu A, Izatt T, Christoforides A, Cherni I, Nasser S, Reiman R, Phillips L, McDonald J, Adkins J, Mastrian SD, Placek P, Watanabe AT, LoBello J, Han H, Von Hoff D, Craig DW, Stewart AK, Carpten JD. Integrated genomic characterization reveals novel, therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma. PLoS Genet 2014; 10:e1004135. [PMID: 24550739 PMCID: PMC3923676 DOI: 10.1371/journal.pgen.1004135] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/06/2013] [Indexed: 12/18/2022] Open
Abstract
Advanced cholangiocarcinoma continues to harbor a difficult prognosis and therapeutic options have been limited. During the course of a clinical trial of whole genomic sequencing seeking druggable targets, we examined six patients with advanced cholangiocarcinoma. Integrated genome-wide and whole transcriptome sequence analyses were performed on tumors from six patients with advanced, sporadic intrahepatic cholangiocarcinoma (SIC) to identify potential therapeutically actionable events. Among the somatic events captured in our analysis, we uncovered two novel therapeutically relevant genomic contexts that when acted upon, resulted in preliminary evidence of anti-tumor activity. Genome-wide structural analysis of sequence data revealed recurrent translocation events involving the FGFR2 locus in three of six assessed patients. These observations and supporting evidence triggered the use of FGFR inhibitors in these patients. In one example, preliminary anti-tumor activity of pazopanib (in vitro FGFR2 IC50≈350 nM) was noted in a patient with an FGFR2-TACC3 fusion. After progression on pazopanib, the same patient also had stable disease on ponatinib, a pan-FGFR inhibitor (in vitro, FGFR2 IC50≈8 nM). In an independent non-FGFR2 translocation patient, exome and transcriptome analysis revealed an allele specific somatic nonsense mutation (E384X) in ERRFI1, a direct negative regulator of EGFR activation. Rapid and robust disease regression was noted in this ERRFI1 inactivated tumor when treated with erlotinib, an EGFR kinase inhibitor. FGFR2 fusions and ERRFI mutations may represent novel targets in sporadic intrahepatic cholangiocarcinoma and trials should be characterized in larger cohorts of patients with these aberrations. Cholangiocarcinoma is a cancer that affects the bile ducts. Unfortunately, many patients diagnosed with cholangiocarcinoma have disease that cannot be treated with surgery or has spread to other parts of the body, thus severely limiting treatment options. New advances in drug treatment have enabled treatment of these cancers with “targeted therapy” that exploits an error in the normal functioning of a tumor cell, compared to other cells in the body, thus allowing only tumor cells to be killed by the drug. We sought to identify changes in the genetic material of cholangiocarcinoma patient tumors in order to identify potential errors in cellular functioning by utilizing cutting edge genetic sequencing technology. We identified three patient tumors possessing an FGFR2 gene that was aberrantly fused to another gene. Two of these patients were able to receive targeted therapy for FGFR2 with resulting tumor shrinkage. A fourth tumor contained an error in a gene that controls a very important cellular mechanism in cancer, termed epidermal growth factor pathway (EGFR). This patient received therapy targeting this mechanism and also demonstrated response to treatment. Thus, we have been able to utilize cutting edge technology with targeted drug treatment to personalize medical treatment for cancer in cholangiocarcinoma patients.
Collapse
Affiliation(s)
- Mitesh J. Borad
- Division of Hematology/Oncology Mayo Clinic, Scottsdale, Arizona, United States of America
- Mayo Clinic Cancer Center, Scottsdale, Arizona, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (MJB); (JDC)
| | - Mia D. Champion
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Jan B. Egan
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Winnie S. Liang
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Rafael Fonseca
- Division of Hematology/Oncology Mayo Clinic, Scottsdale, Arizona, United States of America
- Mayo Clinic Cancer Center, Scottsdale, Arizona, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Alan H. Bryce
- Division of Hematology/Oncology Mayo Clinic, Scottsdale, Arizona, United States of America
- Mayo Clinic Cancer Center, Scottsdale, Arizona, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ann E. McCullough
- Department of Pathology, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Michael T. Barrett
- Mayo Clinic Cancer Center, Scottsdale, Arizona, United States of America
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Katherine Hunt
- Division of Hematology/Oncology Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Maitray D. Patel
- Department of Radiology, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Scott W. Young
- Department of Radiology, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Joseph M. Collins
- Department of Radiology, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Alvin C. Silva
- Department of Radiology, Mayo Clinic, Scottsdale, Arizona, United States of America
| | | | - Matthew Block
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Cancer Center, Rochester, Minnesota, United States of America
| | - Robert R. McWilliams
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Cancer Center, Rochester, Minnesota, United States of America
| | | | - Eric W. Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Keith C. Bible
- Mayo Clinic Cancer Center, Rochester, Minnesota, United States of America
| | - Pamela Harris
- Investigational Drug Branch, National Cancer Institute, Rockville, Maryland, United States of America
| | - Gavin R. Oliver
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Jaysheel D. Bhavsar
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Asha A. Nair
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Sumit Middha
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Yan Asmann
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Jean-Pierre Kocher
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Kimberly Schahl
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Benjamin R. Kipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Emily G. Barr Fritcher
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Angela Baker
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Jessica Aldrich
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Ahmet Kurdoglu
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Tyler Izatt
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Alexis Christoforides
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Irene Cherni
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Sara Nasser
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Rebecca Reiman
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Lori Phillips
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Jackie McDonald
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Jonathan Adkins
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Stephen D. Mastrian
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Pamela Placek
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Aprill T. Watanabe
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Janine LoBello
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Haiyong Han
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Daniel Von Hoff
- Mayo Clinic Cancer Center, Scottsdale, Arizona, United States of America
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - David W. Craig
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - A. Keith Stewart
- Division of Hematology/Oncology Mayo Clinic, Scottsdale, Arizona, United States of America
- Mayo Clinic Cancer Center, Scottsdale, Arizona, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - John D. Carpten
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
- * E-mail: (MJB); (JDC)
| |
Collapse
|
33
|
Walsh AM, Lazzara MJ. Regulation of EGFR trafficking and cell signaling by Sprouty2 and MIG6 in lung cancer cells. J Cell Sci 2013; 126:4339-48. [PMID: 23868981 DOI: 10.1242/jcs.123208] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The duration and specificity of epidermal growth factor receptor (EGFR) activation and signaling are determinants of cellular decision processes and are tightly regulated by receptor dephosphorylation, internalization and degradation. In addition, regulatory proteins that are upregulated or activated post-transcriptionally upon receptor activation may initiate feedback loops that play crucial roles in spatiotemporal regulation of signaling. We examined the roles of Sprouty2 (SPRY2) and mitogen-inducible gene 6 (MIG6), two feedback regulators of EGFR trafficking and signaling, in lung cancer cells with or without EGFR-activating mutations. These mutations are of interest because they confer unusual cellular sensitivity to EGFR inhibition through a mechanism involving an impairment of EGFR endocytosis. We found that the endocytosis of wild-type and mutant EGFR was promoted by SPRY2 knockdown and antagonized by MIG6 knockdown. SPRY2 knockdown also significantly reduced extracellular signal-regulated kinase (ERK) phosphorylation, EGFR expression, and EGFR recycling. In a cell line expressing mutant EGFR, this effect on ERK led to a marked increase in cell death response to EGFR inhibition. The effects of SPRY2 knockdown on EGFR endocytosis and recycling were primarily the result of the concomitant change in EGFR expression, but this was not true for the observed changes in ERK phosphorylation. Thus, our study demonstrates that SPRY2 and MIG6 are important regulators of wild-type and mutant EGFR trafficking and points to an EGFR expression-independent function of SPRY2 in the regulation of ERK activity that may impact cellular sensitivity to EGFR inhibitors, especially in the context of EGFR mutation.
Collapse
Affiliation(s)
- Alice M Walsh
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
34
|
Cancer-type regulation of MIG-6 expression by inhibitors of methylation and histone deacetylation. PLoS One 2012; 7:e38955. [PMID: 22701735 PMCID: PMC3373526 DOI: 10.1371/journal.pone.0038955] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/15/2012] [Indexed: 12/31/2022] Open
Abstract
Epigenetic silencing is one of the mechanisms leading to inactivation of a tumor suppressor gene, either by DNA methylation or histone modification in a promoter regulatory region. Mitogen inducible gene 6 (MIG-6), mainly known as a negative feedback inhibitor of the epidermal growth factor receptor (EGFR) family, is a tumor suppressor gene that is associated with many human cancers. To determine if MIG-6 is inactivated by epigenetic alteration, we identified a group of human lung cancer and melanoma cell lines in which its expression is either low or undetectable and studied the effects of methylation and of histone deacetylation on its expression. The DNA methyltransferase (DNMT) inhibitor 5-aza-2′-deoxycytidine (5-aza-dC) induced MIG-6 expression in melanoma cell lines but little in lung cancer lines. By contrast, the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) induced MIG-6 expression in lung cancer lines but had little effect in melanoma lines. However, the MIG-6 promoter itself did not appear to be directly affected by either methylation or histone deacetylation, indicating an indirect regulatory mechanism. Luciferase reporter assays revealed that a short segment of exon 1 in the MIG-6 gene is responsible for TSA response in the lung cancer cells; thus, the MIG-6 gene can be epigenetically silenced through an indirect mechanism without having a physical alteration in its promoter. Furthermore, our data also suggest that MIG-6 gene expression is differentially regulated in lung cancer and melanoma.
Collapse
|
35
|
Whitsett TG, Cheng E, Inge L, Asrani K, Jameson NM, Hostetter G, Weiss GJ, Kingsley CB, Loftus JC, Bremner R, Tran NL, Winkles JA. Elevated expression of Fn14 in non-small cell lung cancer correlates with activated EGFR and promotes tumor cell migration and invasion. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:111-20. [PMID: 22634180 DOI: 10.1016/j.ajpath.2012.03.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 02/09/2012] [Accepted: 03/06/2012] [Indexed: 11/26/2022]
Abstract
Lung cancer is the leading cause of cancer deaths worldwide; approximately 85% of these cancers are non-small cell lung cancer (NSCLC). Patients with NSCLC frequently have tumors harboring somatic mutations in the epidermal growth factor receptor (EGFR) gene that cause constitutive receptor activation. These patients have the best clinical response to EGFR tyrosine kinase inhibitors (TKIs). Herein, we show that fibroblast growth factor-inducible 14 (Fn14; TNFRSF12A) is frequently overexpressed in NSCLC tumors, and Fn14 levels correlate with p-EGFR expression. We also report that NSCLC cell lines that contain EGFR-activating mutations show high levels of Fn14 protein expression. EGFR TKI treatment of EGFR-mutant HCC827 cells decreased Fn14 protein levels, whereas EGF stimulation of EGFR wild-type A549 cells transiently increased Fn14 expression. Furthermore, Fn14 is highly expressed in EGFR-mutant H1975 cells that also contain an EGFR TKI-resistance mutation, and high TKI doses are necessary to reduce Fn14 levels. Constructs encoding EGFRs with activating mutations induced Fn14 expression when expressed in rat lung epithelial cells. We also report that short hairpin RNA-mediated Fn14 knockdown reduced NSCLC cell migration and invasion in vitro. Finally, Fn14 overexpression enhanced NSCLC cell migration and invasion in vitro and increased experimental lung metastases in vivo. Thus, Fn14 may be a novel therapeutic target for patients with NSCLC, in particular for those with EGFR-driven tumors who have either primary or acquired resistance to EGFR TKIs.
Collapse
Affiliation(s)
- Timothy G Whitsett
- Division of Cancer and Cell Biology, The Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Li Z, Qu L, Dong Q, Huang B, Li H, Tang Z, Xu Y, Luo W, Liu L, Qiu X, Wang E. Overexpression of CARMA3 in non-small-cell lung cancer is linked for tumor progression. PLoS One 2012; 7:e36903. [PMID: 22615840 PMCID: PMC3352848 DOI: 10.1371/journal.pone.0036903] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 04/09/2012] [Indexed: 11/18/2022] Open
Abstract
We aimed to investigate the clinical significance of the expression of novel scaffold protein CARMA3 in non-small-cell lung cancer (NSCLC) and the biological function of CARMA3 in NSCLC cell lines. We observed moderate to high CARMA3 staining in 68.8% of 141 NSCLC specimens compared to corresponding normal tissues. The overexpression of CARMA3 was significantly correlated with TNM stage (P = 0.022) and tumor status (P = 0.013). CARMA3 upregulation also correlated with a shorter survival rate of patients of nodal status N0 (P = 0.042)as well as the expression of epidermal growth factor receptor (EGFR) (P = 0.009). In EGFR mutation positive cases, CARMA3 expression was much higher (87.5%) compared to non-mutation cases (66.1%). In addition, we observed that knockdown of CARMA3 inhibits tumor cell proliferation and invasion, and induces cell cycle arrest at the boundary between the G1 and S phase. We further demonstrated a direct link between CARMA3 and NF-κB activation. The change of biological behavior in CARMA3 knockdown cells may be NF-κB-related. Our findings demonstrated, for the first time, that CARMA3 was overexpressed in NSCLC and correlated with lung cancer progression, EGFR expression, and EGFR mutation. CARMA3 could serve as a potential companion drug target, along with NF-kB and EGFR in EGFR-mutant lung cancers.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, People’s Republic of China
| | - Lianyue Qu
- Department of Pharmacy, First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Qianze Dong
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, People’s Republic of China
| | - Bo Huang
- Department of Pathology, Liaoning Cancer Hospital, Shenyang, People’s Republic of China
| | - Haiying Li
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, People’s Republic of China
| | - Zhongping Tang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, People’s Republic of China
| | - Ying Xu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, People’s Republic of China
| | - Wenting Luo
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, People’s Republic of China
| | - Lifeng Liu
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Xueshan Qiu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, People’s Republic of China
- * E-mail:
| | - Enhua Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|