1
|
Luo X, Ao S, Wu H, McClements DJ, Fang L, Huang M, Zhou Y, Yin X, Xi M, Cai T, Zhu K. Hyaluronic Acid Poly(glyceryl) 10-Stearate Derivatives: Novel Emulsifiers for Improving the Gastrointestinal Stability and Bioaccessibility of Coenzyme Q10 Nanoemulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37436914 DOI: 10.1021/acs.jafc.3c02322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Fish oils are a rich source of polyunsaturated fatty acids, including eicosapentaenoic acid and docosahexaenoic acid, which are reported to exhibit therapeutic effects in a variety of human diseases. However, these oils are highly susceptible to degradation due to oxidation, leading to rancidity and the formation of potentially toxic reaction products. The aim of this study was to synthesize a novel emulsifier (HA-PG10-C18) by esterifying hyaluronic acid with poly(glyceryl)10-stearate (PG10-C18). This emulsifier was then used to formulate nanoemulsion-based delivery systems to co-deliver fish oil and coenzyme Q10 (Q10). Q10-loaded fish oil-in-water nanoemulsions were fabricated, and then their physicochemical properties, digestibility, and bioaccessibility were measured. The results indicated that the environmental stability and antioxidant activity of oil droplets coated with HA-PG10-C18 surpassed those coated with PG10-C18 due to the formation of a denser interfacial layer that blocked metal ions, oxygen, and lipase. Meanwhile, the lipid digestibility and Q10 bioaccessibility of nanoemulsions formulated with HA-PG10-C18 (94.9 and 69.2%) were higher than those formulated with PG10-C18 (86.2 and 57.8%), respectively. These results demonstrated that the novel emulsifier synthesized in this study could be used to protect chemically labile fat-soluble substances from oxidative damage, while still retaining their nutritional value.
Collapse
Affiliation(s)
- Xiang Luo
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Sha Ao
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Hongze Wu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Likun Fang
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Mengyu Huang
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Yanyan Zhou
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Xuguang Yin
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Meiyang Xi
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Tao Cai
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Kewu Zhu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| |
Collapse
|
2
|
Sullivan DA, da Costa AX, Del Duca E, Doll T, Grupcheva CN, Lazreg S, Liu SH, McGee SR, Murthy R, Narang P, Ng A, Nistico S, O'Dell L, Roos J, Shen J, Markoulli M. TFOS Lifestyle: Impact of cosmetics on the ocular surface. Ocul Surf 2023; 29:77-130. [PMID: 37061220 PMCID: PMC11246752 DOI: 10.1016/j.jtos.2023.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023]
Abstract
In this report the use of eye cosmetic products and procedures and how this represents a lifestyle challenge that may exacerbate or promote the development of ocular surface and adnexal disease is discussed. Multiple aspects of eye cosmetics are addressed, including their history and market value, psychological and social impacts, possible problems associated with cosmetic ingredients, products, and procedures, and regulations for eye cosmetic use. In addition, a systematic review that critically appraises randomized controlled trial evidence concerning the ocular effects of eyelash growth products is included. The findings of this systematic review highlight the evidence gaps and indicate future directions for research to focus on ocular surface outcomes associated with eyelash growth products.
Collapse
Affiliation(s)
| | | | - Ester Del Duca
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | | | | | - Sihem Lazreg
- Lazreg Cornea and Ocular Surface Center, Blida, Algeria
| | - Su-Hsun Liu
- University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | | | | | | | - Alison Ng
- Centre for Ocular Research & Education, School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
| | - Steven Nistico
- Department of Dermatology, University Magna Graecia, Catanzaro, Italy
| | | | | | - Joanne Shen
- Department of Ophthalmology, Mayo Clinic in Arizona, Scottsdale, AZ, USA
| | - Maria Markoulli
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia
| |
Collapse
|
3
|
Adrover JM, McDowell SAC, He XY, Quail DF, Egeblad M. NETworking with cancer: The bidirectional interplay between cancer and neutrophil extracellular traps. Cancer Cell 2023; 41:505-526. [PMID: 36827980 DOI: 10.1016/j.ccell.2023.02.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
Neutrophils are major effectors and regulators of the immune system. They play critical roles not only in the eradication of pathogens but also in cancer initiation and progression. Conversely, the presence of cancer affects neutrophil activity, maturation, and lifespan. By promoting or repressing key neutrophil functions, cancer cells co-opt neutrophil biology to their advantage. This co-opting includes hijacking one of neutrophils' most striking pathogen defense mechanisms: the formation of neutrophil extracellular traps (NETs). NETs are web-like filamentous extracellular structures of DNA, histones, and cytotoxic granule-derived proteins. Here, we discuss the bidirectional interplay by which cancer stimulates NET formation, and NETs in turn support disease progression. We review how vascular dysfunction and thrombosis caused by neutrophils and NETs underlie an elevated risk of death from cardiovascular events in cancer patients. Finally, we propose therapeutic strategies that may be effective in targeting NETs in the clinical setting.
Collapse
Affiliation(s)
- Jose M Adrover
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Sheri A C McDowell
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada; Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Xue-Yan He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada; Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
4
|
Lockhart JS, Sumagin R. Non-Canonical Functions of Myeloperoxidase in Immune Regulation, Tissue Inflammation and Cancer. Int J Mol Sci 2022; 23:ijms232012250. [PMID: 36293108 PMCID: PMC9603794 DOI: 10.3390/ijms232012250] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Myeloperoxidase (MPO) is one of the most abundantly expressed proteins in neutrophils. It serves as a critical component of the antimicrobial defense system, facilitating microbial killing via generation of reactive oxygen species (ROS). Interestingly, emerging evidence indicates that in addition to the well-recognized canonical antimicrobial function of MPO, it can directly or indirectly impact immune cells and tissue responses in homeostatic and disease states. Here, we highlight the emerging non-canonical functions of MPO, including its impact on neutrophil longevity, activation and trafficking in inflammation, its interactions with other immune cells, and how these interactions shape disease outcomes. We further discuss MPO interactions with barrier forming endothelial and epithelial cells, specialized cells of the central nervous system (CNS) and its involvement in cancer progression. Such diverse function and the MPO association with numerous inflammatory disorders make it an attractive target for therapies aimed at resolving inflammation and limiting inflammation-associated tissue damage. However, while considering MPO inhibition as a potential therapy, one must account for the diverse impact of MPO activity on various cellular compartments both in health and disease.
Collapse
|
5
|
Valadez-Cosmes P, Raftopoulou S, Mihalic ZN, Marsche G, Kargl J. Myeloperoxidase: Growing importance in cancer pathogenesis and potential drug target. Pharmacol Ther 2021; 236:108052. [PMID: 34890688 DOI: 10.1016/j.pharmthera.2021.108052] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
Myeloperoxidase is a heme-peroxidase which makes up approximately 5% of the total dry cell weight of neutrophils where it is predominantly found in the primary (azurophilic) granules. Other cell types, such as monocytes and certain macrophage subpopulations also contain myeloperoxidase, but to a much lesser extent. Initially, the function of myeloperoxidase had been mainly associated with its ability as a catalyzer of reactive oxidants that help to clear pathogens. However, over the past years non-canonical functions of myeloperoxidase have been described both in health and disease. Attention has been specially focused on inflammatory diseases, in which an exacerbate infiltration of leukocytes can favor a poorly-controlled production and release of myeloperoxidase and its oxidants. There is compelling evidence that myeloperoxidase derived oxidants contribute to tissue damage and the development and propagation of acute and chronic vascular inflammation. Recently, neutrophils have attracted much attention within the large diversity of innate immune cells that are part of the tumor microenvironment. In particular, neutrophil-derived myeloperoxidase may play an important role in cancer development and progression. This review article aims to provide a comprehensive overview of the roles of myeloperoxidase in the development and progression of cancer. We propose future research approaches and explore prospects of inhibiting myeloperoxidase as a strategy to fight against cancer.
Collapse
Affiliation(s)
- Paulina Valadez-Cosmes
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Sofia Raftopoulou
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Zala Nikita Mihalic
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
6
|
Taucher E, Taucher V, Fink-Neuboeck N, Lindenmann J, Smolle-Juettner FM. Role of Tumor-Associated Neutrophils in the Molecular Carcinogenesis of the Lung. Cancers (Basel) 2021; 13:cancers13235972. [PMID: 34885082 PMCID: PMC8657214 DOI: 10.3390/cancers13235972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary This review of the literature aims at giving a concise overview of the impact of tumor-associated neutrophils (TANs) on lung carcinogenesis. In the first part of this manuscript, the general action mode of TANs in cancer is depicted, listing studies on several cancer entities and on mouse models. The latter part of this work focuses specifically on TANs in lung cancer, giving an outlook on future therapeutic implications of cancer immunity, using, for example, anti-cancer vaccines. Abstract Tumorigenesis is largely influenced by accompanying inflammation. Myeloid cells account for a significant proportion of pro-inflammatory cells within the tumor microenvironment. All steps of tumor formation and progression, such as the suppression of adaptive immune response, angio- and lymphangiogenesis, and the remodeling of the tumor stroma, are to some degree influenced by tumor-associated immune cells. Tumor-associated neutrophils (TANs), together with tumor-associated macrophages and myeloid-derived suppressor cells, count among tumor-associated myeloid cells. Still, the exact molecular mechanisms underlying the tumorigenic effects of TANs have not been investigated in detail. With this review of the literature, we aim to give an overview of the current data on TANs, with a special focus on lung cancer.
Collapse
Affiliation(s)
- Elisabeth Taucher
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8010 Graz, Austria
- Correspondence:
| | - Valentin Taucher
- Department of Internal Medicine, Division of Cardiology, Hospital Barmherzige Schwestern Ried, 4910 Ried, Austria;
| | - Nicole Fink-Neuboeck
- Department of Thoracic Surgery, Medical University of Graz, 8010 Graz, Austria; (N.F.-N.); (J.L.); (F.-M.S.-J.)
| | - Joerg Lindenmann
- Department of Thoracic Surgery, Medical University of Graz, 8010 Graz, Austria; (N.F.-N.); (J.L.); (F.-M.S.-J.)
| | | |
Collapse
|
7
|
Mizobuchi M, Ishidoh K, Kamemura N. A comparison of cell death mechanisms of antioxidants, butylated hydroxyanisole and butylated hydroxytoluene. Drug Chem Toxicol 2021; 45:1899-1906. [PMID: 34013795 DOI: 10.1080/01480545.2021.1894701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Butylated hydroxyanisole (BHA) and the chemically similar butylated hydroxytoluene (BHT) are widely used as antioxidants. Toxicity of BHA and BHT has been reported under in vitro and in vivo experimental conditions. However, the mechanism of BHA-induced toxic effects in cells is unclear. In this study, the cytotoxic effects of BHA and differences in cell death mechanism for BHA and BHT were investigated in rat thymocytes by flow cytometric analysis using a fluorescent probe. We observed a significant increase in propidium iodide fluorescence in the population of cells treated with 100 μM and 300 μM BHA (dead cells). Thymocytes treated with 100 µM BHA showed increased intracellular Ca2+ and Zn2+ levels and depolarized cell membranes. BHA (30-100 µM) decreased non-protein thiol content of cells, indicating decreased glutathione content. Co-stimulation with 100 µM BHA and 300 µM H2O2 acted synergistically to increase cell lethality. Moreover, BHA significantly increased caspase-3 activity and the number of annexin-V-positive cells in a concentration-dependent manner, indicating apoptosis. However, BHT reduced caspase-3 activity and increased the number of annexin-V-negative dead cells, indicating non-apoptotic cell death. Our results reveal the toxicity of BHA could be attributed to increased levels of intracellular Ca2+ and Zn2+, resulting in an increased vulnerability of rat thymocytes to oxidative stress. In addition, we demonstrate that whereas BHA induced apoptosis, BHT induced non-apoptotic cell death in rat thymocytes. Therefore, these results may support the safety of BHA, but also demonstrate the importance of performing toxicity evaluation at the cellular level besides the tissue level.
Collapse
Affiliation(s)
- Mizuki Mizobuchi
- Department of Food-Nutrition Sciences, Faculty of Life Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Kazumi Ishidoh
- Department of Food-Nutrition Sciences, Faculty of Life Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Norio Kamemura
- Department of Food-Nutrition Sciences, Faculty of Life Sciences, Tokushima Bunri University, Tokushima, Japan
| |
Collapse
|
8
|
Two-stage 3-methylcholanthrene and butylated hydroxytoluene-induced lung carcinogenesis in mice. Methods Cell Biol 2020; 163:153-173. [PMID: 33785163 DOI: 10.1016/bs.mcb.2020.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lung cancer is one of the deadliest types of cancer and as such requires disease models that are useful for identification of novel pathways for biomarkers as well as to test therapeutic agents. Adenocarcinoma (ADC), the most prevalent type of lung cancer, is a subtype of non-small cell lung carcinoma (NSCLC) and a disease driven mainly by smoking. However, it is also the most common subtype of lung cancer found in non-smokers with environmental exposures. Chemically driven models of lung cancer, also called primary models of lung cancer, are important because they do not overexpress or delete oncogenes or tumor suppressor genes, respectively, to increase oncogenesis. Instead these models test tumor development without forcing a specific pathway (i.e., Kras). The primary focus of this chapter is to discuss a well-established 2-stage mouse model of lung adenocarcinomas. The initiator (3-methylcholanthrene, MCA) does not elicit many, if any, tumors if not followed by exposure to the tumor promoter (butylated hydroxytoluene, BHT). In sensitive strains, such as A/J, FVB, and BALB, significantly greater numbers of tumors develop following the MCA/BHT protocol compared to MCA alone. BHT does not elicit tumors on its own; it is a non-genotoxic carcinogen and promoter. In these sensitive strains, promotion is also associated with inflammation characterized by infiltrating macrophages, lymphocytes, and neutrophils, and other inflammatory cell types in addition to increases in total protein content reflective of lung hyperpermeability. This 2-stage model is a useful tool to identify unique promotion specific events to then test in future intervention studies.
Collapse
|
9
|
Dysregulation of Gap Junction Function and Cytokine Production in Response to Non-Genotoxic Polycyclic Aromatic Hydrocarbons in an In Vitro Lung Cell Model. Cancers (Basel) 2019; 11:cancers11040572. [PMID: 31018556 PMCID: PMC6521202 DOI: 10.3390/cancers11040572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 01/09/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs), prevalent contaminants in our environment, in many occupations, and in first and second-hand smoke, pose significant adverse health effects. Most research focused on the genotoxic high molecular weight PAHs (e.g., benzo[a]pyrene), however, the nongenotoxic low molecular weight (LMW) PAHs are emerging as potential co-carcinogens and tumor promoters known to dysregulate gap junctional intercellular communication (GJIC), activate mitogen activated protein kinase pathways, and induce the release of inflammatory mediators. We hypothesize that inflammatory mediators resulting from LMW PAH exposure in mouse lung epithelial cell lines are involved in the dysregulation of GJIC. We used mouse lung epithelial cell lines and an alveolar macrophage cell line in the presence of a binary PAH mixture (1:1 ratio of fluoranthene and 1-methylanthracene; PAH mixture). Parthenolide, a pan-inflammation inhibitor, reversed the PAH-induced inhibition of GJIC, the decreased CX43 expression, and the induction of KC and TNF. To further determine the direct role of a cytokine in regulating GJIC, recombinant TNF (rTNF) was used to inhibit GJIC and this response was further enhanced in the presence of the PAH mixture. Collectively, these findings support a role for inflammation in regulating GJIC and the potential to target these early stage cancer pathways for therapeutics.
Collapse
|
10
|
Altorki NK, Markowitz GJ, Gao D, Port JL, Saxena A, Stiles B, McGraw T, Mittal V. The lung microenvironment: an important regulator of tumour growth and metastasis. Nat Rev Cancer 2019; 19:9-31. [PMID: 30532012 PMCID: PMC6749995 DOI: 10.1038/s41568-018-0081-9] [Citation(s) in RCA: 663] [Impact Index Per Article: 132.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lung cancer is a major global health problem, as it is the leading cause of cancer-related deaths worldwide. Major advances in the identification of key mutational alterations have led to the development of molecularly targeted therapies, whose efficacy has been limited by emergence of resistance mechanisms. US Food and Drug Administration (FDA)-approved therapies targeting angiogenesis and more recently immune checkpoints have reinvigorated enthusiasm in elucidating the prognostic and pathophysiological roles of the tumour microenvironment in lung cancer. In this Review, we highlight recent advances and emerging concepts for how the tumour-reprogrammed lung microenvironment promotes both primary lung tumours and lung metastasis from extrapulmonary neoplasms by contributing to inflammation, angiogenesis, immune modulation and response to therapies. We also discuss the potential of understanding tumour microenvironmental processes to identify biomarkers of clinical utility and to develop novel targeted therapies against lung cancer.
Collapse
Affiliation(s)
- Nasser K Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Geoffrey J Markowitz
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
| | - Dingcheng Gao
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey L Port
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ashish Saxena
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Brendon Stiles
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Timothy McGraw
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA.
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Kamemura N. Butylated hydroxytoluene, a food additive, modulates membrane potential and increases the susceptibility of rat thymocytes to oxidative stress. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.comtox.2018.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Advanced Role of Neutrophils in Common Respiratory Diseases. J Immunol Res 2017; 2017:6710278. [PMID: 28589151 PMCID: PMC5447318 DOI: 10.1155/2017/6710278] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/22/2017] [Accepted: 04/16/2017] [Indexed: 12/18/2022] Open
Abstract
Respiratory diseases, always being a threat towards the health of people all over the world, are most tightly associated with immune system. Neutrophils serve as an important component of immune defense barrier linking innate and adaptive immunity. They participate in the clearance of exogenous pathogens and endogenous cell debris and play an essential role in the pathogenesis of many respiratory diseases. However, the pathological mechanism of neutrophils remains complex and obscure. The traditional roles of neutrophils in severe asthma, chronic obstructive pulmonary diseases (COPD), pneumonia, lung cancer, pulmonary fibrosis, bronchitis, and bronchiolitis had already been reviewed. With the development of scientific research, the involvement of neutrophils in respiratory diseases is being brought to light with emerging data on neutrophil subsets, trafficking, and cell death mechanism (e.g., NETosis, apoptosis) in diseases. We reviewed all these recent studies here to provide you with the latest advances about the role of neutrophils in respiratory diseases.
Collapse
|
13
|
Wang Q, Sun L, Yang X, Ma X, Li Q, Chen Y, Liu Y, Zhang D, Li X, Xiang R, Wei Y, Han J, Duan Y. Activation of liver X receptor inhibits the development of pulmonary carcinomas induced by 3-methylcholanthrene and butylated hydroxytoluene in BALB/c mice. Sci Rep 2016; 6:27295. [PMID: 27250582 PMCID: PMC4890303 DOI: 10.1038/srep27295] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/16/2016] [Indexed: 12/27/2022] Open
Abstract
We previously reported that LXR ligand, T0901317, inhibited the growth of inoculated Lewis lung carcinoma in C57BL/6 mice by activating IFN-γ production. However, the effects of T0901317 on carcinogen-induced pulmonary carcinomas remain unknown. In this study, we initially conducted a statistical analysis on the data of human lung cancer samples extracted from the TCGA database, and determined that survival rate/time of lung cancer patients and grade of lung adenocarcinoma were positively and negatively related to lung IFN-γ levels, respectively. We then determined the inhibitory effects of T0901317 on mouse pulmonary carcinomas induced by 3-methylcholanthrene (MCA) and butylated hydroxytoluene (BHT) or urethane. We found that T0901317 reduced morbidity and mortality in MCA/BHT-injected BALB/c mice by inhibiting lung adenocarcinoma. T0901317 also protected C57BL/6 mice, but not IFN-γ deficient (IFN-γ−/−, C57BL/6 background) mice, against MCA/BHT-induced lung hyperplasia/inflammation. In addition, we determined that T0901317 inhibited urethane-induced lung tumors in BABL/c mice. Furthermore, we determined that T0901317 prevented metastasis of 4T1 breast cancer cells in BALB/c mice. Administration of T0901317 substantially increased serum IFN-γ levels and lung IFN-γ expression in BABL/c and C57BL/6 mice. Taken together, our study demonstrates that LXR inhibits MCA/BHT-induced pulmonary carcinomas in BABL/c mice and the inhibition is associated with induction of IFN-γ production.
Collapse
Affiliation(s)
- Qixue Wang
- Department of Neurosurgery, The General Hospital of Tianjin Medical University, Tianjin, China.,College of Life Sciences, Nankai University, Tianjin, China
| | - Lei Sun
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoxiao Yang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xingzhe Ma
- College of Life Sciences, Nankai University, Tianjin, China
| | - Qi Li
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yuanli Chen
- College of Biomedical Engineering, Hefei University of Technology, Hefei, China.,School of Medicine, Nankai University, Tianjin, China
| | - Ying Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Di Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoju Li
- College of Life Sciences, Nankai University, Tianjin, China
| | - Rong Xiang
- School of Medicine, Nankai University, Tianjin, China
| | - Yuquan Wei
- Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Jihong Han
- College of Biomedical Engineering, Hefei University of Technology, Hefei, China.,The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin, China
| | - Yajun Duan
- College of Biomedical Engineering, Hefei University of Technology, Hefei, China.,The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin, China
| |
Collapse
|
14
|
Alexander CM, Xiong KN, Velmurugan K, Xiong J, Osgood RS, Bauer AK. Differential innate immune cell signatures and effects regulated by toll-like receptor 4 during murine lung tumor promotion. Exp Lung Res 2016; 42:154-73. [PMID: 27093379 PMCID: PMC5506691 DOI: 10.3109/01902148.2016.1164263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tumor promotion is an early and critical stage during lung adenocarcinoma (ADC). We previously demonstrated that Tlr4 mutant mice were more susceptible to butylated hydroxytoluene (BHT)-induced pulmonary inflammation and tumor promotion in comparison to Tlr4-sufficient mice. Our study objective was to elucidate the underlying differences in Tlr4 mutant mice in innate immune cell populations, their functional responses, and the influence of these cellular differences on ADC progenitor (type II) cells following BHT-treatment. BALB (Tlr4-sufficient) and C.C3-Tlr4(Lps-d)/J (BALB(Lpsd); Tlr4 mutant) mice were treated with BHT (promoter) followed by bronchoalveolar lavage (BAL) and flow cytometry processing on the lungs. ELISAs, Club cell enrichment, macrophage function, and RNA isolation were also performed. Bone marrow-derived macrophages (BMDM) co-cultured with a type II cell line were used for wound healing assays. Innate immune cells significantly increased in whole lung in BHT-treated BALB(Lpsd) mice compared to BALB mice. BHT-treated BALB(Lpsd) mice demonstrated enhanced macrophage functionality, increased epithelial wound closure via BMDMs, and increased Club cell number in BALB(Lpsd) mice, all compared to BALB BHT-treated mice. Cytokine/chemokine (Kc, Mcp1) and growth factor (Igf1) levels also significantly differed among the strains and within macrophages, gene expression, and cell surface markers collectively demonstrated a more plastic phenotype in BALB(Lpsd) mice. Therefore, these correlative studies suggest that distinct innate immune cell populations are associated with the differences observed in the Tlr4-mutant model. Future studies will investigate the macrophage origins and the utility of the pathways identified herein as indicators of immune system deficiencies and lung tumorigenesis.
Collapse
Affiliation(s)
- Carla-Maria Alexander
- a Department of Environmental and Occupational Health , Colorado School of Public Health , University of Colorado at Denver-Anschutz Medical Campus , Aurora , Colorado , USA
| | - Ka-Na Xiong
- a Department of Environmental and Occupational Health , Colorado School of Public Health , University of Colorado at Denver-Anschutz Medical Campus , Aurora , Colorado , USA
| | - Kalpana Velmurugan
- a Department of Environmental and Occupational Health , Colorado School of Public Health , University of Colorado at Denver-Anschutz Medical Campus , Aurora , Colorado , USA
| | - Julie Xiong
- a Department of Environmental and Occupational Health , Colorado School of Public Health , University of Colorado at Denver-Anschutz Medical Campus , Aurora , Colorado , USA
| | - Ross S Osgood
- b Department of Pharmaceutical Sciences , School of Pharmacy , University of Colorado Denver , Aurora , Colorado , USA
| | - Alison K Bauer
- a Department of Environmental and Occupational Health , Colorado School of Public Health , University of Colorado at Denver-Anschutz Medical Campus , Aurora , Colorado , USA
| |
Collapse
|
15
|
Bauer AK, Velmurugan K, Xiong KN, Alexander CM, Xiong J, Brooks R. Epiregulin is required for lung tumor promotion in a murine two-stage carcinogenesis model. Mol Carcinog 2016; 56:94-105. [PMID: 26894620 DOI: 10.1002/mc.22475] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/27/2016] [Accepted: 02/06/2016] [Indexed: 01/08/2023]
Abstract
Adenocarcinoma accounts for ∼40% of lung cancer, equating to ∼88 500 new patients in 2015, most of who will succumb to this disease, thus, the public health burden is evident. Unfortunately, few early biomarkers as well as effective therapies exist, hence the need for novel targets in lung cancer treatment. We previously identified epiregulin (Ereg), an EGF-like ligand, as a biomarker in several mouse lung cancer models. In the present investigation we used a primary two-stage initiation/promotion model to test our hypothesis that Ereg deficiency would reduce lung tumor promotion in mice. We used 3-methylcholanthrene (initiator) or oil vehicle followed by multiple weekly exposures to butylated hydroxytoluene (BHT; promoter) in mice lacking Ereg (Ereg-/- ) and wildtype controls (BALB/ByJ; Ereg+/+ ) and examined multiple time points and endpoints (bronchoalveolar lavage analysis, tumor analysis, mRNA expression, ELISA, wound assay) during tumor promotion. At the early time points (4 and 12 wk), we observed significantly reduced amounts of inflammation (macrophages, PMNs) in the Ereg-/- mice compared to controls (Ereg+/+ ). At 20 wk, tumor multiplicity was also significantly decreased in the Ereg-/- mice versus controls (Ereg+/+ ). IL10 expression, an anti-inflammatory mediator, and downstream signaling events (Stat3) were significantly increased in the Ereg-/- mice in response to BHT, supporting both reduced inflammation and tumorigenesis. Lastly, wound healing was significantly increased with recombinant Ereg in both human and mouse lung epithelial cell lines. These results indicate that Ereg has proliferative potential and may be utilized as an early cancer biomarker as well as a novel potential therapeutic target. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alison K Bauer
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| | - Kalpana Velmurugan
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| | - Ka-Na Xiong
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| | - Carla-Maria Alexander
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| | - Julie Xiong
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| | - Rana Brooks
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
16
|
Casey SC, Vaccari M, Al-Mulla F, Al-Temaimi R, Amedei A, Barcellos-Hoff MH, Brown DG, Chapellier M, Christopher J, Curran CS, Forte S, Hamid RA, Heneberg P, Koch DC, Krishnakumar PK, Laconi E, Maguer-Satta V, Marongiu F, Memeo L, Mondello C, Raju J, Roman J, Roy R, Ryan EP, Ryeom S, Salem HK, Scovassi AI, Singh N, Soucek L, Vermeulen L, Whitfield JR, Woodrick J, Colacci A, Bisson WH, Felsher DW. The effect of environmental chemicals on the tumor microenvironment. Carcinogenesis 2015; 36 Suppl 1:S160-83. [PMID: 26106136 DOI: 10.1093/carcin/bgv035] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Potentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect cellular or physiological effects. To study possible carcinogens, the fields of endocrinology, genetics, epigenetics, medicine, environmental health, toxicology, pharmacology and oncology must be considered. Disruptive chemicals may also contribute to multiple stages of tumor development through effects on the tumor microenvironment. In turn, the tumor microenvironment consists of a complex interaction among blood vessels that feed the tumor, the extracellular matrix that provides structural and biochemical support, signaling molecules that send messages and soluble factors such as cytokines. The tumor microenvironment also consists of many host cellular effectors including multipotent stromal cells/mesenchymal stem cells, fibroblasts, endothelial cell precursors, antigen-presenting cells, lymphocytes and innate immune cells. Carcinogens can influence the tumor microenvironment through effects on epithelial cells, the most common origin of cancer, as well as on stromal cells, extracellular matrix components and immune cells. Here, we review how environmental exposures can perturb the tumor microenvironment. We suggest a role for disrupting chemicals such as nickel chloride, Bisphenol A, butyltins, methylmercury and paraquat as well as more traditional carcinogens, such as radiation, and pharmaceuticals, such as diabetes medications, in the disruption of the tumor microenvironment. Further studies interrogating the role of chemicals and their mixtures in dose-dependent effects on the tumor microenvironment could have important general mechanistic implications for the etiology and prevention of tumorigenesis.
Collapse
Affiliation(s)
- Stephanie C Casey
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA 94305, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy, Department of Pathology, Kuwait University, 13110 Safat, Kuwait, Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy, Department of Radiation Oncology, NYU School of Medicine, New York, NY 10016, USA, Department of Environmental and Radiological Health Sciences, Colorado State University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Centre De Recherche En Cancerologie De Lyon, U1052-UMR5286, Université de Lyon, 69007 Lyon, France, Cancer Research UK, Cambridge Institute, University of Cambridge, Robinson Way, CB2 0RE Cambridge, UK, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA, Mediterranean Institute of Oncology, 95029 Viagrande, Italy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia, Charles University in Prague, Third Faculty of Medicine, 100 00 Prague 10, Czech Republic, Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia, Department of Science and Biomedical Technology, University of Cagliari, 09124 Cagliari, Italy, Pathology Unit, Mediterranean Institute of Oncology, 95029 Viagrande, Italy, Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy, Regulatory Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada, Department of Medicine, University of Louisville, Louisville, KY 40202, USA, Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA, University of Pennsylvania School of Medicine
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, 13110 Safat, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy
| | | | - Dustin G Brown
- Department of Environmental and Radiological Health Sciences, Colorado State University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Marion Chapellier
- Centre De Recherche En Cancerologie De Lyon, U1052-UMR5286, Université de Lyon, 69007 Lyon, France
| | - Joseph Christopher
- Cancer Research UK, Cambridge Institute, University of Cambridge, Robinson Way, CB2 0RE Cambridge, UK
| | - Colleen S Curran
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Roslida A Hamid
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia
| | - Petr Heneberg
- Charles University in Prague, Third Faculty of Medicine, 100 00 Prague 10, Czech Republic
| | - Daniel C Koch
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA 94305, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy, Department of Pathology, Kuwait University, 13110 Safat, Kuwait, Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy, Department of Radiation Oncology, NYU School of Medicine, New York, NY 10016, USA, Department of Environmental and Radiological Health Sciences, Colorado State University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Centre De Recherche En Cancerologie De Lyon, U1052-UMR5286, Université de Lyon, 69007 Lyon, France, Cancer Research UK, Cambridge Institute, University of Cambridge, Robinson Way, CB2 0RE Cambridge, UK, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA, Mediterranean Institute of Oncology, 95029 Viagrande, Italy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia, Charles University in Prague, Third Faculty of Medicine, 100 00 Prague 10, Czech Republic, Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia, Department of Science and Biomedical Technology, University of Cagliari, 09124 Cagliari, Italy, Pathology Unit, Mediterranean Institute of Oncology, 95029 Viagrande, Italy, Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy, Regulatory Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada, Department of Medicine, University of Louisville, Louisville, KY 40202, USA, Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA, University of Pennsylvania School of Medicine
| | - P K Krishnakumar
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Ezio Laconi
- Department of Science and Biomedical Technology, University of Cagliari, 09124 Cagliari, Italy
| | - Veronique Maguer-Satta
- Centre De Recherche En Cancerologie De Lyon, U1052-UMR5286, Université de Lyon, 69007 Lyon, France
| | - Fabio Marongiu
- Department of Science and Biomedical Technology, University of Cagliari, 09124 Cagliari, Italy
| | - Lorenzo Memeo
- Pathology Unit, Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy
| | - Jayadev Raju
- Regulatory Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Jesse Roman
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Sandra Ryeom
- University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Hosni K Salem
- Urology Department, Kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 11562, Egypt
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy
| | - Neetu Singh
- Centre for Advanced Research, King George's Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India
| | - Laura Soucek
- Vall d'Hebron Institute of Oncology (VHIO) and Institució Catalana de Recerca i Estudis Avançats (ICREA), 08035 Barcelona, Spain
| | - Louis Vermeulen
- Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jonathan R Whitfield
- Vall d'Hebron Institute of Oncology (VHIO) and Institució Catalana de Recerca i Estudis Avançats (ICREA), 08035 Barcelona, Spain
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy
| | - William H Bisson
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA, and
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
17
|
The role of neutrophil myeloperoxidase in models of lung tumor development. Cancers (Basel) 2014; 6:1111-27. [PMID: 24821130 PMCID: PMC4074819 DOI: 10.3390/cancers6021111] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/11/2014] [Accepted: 05/06/2014] [Indexed: 01/11/2023] Open
Abstract
Chronic inflammation plays a key tumor-promoting role in lung cancer. Our previous studies in mice demonstrated that neutrophils are critical mediators of tumor promotion in methylcholanthrene (MCA)-initiated, butylated hydroxytoluene (BHT)-promoted lung carcinogenesis. In the present study we investigated the role of neutrophil myeloperoxidase (MPO) activity in this inflammation promoted model. Increased levels of MPO protein and activity were present in the lungs of mice administered BHT. Treatment of mice with N-acetyl lysyltyrosylcysteine amide (KYC), a novel tripeptide inhibitor of MPO, during the inflammatory stage reduced tumor burden. In a separate tumor model, KYC treatment of a Lewis Lung Carcinoma (LLC) tumor graft in mice had no effect on tumor growth, however, mice genetically deficient in MPO had significantly reduced LLC tumor growth. Our observations suggest that MPO catalytic activity is critical during the early stages of tumor development. However, during the later stages of tumor progression, MPO expression independent of catalytic activity appears to be required. Our studies advocate for the use of MPO inhibitors in a lung cancer prevention setting.
Collapse
|
18
|
Zeidler-Erdely PC, Meighan TG, Erdely A, Battelli LA, Kashon ML, Keane M, Antonini JM. Lung tumor promotion by chromium-containing welding particulate matter in a mouse model. Part Fibre Toxicol 2013; 10:45. [PMID: 24107379 PMCID: PMC3774220 DOI: 10.1186/1743-8977-10-45] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 09/03/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Epidemiology suggests that occupational exposure to welding particulate matter (PM) may increase lung cancer risk. However, animal studies are lacking to conclusively link welding with an increased risk. PM derived from stainless steel (SS) welding contains carcinogenic metals such as hexavalent chromium and nickel. We hypothesized that welding PM may act as a tumor promoter and increase lung tumor multiplicity in vivo. Therefore, the capacity of chromium-containing gas metal arc (GMA)-SS welding PM to promote lung tumors was evaluated using a two-stage (initiation-promotion) model in lung tumor susceptible A/J mice. METHODS Male mice (n = 28-30/group) were treated either with the initiator 3-methylcholanthrene (MCA;10 μg/g; IP) or vehicle (corn oil) followed by 5 weekly pharyngeal aspirations of GMA-SS (340 or 680 μg/exposure) or PBS. Lung tumors were enumerated at 30 weeks post-initiation. RESULTS MCA initiation followed by GMA-SS welding PM exposure promoted tumor multiplicity in both the low (12.1 ± 1.5 tumors/mouse) and high (14.0 ± 1.8 tumors/mouse) exposure groups significantly above MCA/sham (4.77 ± 0.7 tumors/mouse; p = 0.0001). Multiplicity was also highly significant (p < 0.004) across all individual lung regions of GMA-SS-exposed mice. No exposure effects were found in the corn oil groups at 30 weeks. Histopathology confirmed the gross findings and revealed increased inflammation and a greater number of malignant lesions in the MCA/welding PM-exposed groups. CONCLUSIONS GMA-SS welding PM acts as a lung tumor promoter in vivo. Thus, this study provides animal evidence to support the epidemiological data that show welders have an increased lung cancer risk.
Collapse
Affiliation(s)
- Patti C Zeidler-Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road MS L2015, Morgantown, WV 26505, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Hill T, Osgood RS, Velmurugan K, Alexander CM, Upham BL, Bauer AK. Bronchoalveolar Lavage Fluid Utilized Ex Vivo to Validate In Vivo Findings: Inhibition of Gap Junction Activity in Lung Tumor Promotion is Toll-Like Receptor 4-Dependent. ACTA ACUST UNITED AC 2013; 5. [PMID: 25035812 PMCID: PMC4098145 DOI: 10.4172/2155-9929.1000160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
TLR4 protects against lung tumor promotion and pulmonary inflammation in mice. Connexin 43 (Cx43), a gap junction gene, was increased in Tlr4 wildtype compared to Tlr4-mutant mice in response to promotion, which suggests gap junctional intercellular communication (GJIC) may be compromised. We hypothesized that the early tumor microenvironment, represented by Bronchoalveolar Lavage Fluid (BALF) from Butylated hydroxytoluene (BHT; promoter)-treated mice, would produce TLR4-dependent changes in pulmonary epithelium, including dysregulation of GJIC in the Tlr4-mutant (BALBLps-d) compared to the Tlr4-sufficient (BALB; wildtype) mice. BHT (4 weekly doses) was injected ip followed by BALF collection at 24 h. BALF total protein and total macrophages were significantly elevated in BHT-treated BALBLps-d over BALB mice, similar to previous findings. BALF was then utilized in an ex vivo manner to treat C10 cells, a murine alveolar type II cell line, followed by the scrape-load dye transfer assay (GJIC), Cx43 immunostaining, and quantitative RT-PCR (Mcp-1, monocyte chemotactic protein 1). GJIC was markedly reduced in C10 cells treated with BHT-treated BALBLps-d BALF for 4 and 24 h compared to BALB and control BALF from the respective mice (p < 0.05). Mcp-1, a chemokine, was also significantly increased in the BHT-treated BALBLps-d BALF compared to the BALB mice, and Cx43 protein expression in the cell membrane altered. These novel findings suggest signaling from the BALF milieu is involved in GJIC dysregulation associated with promotion and links gap junctions to pulmonary TLR4 protection in a novel ex vivo model that could assist in future potential tumor promoter screening.
Collapse
Affiliation(s)
- Thomas Hill
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Ross S Osgood
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Kalpana Velmurugan
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Carla-Maria Alexander
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Brad L Upham
- Department of Pediatrics and Human Development, Michigan State University, Lansing, USA
| | - Alison K Bauer
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
20
|
Lin X, Li W, Lai J, Okazaki M, Sugimoto S, Yamamoto S, Wang X, Gelman AE, Kreisel D, Krupnick AS. Five-year update on the mouse model of orthotopic lung transplantation: Scientific uses, tricks of the trade, and tips for success. J Thorac Dis 2012; 4:247-58. [PMID: 22754663 DOI: 10.3978/j.issn.2072-1439.2012.06.02] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 06/05/2012] [Indexed: 12/23/2022]
Abstract
It has been 5 years since our team reported the first successful model of orthotopic single lung transplantation in the mouse. There has been great demand for this technique due to the obvious experimental advantages the mouse offers over other large and small animal models of lung transplantation. These include the availability of mouse-specific reagents as well as knockout and transgenic technology. Our laboratory has utilized this mouse model to study both immunological and non-immunological mechanisms of lung transplant physiology while others have focused on models of chronic rejection. It is surprising that despite our initial publication in 2007 only few other laboratories have published data using this model. This is likely due to the technical complexity of the surgical technique and perioperative complications, which can limit recipient survival. As two of the authors (XL and WL) have a combined experience of over 2500 left and right single lung transplants, this review will summarize their experience and delineate tips and tricks necessary for successful transplantation. We will also describe technical advances made since the original description of the model.
Collapse
|
21
|
Schoenhals JE, Seyedin SN, Anderson C, Brooks ED, Li YR, Younes AI, Niknam S, Li A, Barsoumian HB, Cortez MA, Welsh JW. Uncovering the immune tumor microenvironment in non-small cell lung cancer to understand response rates to checkpoint blockade and radiation. Transl Lung Cancer Res 2007; 6:148-158. [PMID: 28529897 DOI: 10.21037/tlcr.2017.03.06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The study of immunology has led to breakthroughs in treating non-small cell lung cancer (NSCLC). The recent approval of an anti-PD1 checkpoint drug for NSCLC has generated much interest in novel combination therapies that might provide further benefit for patients. However, a better understanding of which combinations may (or may not) work in NSCLC requires understanding the lung immune microenvironment under homeostatic conditions and the changes in that microenvironment in the setting of cancer progression and with radiotherapy. This review provides background information on immune cells found in the lung and the prognostic significance of these cell types in lung cancer. It also addresses current clinical directions for the combination of checkpoint inhibitors with radiation for NSCLC.
Collapse
Affiliation(s)
- Jonathan E Schoenhals
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven N Seyedin
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Clark Anderson
- Paul L Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Eric D Brooks
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun R Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ahmed I Younes
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharareh Niknam
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ailin Li
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Hampartsoum B Barsoumian
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria Angelica Cortez
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James W Welsh
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|