1
|
Jackson-Spence F, Ackerman C, Jones R, Toms C, Jovaisaite A, Young M, Hussain S, Protheroe A, Birtle A, Chakraborti P, Huddart R, Jagdev S, Bahl A, Sundar S, Crabb S, Powles T, Szabados B. Biomarkers associated with survival in patients with platinum-refractory urothelial carcinoma treated with paclitaxel. Urol Oncol 2024; 42:372.e1-372.e10. [PMID: 39025719 DOI: 10.1016/j.urolonc.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Taxane- based chemotherapy is widely used in patients with platinum- and immunotherapy refractory, metastatic urothelial carcinoma (mUC). Outcomes are poor and biomarkers associated with outcome are lacking. We aim to identify cancer hallmarks associated with survival in patients receiving paclitaxel. METHODS Whole-transcriptome profiles were generated for a subset of patients enrolled in a randomised phase II study investigating paclitaxel and pazopanib in platinum refractory mUC (PLUTO, EudraCT 2011-001841-34). Estimates of gene expression were calculated and input into the Almac proprietary analysis pipeline and signature scores were calculated using ClaraT V3.0.0. Ten key gene signatures were assessed: Immuno-Oncology, Epithelial to Mesenchymal Transition, Angiogenesis, Proliferation, Cell Death, Genome Instability, Energetics, Inflammation, Immortality and Evading Growth. Hazard ratios were calculated using Cox regression model and Kaplan-Meier methods were used to estimate progression free survival (PFS) and overall survival (OS). RESULTS 38 and 45 patients treated with paclitaxel or pazopanib were included. Patients with high genome instability expression treated with paclitaxel had significantly improved survival with a HR of 0.29 (95% CI: 0.14-0.61, p=0.001) and HR 0.34 (95% CI: 0.17-0.69, p=0.003) for PFS and OS, respectively. Similarly, patients with high evading growth suppressor expression treated with paclitaxel had improved PFS and OS with a HR of 0.35 (95% CI: 0.19-0.77, p=0.007) and HR 0.46 (95% CI: 0.23-0.91, p=0.026), respectively. No other gene signatures had significant impact on outcome. In both paclitaxel and pazopanib cohorts, angiogenesis activation was associated with worse PFS and OS, and VEGF targeted therapy did not improve outcomes. CONCLUSION High Genome-instability and Evading-growth suppressor biologies are associated with improved survival in patients with platinum refractory mUC receiving paclitaxel. These may refine mUC risk stratification and guide treatment decision in the future.
Collapse
Affiliation(s)
| | - Charlotte Ackerman
- Department of Genitourinary Oncology, Barts Cancer Institute, QMUL, London, UK
| | - Robert Jones
- Department of Genitourinary Oncology, University of Glasgow, Glasgow, Scotland, UK
| | - Charlotte Toms
- Department of Genitourinary Oncology, Barts Cancer Institute, QMUL, London, UK
| | - Agne Jovaisaite
- Department of Genitourinary Oncology, Barts Cancer Institute, QMUL, London, UK
| | - Matthew Young
- Department of Genitourinary Oncology, Barts Cancer Institute, QMUL, London, UK
| | - Syed Hussain
- Department of Genitourinary Oncology, University of Liverpool, Liverpool, UK
| | - Andrew Protheroe
- Department of Genitourinary Oncology, Churchill Hospital, Oxford, UK
| | - Alison Birtle
- Department of Genitourinary Oncology, Preston Hospital, Preston, UK
| | - Prabir Chakraborti
- Department of Genitourinary Oncology, Derby Hospitals NHS Foundation trust, Derby, UK
| | - Robert Huddart
- Department of Genitourinary Oncology, Institute of Cancer Research, Sutton, UK
| | - Santinder Jagdev
- Department of Genitourinary Oncology, St James's University Hospital, Leeds, UK
| | - Amit Bahl
- Department of Genitourinary Oncology, Bristol Haematology and Oncology Centre, Bristol, UK
| | - Santhanam Sundar
- Department of Genitourinary Oncology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Simon Crabb
- Department of Genitourinary Oncology, University of Southampton, Southampton UK
| | - Thomas Powles
- Department of Genitourinary Oncology, Barts Cancer Institute, QMUL, London, UK.
| | - Bernadett Szabados
- Department of Genitourinary Oncology, Barts Cancer Institute, QMUL, London, UK
| |
Collapse
|
2
|
Liu YM, Yang TC, Fang XC, Yang LJ, Shi LW, Wang HQ, Dou TT, Shu L, Chen TL, Hu J, Yu XM, Li XF. Identification and Validation of SLC9A2 as A Potential Tumor Suppressor in Colorectal Cancer: Integrating Bioinformatics Analysis with Experimental Confirmation. Curr Med Sci 2024; 44:529-544. [PMID: 38809379 DOI: 10.1007/s11596-024-2871-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/14/2024] [Indexed: 05/30/2024]
Abstract
OBJECTIVE To uncover the mechanisms underlying the development of colorectal cancer (CRC), we applied bioinformatic analyses to identify key genes and experimentally validated their possible roles in CRC onset and progression. METHODS We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis on differentially expressed genes (DEGs), constructed a protein-protein interaction (PPI) network to find the top 10 hub genes, and analyzed their expression in colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ). We also studied the correlation between these genes and immune cell infiltration and prognosis and validated the expression of SLC9A2 in CRC tissues and cell lines using qRT-PCR and Western blotting. Functional experiments were conducted in vitro to investigate the effects of SLC9A2 on tumor growth and metastasis. RESULTS We found 130 DEGs, with 45 up-regulated and 85 down-regulated in CRC. GO analysis indicated that these DEGs were primarily enriched in functions related to the regulation of cellular pH, zymogen granules, and transmembrane transporter activity. KEGG pathway analysis revealed that the DEGs played pivotal roles in pancreatic secretion, rheumatoid arthritis, and the IL-17 signaling pathway. We identified 10 hub genes: CXCL1, SLC26A3, CXCL2, MMP7, MMP1, SLC9A2, SLC4A4, CLCA1, CLCA4, and ZG16. GO enrichment analysis showed that these hub genes were predominantly involved in the positive regulation of transcription. Gene expression analysis revealed that CXCL1, CXCL2, MMP1, and MMP7 were highly expressed in CRC, whereas CLCA1, CLCA4, SLC4A4, SLC9A2, SLC26A3, and ZG16 were expressed at lower levels. Survival analysis revealed that 5 key genes were significantly associated with the prognosis of CRC. Both mRNA and protein expression levels of SLC9A2 were markedly reduced in CRC tissues and cell lines. Importantly, SLC9A2 overexpression in SW480 cells led to a notable inhibition of cell proliferation, migration, and invasion. Western blotting analysis revealed that the expression levels of phosphorylated ERK (p-ERK) and phosphorylated JNK (p-JNK) proteins were significantly increased, whereas there were no significant changes in the expression levels of ERK and JNK following SLC9A2 overexpression. Correlation analysis indicated a potential link between SLC9A2 expression and the MAPK signaling pathway. CONCLUSION Our study suggests that SLC9A2 acts as a tumor suppressor through the MAPK pathway and could be a potential target for CRC diagnosis and therapy.
Collapse
Affiliation(s)
- Yan-Min Liu
- Department of Gastroenterology, the Central Hospital of Wuhan, Key Laboratory for Molecular Diagnosis of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Tie-Cheng Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, 430071, China
- Hubei Provincial Clinical Research Center for Cancer, Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, 430071, China
| | - Xiao-Chang Fang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, 430071, China
- Hubei Provincial Clinical Research Center for Cancer, Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, 430071, China
| | - Li-Jie Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, 430071, China
- Hubei Provincial Clinical Research Center for Cancer, Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, 430071, China
| | - Li-Wen Shi
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, 430071, China
- Hubei Provincial Clinical Research Center for Cancer, Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, 430071, China
| | - Hua-Qiao Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, 430071, China
- Hubei Provincial Clinical Research Center for Cancer, Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, 430071, China
| | - Ting-Ting Dou
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, 430071, China
- Hubei Provincial Clinical Research Center for Cancer, Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, 430071, China
| | - Lin Shu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, 430071, China
- Hubei Provincial Clinical Research Center for Cancer, Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, 430071, China
| | - Tian-Liang Chen
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, 430071, China
- Hubei Provincial Clinical Research Center for Cancer, Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, 430071, China
| | - Jun Hu
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Xiao-Ming Yu
- Department of Gastrointestinal Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Wuhan, 435001, China.
| | - Xuan-Fei Li
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, 430071, China.
- Hubei Provincial Clinical Research Center for Cancer, Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, 430071, China.
| |
Collapse
|
3
|
Hosseini-Abgir A, Naghizadeh MM, Igder S, Miladpour B. Insilco prediction of the role of the FriZZled5 gene in colorectal cancer. Cancer Treat Res Commun 2023; 36:100751. [PMID: 37595345 DOI: 10.1016/j.ctarc.2023.100751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
INTRODUCTION In this study, we aimed to elucidate the crosstalk between the Wnt/β-catenin signaling pathway and colorectal cancer (CRC) associated with inflammatory bowel disease (IBD) using a bioinformatics analysis of putative common biomarkers and a systems biology approach. MATERIALS AND METHODS The following criteria were used to search the GEO and ArrayExpress databases for terms related to CRC and IBD: 1. The dataset containing the transcriptomic data, and 2. Untreated samples by medications or drugs. A total of 42 datasets were selected for additional analysis. The GEO2R identified the differentially expressed genes. The genes involved in the Wnt signaling pathway were extracted from the KEGG database. Enrichment analysis and miRNA target prediction were conducted through the ToppGene online tool. RESULTS In CRC datasets, there were 1168 up- and 998 down-regulated probes, whereas, in IBD datasets, there were 256 up- and 200 down-regulated probes. There were 65 upregulated and 57 downregulated genes shared by CRC and IBD. According to KEGG, there were 166 genes in the Wnt pathway. FriZZled5 (FZD5) was a down-regulated gene in both CRC and IBD, as determined by the intersection of CRC- and IBD-related DEGs with the Wnt pathway. It was also demonstrated that miR-191, miR-885-5p, miR-378a-3p, and miR-396-3p affect the FriZZled5 gene expression. CONCLUSION It is possible that increased expression of miR-191 and miR-885-5p, or decreased expression of miR-378a -3p and miR396-3, in IBD and CRC results in decreased expression of the FZD5 gene. Based on the function of this gene, FZD5 may be a potential therapeutic target in IBD that progresses to CRC.
Collapse
Affiliation(s)
| | | | - Somayeh Igder
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Behnoosh Miladpour
- Department of Clinical Biochemistry, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
4
|
Mehrgou A, Teimourian S. Update of gene expression/methylation and MiRNA profiling in colorectal cancer; application in diagnosis, prognosis, and targeted therapy. PLoS One 2022; 17:e0265527. [PMID: 35333898 PMCID: PMC8956198 DOI: 10.1371/journal.pone.0265527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/02/2022] [Indexed: 01/22/2023] Open
Abstract
Background
Colorectal cancer is one of the most deadliest malignancies worldwide. Due to the dearth of appropriate biomarkers, the diagnosis of this mortal disease is usually deferred, in its turn, culminating in the failure of prevention. By the same token, proper biomarkers are at play in determining the quality of prognosis. In other words, the survival rate is contingent upon the regulation of such biomarkers.
Materials and methods
The information regarding expression (GSE41258, and GSE31905), methylation (GSE101764), and miRNA (dbDEMC) were downloaded. MEXPRESS and GEPIA confirmed the validated differentially expressed/methylated genes using TCGA data. Taking advantage of the correlation plots and receiver-operating-characteristic (ROC) curves, expression and methylation profiles were compared. The interactions between validated differentially expressed genes and differentially expressed miRNA were recognized and visualized by miRTarBase and Cytoscape, respectively. Then, the protein-protein interaction (PPI) network and hub genes were established via STRING and Cytohubba plugin. Utilizing R packages (DOSE, Enrichplot, and clusterProfiler) and DAVID database, the Functional Enrichment analysis and the detection of KEGG pathways were performed. Ultimately, in order to recognize the prognostic value of found biomarkers, they were evaluated through drawing survival plots for CRC patients.
Results
In this research, we found an expression profile (with 13 novel genes), a methylation profile (with two novel genes), and a miRNA profile with diagnostic value. Concerning diagnosis, the expression profile was evaluated more powerful in comparison with the methylation profile. Furthermore, a prognosis-related expression profile was detected.
Conclusion
In addition to diagnostic- and prognostic-applicability, the discerned profiles can assist in targeted therapy and current therapeutic strategies.
Collapse
Affiliation(s)
- Amir Mehrgou
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- * E-mail:
| |
Collapse
|
5
|
Parkes EE, Savage KI, Lioe T, Boyd C, Halliday S, Walker SM, Lowry K, Knight L, Buckley NE, Grogan A, Logan GE, Clayton A, Hurwitz J, Kirk SJ, Xu J, Sidi FA, Humphries MP, Bingham V, James JA, James CR, Paul Harkin D, Kennedy RD, McIntosh SA. Activation of a cGAS-STING-mediated immune response predicts response to neoadjuvant chemotherapy in early breast cancer. Br J Cancer 2022; 126:247-258. [PMID: 34728791 PMCID: PMC8770594 DOI: 10.1038/s41416-021-01599-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The DNA-damage immune-response (DDIR) signature is an immune-driven gene expression signature retrospectively validated as predicting response to anthracycline-based therapy. This feasibility study prospectively evaluates the use of this assay to predict neoadjuvant chemotherapy response in early breast cancer. METHODS This feasibility study assessed the integration of a novel biomarker into clinical workflows. Tumour samples were collected from patients receiving standard of care neoadjuvant chemotherapy (FEC + /-taxane and anti-HER2 therapy as appropriate) at baseline, mid- and post-chemotherapy. Baseline DDIR signature scores were correlated with pathological treatment response. RNA sequencing was used to assess chemotherapy/response-related changes in biologically linked gene signatures. RESULTS DDIR signature reports were available within 14 days for 97.8% of 46 patients (13 TNBC, 16 HER2 + ve, 27 ER + HER2-ve). Positive scores predicted response to treatment (odds ratio 4.67 for RCB 0-1 disease (95% CI 1.13-15.09, P = 0.032)). DDIR positivity correlated with immune infiltration and upregulated immune-checkpoint gene expression. CONCLUSIONS This study validates the DDIR signature as predictive of response to neoadjuvant chemotherapy which can be integrated into clinical workflows, potentially identifying a subgroup with high sensitivity to anthracycline chemotherapy. Transcriptomic data suggest induction with anthracycline-containing regimens in immune restricted, "cold" tumours may be effective for immune priming. TRIAL REGISTRATION Not applicable (non-interventional study). CRUK Internal Database Number 14232.
Collapse
Affiliation(s)
- Eileen E Parkes
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
- Belfast Health and Social Care Trust, Belfast City Hospital, Lisburn Road, Belfast, BT9 7AB, UK
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Kienan I Savage
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Tong Lioe
- Belfast Health and Social Care Trust, Belfast City Hospital, Lisburn Road, Belfast, BT9 7AB, UK
| | - Clinton Boyd
- Belfast Health and Social Care Trust, Belfast City Hospital, Lisburn Road, Belfast, BT9 7AB, UK
| | - Sophia Halliday
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Steven M Walker
- Almac Diagnostic Services, Almac Group, 19 Seagoe Industrial Estate, Craigavon, BT63 5QD, UK
| | - Keith Lowry
- Belfast Health and Social Care Trust, Belfast City Hospital, Lisburn Road, Belfast, BT9 7AB, UK
| | - Laura Knight
- Almac Diagnostic Services, Almac Group, 19 Seagoe Industrial Estate, Craigavon, BT63 5QD, UK
| | - Niamh E Buckley
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Andrena Grogan
- Almac Diagnostic Services, Almac Group, 19 Seagoe Industrial Estate, Craigavon, BT63 5QD, UK
| | - Gemma E Logan
- Almac Diagnostic Services, Almac Group, 19 Seagoe Industrial Estate, Craigavon, BT63 5QD, UK
| | - Alison Clayton
- Belfast Health and Social Care Trust, Belfast City Hospital, Lisburn Road, Belfast, BT9 7AB, UK
| | - Jane Hurwitz
- Belfast Health and Social Care Trust, Belfast City Hospital, Lisburn Road, Belfast, BT9 7AB, UK
| | - Stephen J Kirk
- South Eastern Health and Social Care Trust, Ulster Hospital, Upper Newtownards Road, BT 16 1RH, Dundonald, UK
| | - Jiamei Xu
- Precision Medicine Centre, Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Fatima Abdullahi Sidi
- Precision Medicine Centre, Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Matthew P Humphries
- Precision Medicine Centre, Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Victoria Bingham
- Precision Medicine Centre, Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Jaqueline A James
- Precision Medicine Centre, Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Colin R James
- Belfast Health and Social Care Trust, Belfast City Hospital, Lisburn Road, Belfast, BT9 7AB, UK
| | - D Paul Harkin
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
- Almac Diagnostic Services, Almac Group, 19 Seagoe Industrial Estate, Craigavon, BT63 5QD, UK
| | - Richard D Kennedy
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
- Almac Diagnostic Services, Almac Group, 19 Seagoe Industrial Estate, Craigavon, BT63 5QD, UK
| | - Stuart A McIntosh
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK.
- Belfast Health and Social Care Trust, Belfast City Hospital, Lisburn Road, Belfast, BT9 7AB, UK.
| |
Collapse
|
6
|
Gao Y, Zhang S, Zhang Y, Qian J. Identification of MicroRNA-Target Gene-Transcription Factor Regulatory Networks in Colorectal Adenoma Using Microarray Expression Data. Front Genet 2020; 11:463. [PMID: 32508878 PMCID: PMC7248367 DOI: 10.3389/fgene.2020.00463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
Objective The aim of the study was to find the key genes, microRNAs (miRNAs) and transcription factors (TFs) and construct miRNA-target gene-TF regulatory networks to investigate the underlying molecular mechanism in colorectal adenoma (CRA). Methods Four mRNA expression datasets and one miRNA expression dataset were downloaded from Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) were identified between CRA and normal samples. Moreover, functional enrichment analysis for DEGs was carried out utilizing the Cytoscape-plugin, known as ClueGO. These DEGs were mapped to STRING database to construct a protein-protein interaction (PPI) network. Then, a miRNA-target gene regulatory network was established to screen key DEMs. In addition, similar workflow of the analyses were also performed comparing the CRC samples with CRA ones to screen key DEMs. Finally, miRNA-target gene-TF regulatory networks were constructed for these key DEMs using iRegulon plug-in in Cytoscape. Results We identified 514 DEGs and 167 DEMs in CRA samples compared to healthy samples. Functional enrichment analysis revealed that these DEGs were significantly enriched in several terms and pathways, such as regulation of cell migration and bile secretion pathway. A PPI network was constructed including 325 nodes as well as 890 edges. A total of 59 DEGs and 65 DEMs were identified in CRC samples compared to CRA ones. In addition, Two key DEMs in CRA samples compared to healthy samples were identified, such as hsa-miR-34a and hsa-miR-96. One key DEM, hsa-miR-29c, which was identified when we compared the differentially expressed molecules found in the comparison CRA versus normal samples to the ones obtained in the comparison CRC versus CRA, was also identified in CRC samples compared to CRA ones. The miRNA-target gene-TF regulatory networks for these key miRNAs included two TFs, one TF and five TFs, respectively. Conclusion These identified key genes, miRNA, TFs and miRNA-target gene-TF regulatory networks associated with CRA, to a certain degree, may provide some hints to enable us to better understand the underlying pathogenesis of CRA.
Collapse
Affiliation(s)
- Yadong Gao
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, China.,Department of Gastroenterology, The First People's Hospital of Nantong, Nantong, China
| | - Shenglai Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, China.,Department of Gastroenterology, The First People's Hospital of Nantong, Nantong, China
| | - Yan Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, China.,Department of Gastroenterology, The First People's Hospital of Nantong, Nantong, China
| | - Junbo Qian
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, China.,Department of Gastroenterology, The First People's Hospital of Nantong, Nantong, China
| |
Collapse
|
7
|
Wang WW, Zeng Y, Wu B, Deiters A, Liu WR. A Chemical Biology Approach to Reveal Sirt6-targeted Histone H3 Sites in Nucleosomes. ACS Chem Biol 2016; 11:1973-81. [PMID: 27152839 DOI: 10.1021/acschembio.6b00243] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As a member of a highly conserved family of NAD(+)-dependent histone deacetylases, Sirt6 is a key regulator of mammalian genome stability, metabolism, and life span. Previous studies indicated that Sirt6 is hardwired to remove histone acetylation at H3K9 and H3K56. However, how Sirt6 recognizes its nucleosome substrates has been elusive due to the difficulty of accessing homogeneous acetyl-nucleosomes and the low activity of Sirt6 toward peptide substrates. Based on the fact that Sirt6 has an enhanced activity to remove long chain fatty acylation from lysine, we developed an approach to recombinantly synthesize histone H3 with a fatty acylated lysine, N(ε)-(7-octenoyl)-lysine (OcK), installed at a number of lysine sites and used these acyl-H3 proteins to assemble acyl-nucleosomes as active Sirt6 substrates. A chemical biology approach that visualizes OcK in nucleosomes and therefore allows direct sensitization of Sirt6 activities on its acyl-nucleosome substrates was also formulated. By combining these two approaches, we showed that Sirt6 actively removes acylation from H3K9, H3K18, and H3K27; has relatively low activities toward H3K4 and K3K23; but sluggishly removes acylation at H3K14, H3K36, H3K56, and H3K79. Overexpressing Sirt6 in 293T cells led to downregulated acetylation at H3K18 and K3K27, confirming these two novel Sirt6-targeted nucleosome lysine sites in cells. Given that downregulation of H3K18 acetylation is correlated with a poor prognosis of several cancer types and H3K27 acetylation antagonizes repressive gene regulation by di- and trimethylation at H3K27, our current study implies that Sirt6 may serve as a target for cancer intervention and regulatory pathway investigation in cells.
Collapse
Affiliation(s)
- Wesley Wei Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Yu Zeng
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Bo Wu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Alexander Deiters
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Wenshe R. Liu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| |
Collapse
|
8
|
Huang CR, Lee CT, Chang KY, Chang WC, Liu YW, Lee JC, Chen BK. Down-regulation of ARNT promotes cancer metastasis by activating the fibronectin/integrin β1/FAK axis. Oncotarget 2016; 6:11530-46. [PMID: 25839165 PMCID: PMC4484474 DOI: 10.18632/oncotarget.3448] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/25/2015] [Indexed: 01/11/2023] Open
Abstract
The aryl hydrocarbon receptor nuclear translocator (ARNT) is broadly involved in regulating tumorigenesis by inducing genes that are involved in tumor growth and angiogenesis. Tumorigenesis usually involves normoxic conditions. However, the role of ARNT in tumor metastasis during normoxia remains unclear. Here, we demonstrate that ARNT protein levels were decreased in late-stage human colorectal cancer using immunohistochemical analysis. Down-regulation of ARNT protein promoted cancer cell migration and invasion, which was mediated by activation of the fibronectin/integrin β1/FAK signaling axis. In addition, the enhancement of migration and invasion in ANRT knockdown cells was blocked when ARNT was restored in the cells. In xenografts in severe combined immunodeficiency mice, tumor growth was significantly inhibited in the ARNT-knockdown condition. However, the tail-vein injection animal model revealed that the depletion of ARNT-induced metastatic lung colonies was further enhanced when ARNT expression was recovered post-injection. Interestingly, chemotherapeutic drugs inhibited ARNT expression and promoted the invasion of residual tumor cells. These results suggest that ARNT may play a positive role during tumor growth (either in early-stage tumor growth or in organ metastases), but plays a negative role in tumor migration and invasion. Therefore, the efficiency of ARNT-targeted therapy during different cancer stages should be carefully evaluated.
Collapse
Affiliation(s)
- Chi-Ruei Huang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Taiwan, ROC.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taiwan, ROC
| | - Chung-Ta Lee
- Department of Pathology, National Cheng Kung University Hospital, Taiwan, ROC
| | - Kwang-Yu Chang
- National Institute of Cancer Research, National Health Research Institutes, Taiwan, ROC.,Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Taiwan, ROC
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taiwan, ROC
| | - Yao-Wen Liu
- Department of Pathology, Kuo General Hospital, Taiwan, ROC
| | - Jenq-Chang Lee
- Department of Surgery, National Cheng Kung University Hospital, Taiwan, ROC
| | - Ben-Kuen Chen
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Taiwan, ROC.,Department of Pharmacology, College of Medicine, National Cheng Kung University, Taiwan, ROC.,Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taiwan, ROC
| |
Collapse
|
9
|
Orellana ME, Quezada C, Maloney SC, Antecka E, Balazsi M, Burnier Jr. MN. Expression of SIRT2 and SIRT6 in Retinoblastoma. Ophthalmic Res 2015; 53:100-8. [DOI: 10.1159/000368718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/26/2014] [Indexed: 11/19/2022]
|
10
|
FUT11 as a potential biomarker of clear cell renal cell carcinoma progression based on meta-analysis of gene expression data. Tumour Biol 2013; 35:2607-17. [PMID: 24318988 PMCID: PMC3967067 DOI: 10.1007/s13277-013-1344-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/17/2013] [Indexed: 01/28/2023] Open
Abstract
In this paper, we provide a comprehensive summary of available clear cell renal cell carcinoma (ccRCC) microarray data in the form of meta-analysis of genes differentially regulated in tumors as compared to healthy tissue, using effect size to measure the strength of a relationship between the disease and gene expression. We identified 725 differentially regulated genes, with a number of interesting targets, such as TMEM213, SMIM5, or ATPases: ATP6V0A4 and ATP6V1G3, of which limited or no information is available in terms of their function in ccRCC pathology. Downregulated genes tended to represent pathways related to tissue remodeling, blood clotting, vasodilation, and energy metabolism, while upregulated genes were classified into pathways generally deregulated in cancers: immune system response, inflammatory response, angiogenesis, and apoptosis. One hundred fifteen deregulated genes were included in network analysis, with EGLN3, AP-2, NR3C1, HIF1A, and EPAS1 (gene encoding HIF2-α) as points of functional convergence, but, interestingly, 610 genes failed to join previously identified molecular networks. Furthermore, we validated the expression of 14 top deregulated genes in independent sample set of 32 ccRCC tumors by qPCR and tested if it could serve as a marker of disease progression. We found a correlation of high fucosyltransferase 11 (FUT11) expression with non-symptomatic course of the disease, which suggests that FUT11's expression might be potentially used as a biomarker of disease progression.
Collapse
|
11
|
Cao Z, Shang B, Zhang G, Miele L, Sarkar FH, Wang Z, Zhou Q. Tumor cell-mediated neovascularization and lymphangiogenesis contrive tumor progression and cancer metastasis. Biochim Biophys Acta Rev Cancer 2013; 1836:273-86. [PMID: 23933263 DOI: 10.1016/j.bbcan.2013.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/22/2013] [Accepted: 08/01/2013] [Indexed: 12/12/2022]
Abstract
Robust neovascularization and lymphangiogenesis have been found in a variety of aggressive and metastatic tumors. Endothelial sprouting angiogenesis is generally considered to be the major mechanism by which new vasculature forms in tumors. However, increasing evidence shows that tumor vasculature is not solely composed of endothelial cells (ECs). Some tumor cells acquire processes similar to embryonic vasculogenesis and produce new vasculature through vasculogenic mimicry, trans-differentiation of tumor cells into tumor ECs, and tumor cell-EC vascular co-option. In addition, tumor cells secrete various vasculogenic factors that induce sprouting angiogenesis and lymphangiogenesis. Vasculogenic tumor cells actively participate in the formation of vascular cancer stem cell niche and a premetastatic niche. Therefore, tumor cell-mediated neovascularization and lymphangiogenesis are closely associated with tumor progression, cancer metastasis, and poor prognosis. Vasculogenic tumor cells have emerged as key players in tumor neovascularization and lymphangiogenesis and play pivotal roles in tumor progression and cancer metastasis. However, the mechanisms underlying tumor cell-mediated vascularity as they relate to tumor progression and cancer metastasis remain unclear. Increasing data have shown that various intrinsic and extrinsic factors activate oncogenes and vasculogenic genes, enhance vasculogenic signaling pathways, and trigger tumor neovascularization and lymphangiogenesis. Collectively, tumor cells are the instigators of neovascularization. Therefore, targeting vasculogenic tumor cells, genes, and signaling pathways will open new avenues for anti-tumor vasculogenic and metastatic drug discovery. Dual targeting of endothelial sprouting angiogenesis and tumor cell-mediated neovascularization and lymphangiogenesis may overcome current clinical problems with anti-angiogenic therapy, resulting in significantly improved anti-angiogenesis and anti-cancer therapies.
Collapse
Affiliation(s)
- Zhifei Cao
- Cyrus Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu 215006, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Sebastián C, Zwaans BMM, Silberman DM, Gymrek M, Goren A, Zhong L, Ram O, Truelove J, Guimaraes AR, Toiber D, Cosentino C, Greenson JK, MacDonald AI, McGlynn L, Maxwell F, Edwards J, Giacosa S, Guccione E, Weissleder R, Bernstein BE, Regev A, Shiels PG, Lombard DB, Mostoslavsky R. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 2013; 151:1185-99. [PMID: 23217706 DOI: 10.1016/j.cell.2012.10.047] [Citation(s) in RCA: 501] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/15/2012] [Accepted: 10/15/2012] [Indexed: 01/07/2023]
Abstract
Reprogramming of cellular metabolism is a key event during tumorigenesis. Despite being known for decades (Warburg effect), the molecular mechanisms regulating this switch remained unexplored. Here, we identify SIRT6 as a tumor suppressor that regulates aerobic glycolysis in cancer cells. Importantly, loss of SIRT6 leads to tumor formation without activation of known oncogenes, whereas transformed SIRT6-deficient cells display increased glycolysis and tumor growth, suggesting that SIRT6 plays a role in both establishment and maintenance of cancer. By using a conditional SIRT6 allele, we show that SIRT6 deletion in vivo increases the number, size, and aggressiveness of tumors. SIRT6 also functions as a regulator of ribosome metabolism by corepressing MYC transcriptional activity. Lastly, Sirt6 is selectively downregulated in several human cancers, and expression levels of SIRT6 predict prognosis and tumor-free survival rates, highlighting SIRT6 as a critical modulator of cancer metabolism. Our studies reveal SIRT6 to be a potent tumor suppressor acting to suppress cancer metabolism.
Collapse
Affiliation(s)
- Carlos Sebastián
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|