1
|
Matboli M, Al-Amodi HS, Khaled A, Khaled R, Ali M, Kamel HFM, Hamid MSAEL, ELsawi HA, Habib EK, Youssef I. Integrating molecular, biochemical, and immunohistochemical features as predictors of hepatocellular carcinoma drug response using machine-learning algorithms. Front Mol Biosci 2024; 11:1430794. [PMID: 39479501 PMCID: PMC11521808 DOI: 10.3389/fmolb.2024.1430794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/27/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Liver cancer, particularly Hepatocellular carcinoma (HCC), remains a significant global health concern due to its high prevalence and heterogeneous nature. Despite the existence of approved drugs for HCC treatment, the scarcity of predictive biomarkers limits their effective utilization. Integrating diverse data types to revolutionize drug response prediction, ultimately enabling personalized HCC management. Method In this study, we developed multiple supervised machine learning models to predict treatment response. These models utilized classifiers such as logistic regression (LR), k-nearest neighbors (kNN), neural networks (NN), support vector machines (SVM), and random forests (RF) using a comprehensive set of molecular, biochemical, and immunohistochemical features as targets of three drugs: Pantoprazole, Cyanidin 3-glycoside (Cyan), and Hesperidin. A set of performance metrics for the complete and reduced models were reported including accuracy, precision, recall (sensitivity), specificity, and the Matthews Correlation Coefficient (MCC). Results and Discussion Notably, (NN) achieved the best prediction accuracy where the combined model using molecular and biochemical features exhibited exceptional predictive power, achieving solid accuracy of 0.9693 ∓ 0.0105 and average area under the ROC curve (AUC) of 0.94 ∓ 0.06 coming from three cross-validation iterations. Also, found seven molecular features, seven biochemical features, and one immunohistochemistry feature as promising biomarkers of treatment response. This comprehensive method has the potential to significantly advance personalized HCC therapy by allowing for more precise drug response estimation and assisting in the identification of effective treatment strategies.
Collapse
Affiliation(s)
- Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Faculty of Oral and Dental Medicine, Misr International University (MIU), Cairo, Egypt
| | - Hiba S. Al-Amodi
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdelrahman Khaled
- Bioinformatics Group, Center of Informatics Sciences (CIS), School of Information Technology and Computer Sciences, Nile University, Giza, Egypt
| | - Radwa Khaled
- Biotechnology/Biomolecular Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa Ali
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hala F. M. Kamel
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Hind A. ELsawi
- Department of Internal Medicine, Badr University in Cairo, Badr, Egypt
| | - Eman K. Habib
- Department of Anatomy and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Anatomy and Cell Biology, Faculty of Medicine, Galala University, Suez, Egypt
| | - Ibrahim Youssef
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Tanaka T, Aoki R, Terasaki M. Potential Chemopreventive Effects of Dietary Combination of Phytochemicals against Cancer Development. Pharmaceuticals (Basel) 2023; 16:1591. [PMID: 38004456 PMCID: PMC10674766 DOI: 10.3390/ph16111591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer remains a major cause of cancer-related death worldwide. Over 70% of epithelial malignancies are sporadic and are related to lifestyle. Epidemiological studies suggest an inverse correlation between cancer incidence and fruit and vegetable intake. Numerous preclinical studies using in vitro (cell lines) and in vivo animal models of oncogenesis have reported the chemopreventive effects of dietary phytochemical agents through alterations in different biomarkers and signaling pathways. However, there is contrasting evidence from preclinical studies and clinical trials. To date, the most studied compounds include curcumin, resveratrol, isoflavones, green tea extract (epigallocatechin gallate), black raspberry powder (anthocyanins and ellagitannins), bilberry extract (anthocyanins), ginger extract (gingerol derivatives), and pomegranate extract (ellagitannins and ellagic acid). Overall, the clinical evidence of the preventive effects of dietary phytochemicals against cancer development is still weak, and the amount of these phytochemicals needed to exert chemopreventive effects largely exceeds the common dietary doses. Therefore, we propose a combination treatment of natural compounds that are used clinically for another purpose in order to obtain excess inhibitory efficacy via low-dose administration and discuss the possible reasons behind the gap between preclinical research and clinical trials.
Collapse
Affiliation(s)
- Takuji Tanaka
- Department of Diagnostic Pathology, Gifu Municipal Hospital, 7-1 Kashima-cho, Gifu 500-8513, Japan;
| | - Ryogo Aoki
- Department of Diagnostic Pathology, Gifu Municipal Hospital, 7-1 Kashima-cho, Gifu 500-8513, Japan;
| | - Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| |
Collapse
|
3
|
Qadir Nanakali NM, Maleki Dana P, Sadoughi F, Asemi Z, Sharifi M, Asemi R, Yousefi B. The role of dietary polyphenols in alternating DNA methylation in cancer. Crit Rev Food Sci Nutr 2023; 63:12256-12269. [PMID: 35848113 DOI: 10.1080/10408398.2022.2100313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Natural products such as curcumin, quercetin, and resveratrol have been shown to have antitumor effectsand several studies have examined their role in treating cancer, either alone or in combination with other chemotherapeutic drugs. These compounds are capable of affecting different cancer-related mechanisms, such as proliferation, inflammation, invasion, and metastasis. Along with all of the benefits of these agents, affecting epigenetic processes is one of the most important aspects of their impact. Epigenetic modifications can be categorized into three main processes that include DNA methylation, histone modification, and regulation of small non-coding RNAs. Therefore, targeting DNA methylation can be used as a cancer treatment strategy by identifying or developing methylation modulators. Herein, we take a look into the studies investigating the role of natural products (e.g. curcumin, resveratrol, epigallocatechin gallate (EGCG), and quercetin) in alternating the DNA methylation status of various cancer cells. We discuss how these compounds reduce the expression of enzymes mediating the methylation of tumor suppressor genes and thereby, increasing the expression of tumor suppressors while reactivating antitumor signaling pathways.
Collapse
Affiliation(s)
- Nadir Mustafa Qadir Nanakali
- Department of Biomedical Science, College of Science, Cihan University-Erbil, Kurdistan Region, Erbil, Iraq
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Erbil, Iraq
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Chen Q, Hu K, Shi J, Li H, Li W. Hesperidin inhibits methylation and autophagy in LPS and high glucose-induced human villous trophoblasts. Biochem Biophys Res Commun 2023; 671:278-285. [PMID: 37311265 DOI: 10.1016/j.bbrc.2023.05.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) is the first occurrence of diabetes due to abnormal maternal sugar metabolism after pregnancy, which may lead to adverse pregnancy outcomes. Hesperidin is known to decrease in the cord blood of GDM with obesity, but its role is unknown. This study aims to explore the potential function of hesperidin in GDM with obesity to develop new therapeutic ideas. METHODS Peripheral blood and placental tissues from GDM and GDM with obesity patients were collected to isolate human villous trophoblasts and detection. Bioinformatics was used to analyze the differential methylation genes between GDM and GDM with obesity. Immunofluorescence was applied for the detection of CK7 expression. Cells vitality was detected by CCK8 and transwell. Molecular docking was applied to predict the binding of hesperidin and ATG7 protein. Inflammation and m6A levels was analyzed by ELISA. ATG7, LC3, TLR4 and P62 proteins was analyzed by Western blot. RESULTS The methylation of ATG7 gene was up-regulated in GDM with obesity compared with GDM. The m6A and autophagy proteins levels in GDM with obesity were higher than that in GDM. LPS with 2.5-25 mM glucose induced the increase of autophagy proteins, inflammation and m6A levels in human villous trophoblasts. Hesperidin formed hydrogen bonds and hydrophobic interactions with ATG7 proteins. Hesperidin (0.25 μM) inhibited the autophagy proteins and m6A level in LPS and 25 mM glucose-induced human villous trophoblasts. DISCUSSION GDM with obesity followed the increase of autophagy proteins and m6A levels. Hesperidin inhibited the autophagy proteins and m6A level in LPS and glucose-induced human villous trophoblasts.
Collapse
Affiliation(s)
- Qiuling Chen
- Department of Obstetrics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 41700, Hunan, China
| | - Ke Hu
- Department of Obstetrics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 41700, Hunan, China
| | - Jun Shi
- Department of Obstetrics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 41700, Hunan, China
| | - Hua Li
- Department of Obstetrics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 41700, Hunan, China
| | - Wenxia Li
- Department of Obstetrics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 41700, Hunan, China.
| |
Collapse
|
5
|
Ding S, Wang P, Pang X, Zhang L, Qian L, Jia X, Chen W, Ruan S, Sun L. The new exploration of pure total flavonoids extracted from Citrus maxima (Burm.) Merr. as a new therapeutic agent to bring health benefits for people. Front Nutr 2022; 9:958329. [PMID: 36276813 PMCID: PMC9582534 DOI: 10.3389/fnut.2022.958329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
The peel and fruit of Citrus varieties have been a raw material for some traditional Chinese medicine (TCM). Pure total flavonoids from Citrus maxima (Burm.) Merr. (PTFC), including naringin, hesperidin, narirutin, and neohesperidin, have been attracted increasing attention for their multiple clinical efficacies. Based on existing in vitro and in vivo research, this study systematically reviewed the biological functions of PTFC and its components in preventing or treating liver metabolic diseases, cardiovascular diseases, intestinal barrier dysfunction, as well as malignancies. PTFC and its components are capable of regulating glycolipid metabolism, blocking peroxidation and persistent inflammation, inhibiting tumor progression, protecting the integrity of intestinal barrier and positively regulating intestinal microbiota, while the differences in fruit cultivation system, picking standard, manufacturing methods, delivery system and individual intestinal microecology will have impact on the specific therapeutic effect. Thus, PTFC is a promising drug for the treatment of some chronic diseases, as well as continuous elaborate investigations are necessary to improve its effectiveness and bioavailability.
Collapse
Affiliation(s)
- Shuning Ding
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peipei Wang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xi Pang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Leyin Zhang
- Department of Medical Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Lihui Qian
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinru Jia
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenqian Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shanming Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China,Shanming Ruan,
| | - Leitao Sun
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China,*Correspondence: Leitao Sun,
| |
Collapse
|
6
|
Cheng Z, Wang Y, Li B. Dietary Polyphenols Alleviate Autoimmune Liver Disease by Mediating the Intestinal Microenvironment: Challenges and Hopes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10708-10737. [PMID: 36005815 DOI: 10.1021/acs.jafc.2c02654] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Autoimmune liver disease is a chronic liver disease caused by an overactive immune response in the liver that imposes a significant health and economic cost on society. Due to the side effects of existing medicinal medications, there is a trend toward seeking natural bioactive compounds as dietary supplements. Currently, dietary polyphenols have been proven to have the ability to mediate gut-liver immunity and control autoimmune liver disease through modulating the intestinal microenvironment. Based on the preceding, this Review covers the many forms of autoimmune liver illnesses, their pathophysiology, and the modulatory effects of polyphenols on immune disorders. Finally, we focus on how polyphenols interact with the intestinal milieu to improve autoimmune liver disease. In conclusion, we suggest that dietary polyphenols have the potential as gut-targeted modulators for the prevention and treatment of autoimmune liver disease and highlight new perspectives and critical issues for future pharmacological applications.
Collapse
Affiliation(s)
- Zhen Cheng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning 110866, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning 110866, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning 110866, China
| |
Collapse
|
7
|
The Role of Epigenetic Modifications in Human Cancers and the Use of Natural Compounds as Epidrugs: Mechanistic Pathways and Pharmacodynamic Actions. Biomolecules 2022; 12:biom12030367. [PMID: 35327559 PMCID: PMC8945214 DOI: 10.3390/biom12030367] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is a complex disease resulting from the genetic and epigenetic disruption of normal cells. The mechanistic understanding of the pathways involved in tumor transformation has implicated a priori predominance of epigenetic perturbations and a posteriori genetic instability. In this work, we aimed to explain the mechanistic involvement of epigenetic pathways in the cancer process, as well as the abilities of natural bioactive compounds isolated from medicinal plants (flavonoids, phenolic acids, stilbenes, and ketones) to specifically target the epigenome of tumor cells. The molecular events leading to transformation, angiogenesis, and dissemination are often complex, stochastic, and take turns. On the other hand, the decisive advances in genomics, epigenomics, transcriptomics, and proteomics have allowed, in recent years, for the mechanistic decryption of the molecular pathways of the cancerization process. This could explain the possibility of specifically targeting this or that mechanism leading to cancerization. With the plasticity and flexibility of epigenetic modifications, some studies have started the pharmacological screening of natural substances against different epigenetic pathways (DNA methylation, histone acetylation, histone methylation, and chromatin remodeling) to restore the cellular memory lost during tumor transformation. These substances can inhibit DNMTs, modify chromatin remodeling, and adjust histone modifications in favor of pre-established cell identity by the differentiation program. Epidrugs are molecules that target the epigenome program and can therefore restore cell memory in cancerous diseases. Natural products isolated from medicinal plants such as flavonoids and phenolic acids have shown their ability to exhibit several actions on epigenetic modifiers, such as the inhibition of DNMT, HMT, and HAT. The mechanisms of these substances are specific and pleiotropic and can sometimes be stochastic, and their use as anticancer epidrugs is currently a remarkable avenue in the fight against human cancers.
Collapse
|
8
|
Alarcón-Sánchez BR, Pérez-Carreón JI, Villa-Treviño S, Arellanes-Robledo J. Molecular alterations that precede the establishment of the hallmarks of cancer: An approach on the prevention of hepatocarcinogenesis. Biochem Pharmacol 2021; 194:114818. [PMID: 34757033 DOI: 10.1016/j.bcp.2021.114818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver injury promotes the molecular alterations that precede the establishment of cancer. Usually, several decades of chronic insults are needed to develop the most common primary liver tumor known as hepatocellular carcinoma. As other cancer types, liver cancer cells are governed by a common set of rules collectively called the hallmarks of cancer. Although those rules have provided a conceptual framework for understanding the complex pathophysiology of established tumors, therapeutic options are still ineffective in advanced stages. Thus, the molecular alterations that precede the establishment of cancer remain an attractive target for therapeutic interventions. Here, we first summarize the chemopreventive interventions targeting the early liver carcinogenesis stages. After an integrative analysis on the plethora of molecular alterations regulated by anticancer agents, we then underline and discuss that two critical processes namely oxidative stress and genetic alterations, play the role of 'dirty work laborer' in the initial cell damage and drive the transformation of preneoplastic into neoplastic cells, respectively; besides, the activation of cellular senescence works as a key mechanism in attempting to prevent the onset and establishment of liver cancer. Whereas the detrimental effects of the binomial made up of oxidative stress and genetic alterations are either eliminated or reduced, senescence activation is promoted by anticancer agents. We argue that collectively, oxidative stress, genetic alterations, and senescence are key events that influence the fate of initiated cells and the establishment of the hallmarks of cancer.
Collapse
Affiliation(s)
- Brisa Rodope Alarcón-Sánchez
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, CDMX, Mexico; Departament of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, CDMX, Mexico
| | | | - Saúl Villa-Treviño
- Departament of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, CDMX, Mexico
| | - Jaime Arellanes-Robledo
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, CDMX, Mexico; Directorate of Cátedras, National Council of Science and Technology - CONACYT, CDMX, Mexico.
| |
Collapse
|
9
|
de Lima LP, de Paula Barbosa A. A review of the lipolytic effects and the reduction of abdominal fat from bioactive compounds and moro orange extracts. Heliyon 2021; 7:e07695. [PMID: 34409177 PMCID: PMC8361066 DOI: 10.1016/j.heliyon.2021.e07695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/23/2021] [Accepted: 07/28/2021] [Indexed: 11/20/2022] Open
Abstract
Dietary supplementation containing Citrus sinensis extract is being widely used for weight loss due to its anti-adipogenic and antioxidant effects that regulate the metabolism of fatty acids. Bioactive compounds upregulate PPARα in the liver tissue, increasing oxidation of fatty acids and improving insulin sensitivity in addition to decreasing the expression of genes involved in the synthesis of fatty acids, such as LXRα and FAS. Studies on synephrine demonstrated their ability to stimulate the development of beige adipose tissue through greater expression of UCP1 and mtTFA, contributing to an increase in thermogenesis and mitochondrial biogenesis. However, despite its widespread use to reduce abdominal fat, few scientific studies have consensually proven the effectiveness of Moro orange extract for weight loss. This literature review summarizes the current information on the pharmacological and molecular mechanisms involved in the modulation of lipid metabolism by the bioactive compounds present in Moro orange extract.
Collapse
Affiliation(s)
- Lucas Pinheiro de Lima
- Faculdade Ana Carolina Puga (FAPUGA), Av. Braz Olaia Acosta, 1.900/ 109, Ribeirão Preto, 14026-610, São Paulo, Brazil
| | - Antony de Paula Barbosa
- Faculdade Ana Carolina Puga (FAPUGA), Av. Braz Olaia Acosta, 1.900/ 109, Ribeirão Preto, 14026-610, São Paulo, Brazil
| |
Collapse
|
10
|
Jiang W, Xia T, Liu C, Li J, Zhang W, Sun C. Remodeling the Epigenetic Landscape of Cancer-Application Potential of Flavonoids in the Prevention and Treatment of Cancer. Front Oncol 2021; 11:705903. [PMID: 34235089 PMCID: PMC8255972 DOI: 10.3389/fonc.2021.705903] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetics, including DNA methylation, histone modification, and noncoding RNA regulation, are physiological regulatory changes that affect gene expression without modifying the DNA sequence. Although epigenetic disorders are considered a sign of cell carcinogenesis and malignant events that affect tumor progression and drug resistance, in view of the reversible nature of epigenetic modifications, clinicians believe that associated mechanisms can be a key target for cancer prevention and treatment. In contrast, epidemiological and preclinical studies indicated that the epigenome is constantly reprogrammed by intake of natural organic compounds and the environment, suggesting the possibility of utilizing natural compounds to influence epigenetics in cancer therapy. Flavonoids, although not synthesized in the human body, can be consumed daily and are common in medicinal plants, vegetables, fruits, and tea. Recently, numerous reports provided evidence for the regulation of cancer epigenetics by flavonoids. Considering their origin in natural and food sources, few side effects, and remarkable biological activity, the epigenetic antitumor effects of flavonoids warrant further investigation. In this article, we summarized and analyzed the multi-dimensional epigenetic effects of all 6 subtypes of flavonoids (including flavonols, flavones, isoflavones, flavanones, flavanols, and anthocyanidin) in different cancer types. Additionally, our report also provides new insights and a promising direction for future research and development of flavonoids in tumor prevention and treatment via epigenetic modification, in order to realize their potential as cancer therapeutic agents.
Collapse
Affiliation(s)
- Weiyi Jiang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Xia
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfeng Zhang
- Clinical Medical Colleges, Weifang Medical University, Weifang, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
11
|
Stojković L, Zec M, Zivkovic M, Bundalo M, Bošković M, Glibetić M, Stankovic A. Polyphenol-Rich Aronia melanocarpa Juice Consumption Affects LINE-1 DNA Methylation in Peripheral Blood Leukocytes in Dyslipidemic Women. Front Nutr 2021; 8:689055. [PMID: 34222308 PMCID: PMC8247759 DOI: 10.3389/fnut.2021.689055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/26/2021] [Indexed: 12/27/2022] Open
Abstract
Cardiovascular disease (CVD) is associated with alterations in DNA methylation and polyunsaturated fatty acid (PUFA) profile, both modulated by dietary polyphenols. The present parallel, placebo-controlled study (part of the original clinical study registered as NCT02800967 at www.clinicaltrials.gov) aimed to determine the impact of 4-week daily consumption of polyphenol-rich Aronia melanocarpa juice (AMJ) treatment on Long Interspersed Nucleotide Element-1 (LINE-1) methylation in peripheral blood leukocytes and on plasma PUFAs, in subjects (n = 54, age range of 40.2 ± 6.7 years) at moderate CVD risk, including an increased body mass index, central obesity, high normal blood pressure, and/or dyslipidemia. The goal was also to examine whether factors known to affect DNA methylation (folate intake levels, MTHFR C677T gene variant, anthropometric and metabolic parameters) modulated the LINE-1 methylation levels upon the consumption of polyphenol-rich aronia juice. Experimental analysis of LINE-1 methylation was done by MethyLight method. MTHFR C677T genotypes were determined by the polymerase chain reaction–restriction fragment length polymorphism method, and folate intake was assessed by processing the data from the food frequency questionnaire. PUFAs were measured by gas–liquid chromatography, and serum lipid profile was determined by using Roche Diagnostics kits. The statistical analyses were performed using Statistica software package. In the comparison after vs. before the treatment period, in dyslipidemic women (n = 22), we observed significant decreases in LINE-1 methylation levels (97.54 ± 1.50 vs. 98.39 ± 0.86%, respectively; P = 0.01) and arachidonic acid/eicosapentaenoic acid ratio [29.17 ± 15.21 vs. 38.42 (25.96–89.58), respectively; P = 0.02]. The change (after vs. before treatment) in LINE-1 methylation directly correlated with the presence of MTHFR 677T allele, average daily folate intake, and the change in serum low-density lipoprotein cholesterol but inversely correlated with the change in serum triacylglycerols (R = 0.72, R2 = 0.52, adjusted R2 = 0.36, P = 0.03). The current results imply potential cardioprotective effects of habitual polyphenol-rich aronia juice consumption achieved through the modifications of DNA methylation pattern and PUFAs in subjects at CVD risk, which should be further confirmed. Hence, the precision nutrition-driven modulations of both DNA methylation and PUFA profile may become targets for new approaches in the prevention of CVD.
Collapse
Affiliation(s)
- Ljiljana Stojković
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environmental Research, "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Manja Zec
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.,Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Maja Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environmental Research, "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maja Bundalo
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environmental Research, "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.,Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Maja Bošković
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environmental Research, "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marija Glibetić
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environmental Research, "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
12
|
Tian M, Han YB, Zhao CC, Liu L, Zhang FL. Hesperidin alleviates insulin resistance by improving HG-induced oxidative stress and mitochondrial dysfunction by restoring miR-149. Diabetol Metab Syndr 2021; 13:50. [PMID: 33926520 PMCID: PMC8082863 DOI: 10.1186/s13098-021-00664-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 04/09/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Hesperidin, a natural flavanone, has been proven to have multiple protective effects in diabetic rats, such as antioxidant, anti-inflammatory and anti-apoptotic effects. However, the molecular mechanisms underlying the effects of hesperidin are not well elucidated. METHODS LO2 cells were stimulated with high glucose (HG, 33 mM) for 24 h to establish a model of oxidative stress. Then, cell viability was determined using the MTT assay. The antioxidant activities, including the reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels, mitochondrial membrane potential (MMP) and adenosine-triphosphate (ATP) production, were measured with the corresponding kits. The levels of gene expression, protein expression and methylation were detected using qRT-PCR, western blotting and methylation-specific PCR (MSP) assays, respectively. RESULTS Compared to the NG treatment, hesperidin treatment increased the viability and improved the oxidative stress, mitochondrial dysfunction and insulin resistance of HG-treated LO2 cells, and these effects were correlated with heightened SOD and GPx activities, increased MMP level and ATP generation, reduced MDA, ROS and glucose levels, and activated GSK3β/AKT and inactivated IRS1 signals. Mechanistically, hesperidin treatment enhanced the miR-149 expression level by reducing its promoter methylation by inhibiting DNMT1. Importantly, knockdown of miR-149 obviously abolished the biological roles of hesperidin. CONCLUSIONS Our findings demonstrated that hesperidin treatment ameliorated HG-induced insulin resistance by reducing oxidative stress and mitochondrial dysfunction partly by suppressing DNMT1-mediated miR-149 silencing.
Collapse
Affiliation(s)
- Miao Tian
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Yu-Bo Han
- The First Department of Cardiovascular, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, No. 26 Heping Road , Xiangfang District, Harbin, 150040, Heilongjiang, People's Republic of China.
| | - Cheng-Cheng Zhao
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Li Liu
- The First Department of Cardiovascular, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, No. 26 Heping Road , Xiangfang District, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Fu-Li Zhang
- School of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China
| |
Collapse
|
13
|
Sokkar HH, Abo Dena AS, Mahana NA, Badr A. Artichoke extracts in cancer therapy: do the extraction conditions affect the anticancer activity? FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Artichoke is an edible plant that is grown in the Mediterranean region and is known for its antimicrobial, antifungal, antibacterial, antioxidant and anticancer activities. Different artichoke extraction methods can impressively affect the nature as well as the yield of the extracted components.
Main body
The different methods of artichoke extraction and the influence of the extraction conditions on the extraction efficiency are summarized herein. In addition, cancer causalities and hallmarks together with the molecular mechanisms of artichoke active molecules in cancer treatment are also discussed. Moreover, a short background is given on the common types of cancer that can be treated with artichoke extracts as well as their pathogenesis. A brief discussion of the previous works devoted to the application of artichoke extracts in the treatment of these cancers is also given.
Conclusion
This review article covers the extraction methods, composition, utilization and applications of artichoke extracts in the treatment of different cancers.
Collapse
|
14
|
Flavonoids from Aurantii Fructus Immaturus and Aurantii Fructus: promising phytomedicines for the treatment of liver diseases. Chin Med 2020; 15:89. [PMID: 32863858 PMCID: PMC7449045 DOI: 10.1186/s13020-020-00371-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Background Liver diseases and related complications are major sources of morbidity and mortality, which places a huge financial burden on patients and lead to nonnegligible social problems. Therefore, the discovery of novel therapeutic drugs for the treatment of liver diseases is urgently required. Aurantii Fructus Immaturus (AFI) and Aurantii Fructus (AF) are frequently used herbal medicines in traditional Chinese medicine (TCM) formulas for the treatment of diverse ailments. A variety of bioactive ingredients have been isolated and identified from AFI and AF, including alkaloids, flavonoids, coumarins and volatile oils. Main body Emerging evidence suggests that flavonoids, especially hesperidin (HD), naringenin (NIN), nobiletin (NOB), naringin (NRG), tangeretin (TN), hesperetin (HT) and eriodictyol (ED) are major representative bioactive ingredients that alleviate diseases through multi-targeting mechanisms, including anti-oxidative stress, anti-cytotoxicity, anti-inflammation, anti-fibrosis and anti-tumor mechanisms. In the current review, we summarize the recent progress in the research of hepatoprotective effects of HD, NIN, NOB, NRG, TN, HT and ED and highlight the potential underlying molecular mechanisms. We also point out the limitations of the current studies and shed light on further in-depth pharmacological and pharmacokinetic studies of these bioactive flavonoids. Conclusion This review outlines the recent advances in the literature and highlights the potential of these flavonoids isolated from AFI and AF as therapeutic agents for the treatment of liver diseases. Further pharmacological studies will accelerate the development of natural products in AFI and AF and their derivatives as medicines with tantalizing prospects in the clinical application.
Collapse
|
15
|
Ferreira de Oliveira JMP, Santos C, Fernandes E. Therapeutic potential of hesperidin and its aglycone hesperetin: Cell cycle regulation and apoptosis induction in cancer models. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 73:152887. [PMID: 30975541 DOI: 10.1016/j.phymed.2019.152887] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/20/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The ability of cancer cells to divide without restriction and to escape programmed cell death is a feature of the proliferative state. Citrus flavanones are flavonoids with potential multiple anticancer actions, from antioxidant and chemopreventive, to anti-inflammatory, anti-angiogenic, cytostatic and cytotoxic in different cancer models. PURPOSE This review aims to summarize the current knowledge on the antiproliferative actions of the citrus flavanones hesperidin (HSD) and hesperetin (HST), with emphasis on cell cycle arrest and apoptosis. METHODS Cochrane Library, Scopus, Pubmed and Web of Science collection databases were queried for publications reporting antiproliferative effects of HSD and HST in cancer models. RESULTS HSD and HST have been proven to delay cell proliferation in several cancer models. Depending on the compound, dose and cell line studied, different effects have been reported. Cell cycle arrest associated with cytostatic effects has been reported in cells with increased levels of p53 and also cyclin-dependent kinase inhibitors, as well as decreased levels of specific cyclins and cyclin-dependent kinases. Moreover, apoptotic effects have been found to be associated with altered ratios of pro-/antiapoptotic proteins, caspase activation, c-Jun N-terminal kinase (JNK) pathway activation and caspase-independent pathways. CONCLUSION Available scientific literature data indicate complex effects, dependent on cell lines and exposure conditions, suggesting that HSD and HST doses need to be optimized according to the cellular and organismal context. The establishment of the main antiproliferative mechanisms is of utmost importance for a possible therapeutic benefit of citrus flavanones in the context of cancer.
Collapse
Affiliation(s)
- José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313 Porto, Portugal.
| | - Conceição Santos
- Integrated Biology and Biotechnology Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal; LAQV, REQUIMTE, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
16
|
Liu A, Wu Q, Peng D, Ares I, Anadón A, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Martínez MA. A novel strategy for the diagnosis, prognosis, treatment, and chemoresistance of hepatocellular carcinoma: DNA methylation. Med Res Rev 2020; 40:1973-2018. [PMID: 32525219 DOI: 10.1002/med.21696] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/29/2020] [Accepted: 05/17/2020] [Indexed: 12/11/2022]
Abstract
The cancer mortality rate of hepatocellular carcinoma (HCC) is the second highest in the world and the therapeutic options are limited. The incidence of this deadly cancer is rising at an alarming rate because of the high degree of resistance to chemo- and radiotherapy, lack of proper, and adequate vaccination to hepatitis B, and lack of consciousness and knowledge about the disease itself and the lifestyle of the people. DNA methylation and DNA methylation-induced epigenetic alterations, due to their potential reversibility, open the access to develop novel biomarkers and therapeutics for HCC. The contribution to these epigenetic changes in HCC development still has not been thoroughly summarized. Thus, it is necessary to better understand the new molecular targets of HCC epigenetics in HCC diagnosis, prevention, and treatment. This review elaborates on recent key findings regarding molecular biomarkers for HCC early diagnosis, prognosis, and treatment. Currently emerging epigenetic drugs for the treatment of HCC are summarized. In addition, combining epigenetic drugs with nonepigenetic drugs for HCC treatment is also mentioned. The molecular mechanisms of DNA methylation-mediated HCC resistance are reviewed, providing some insights into the difficulty of treating liver cancer and anticancer drug development.
Collapse
Affiliation(s)
- Aimei Liu
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China.,Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| |
Collapse
|
17
|
Amin AR, Kassab RB, Abdel Moneim AE, Amin HK. Comparison Among Garlic, Berberine, Resveratrol,Hibiscus sabdariffa, GenusZizyphus, Hesperidin, Red Beetroot,Catha edulis,Portulaca oleracea, and Mulberry Leaves in the Treatment of Hypertension and Type 2 DM: A Comprehensive Review. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20921623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Diabetes mellitus (DM) and hypertension are 2 of the most prevalent diseases with poor impact on health status worldwide. In most cases, they coexist with other metabolic disorders as well as cardiac, micro- and macrovascular complications. Many plants are known for their hypotensive, cardioprotective, and/or antidiabetic activities. Their active ingredients either identified and isolated or still utilized as herbal preparations of certain plant parts. The use of medicinal plants comprises the main basis for most of the traditional medicine (TM) systems and procedures. As conventional medicines seem insufficient to control such progressive diseases, herbal agents from TM could be used as adjuvant with good impact on disease control and progression as well as other concomitant health conditions. The aim of this study is to compare the efficacy of 10 different herbal medicines of botanical origin or herbal preparations in the management of hypertension and its cardiovascular complications and type 2 DM along with various coexisting health disorders. These herbal medicines are garlic, berberine, resveratrol, Hibiscus sabdariffa, Zizyphus ( oxyphylla, mucronate, jujube, rugosa), hesperidin, red beetroot, Catha edulis, mulberry leaves, and Portulaca oleracea.
Collapse
Affiliation(s)
- Amira R. Amin
- Cardiology and Oncology Section, Nasser Institute for Research and Treatment, Cairo, Egypt
| | - Rami B. Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed E. Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Hatem K. Amin
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Egypt
| |
Collapse
|
18
|
Tabeshpour J, Hosseinzadeh H, Hashemzaei M, Karimi G. A review of the hepatoprotective effects of hesperidin, a flavanon glycoside in citrus fruits, against natural and chemical toxicities. ACTA ACUST UNITED AC 2020; 28:305-317. [PMID: 32277430 DOI: 10.1007/s40199-020-00344-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/30/2020] [Indexed: 01/30/2023]
Abstract
OBJECTIVES Liver is the most important and functional organ in the body to metabolize and detoxify endogenous compounds and xenobiotics. The major goal of the present narrative review is to assess the hepatoprotective properties of hesperidin against a variety of natural and chemical hepatotoxins via different mechanisms. EVIDENCE ACQUISITION Scientific databases such as Scopus, Medline, Web of Science and Google scholar were thoroughly searched, based on different keywords. RESULTS A variety of natural hepatotoxins such as lipopolysaccharide, concanavalin A and microcystins, and chemical hepatotoxins such as ethanol, acrylamide and carbon tetrachloride have been shown to damage hepatocytes as well as other liver cells. In addition to hepatocytes, ethanol can also damage liver hepatic stellate cells, Kupffer cells and sinusoidal endothelial cells. In this regard, the flavanone hesperidin, occur in the rind of citrus fruits, had been demonstrated to possess widespread pharmacological properties. Hesperidin exerts its hepatoprotective properties via different mechanisms including elevation in the activities of nuclear factor-like 2/antioxidant response element and heme oxygenase 1 as well as the levels of enzymatic and non-enzymatic antioxidants. Furthermore, reduction in the levels of high-mobility group box 1 protein, inhibitor of kappa B protein-alpha, matrix metalloproteinase-9 and C-reactive protein are some other important hesperidin-derived hepatoprotective mechanisms. CONCLUSION Based on several research papers, it could be concluded that hesperidin is able to protect against liver damage from inflammation and/or oxidative stress-mediated natural and chemical toxins.
Collapse
Affiliation(s)
- Jamshid Tabeshpour
- Faculty of Pharmacy, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, P. O. Box 1365-91775, Mashhad, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, P. O. Box 1365-91775, Mashhad, Iran.
| |
Collapse
|
19
|
Aggarwal V, Tuli HS, Thakral F, Singhal P, Aggarwal D, Srivastava S, Pandey A, Sak K, Varol M, Khan MA, Sethi G. Molecular mechanisms of action of hesperidin in cancer: Recent trends and advancements. Exp Biol Med (Maywood) 2020; 245:486-497. [PMID: 32050794 DOI: 10.1177/1535370220903671] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hesperidin belongs to flavanones class of flavonoids and is known to possess broad-spectrum applicability to prevent dreadful diseases such as cardiovascular disease, neurodegeneration, and cancer. The reported anticancer effects of hesperidin have been found to be associated with its anti-oxidant and anti-inflammatory activities. Hesperidin interacts with numerous recognized cellular targets and inhibits cancer cell proliferation by inducing apoptosis and cell cycle arrest. In addition, evidence has suggested its promising role in inhibiting tumor cell metastasis, angiogenesis, and chemoresistance. The present mini-review highlights the ongoing development to identify hesperidin targets in cancer. Furthermore, the potential of nano technology-based hesperidin combinations and delivery systems will also be discussed. Overall, this review highlights all the possible molecular targets affected by hesperidin in tumor cells on a single platform. Impact statement Experimental findings from numerous studies have demonstrated the anticancer effects of hesperidin (Hesp) to be associated with anti-oxidant and anti-inflammatory activities along with its potential role in inhibiting the tumor cell metastasis and angiogenesis. Additionally, Hesp can also reverse drug resistance of cancer cells, which make it a promising candidate to be used in combination with existing anti-cancer drugs. This review will be helpful for upcoming researchers and scientific community to find out complete capsular package about cancer drug targets of Hesp and its role in modulating various important hallmarks of cancer.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Hardeep S Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Falak Thakral
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Paavan Singhal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Saumya Srivastava
- Department of Biotechnology, MNNIT Allahabad, Prayagraj 211004, India
| | - Anjana Pandey
- Department of Biotechnology, MNNIT Allahabad, Prayagraj 211004, India
| | | | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla TR48000, Turkey
| | - Md Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|
20
|
Li S, Chen M, Li Y, Tollefsbol TO. Prenatal epigenetics diets play protective roles against environmental pollution. Clin Epigenetics 2019; 11:82. [PMID: 31097039 PMCID: PMC6524340 DOI: 10.1186/s13148-019-0659-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
It is thought that germ cells and preimplantation embryos during development are most susceptible to endogenous and exogenous environmental factors because the epigenome in those cells is undergoing dramatic elimination and reconstruction. Exposure to environmental factors such as nutrition, climate, stress, pathogens, toxins, and even social behavior during gametogenesis and early embryogenesis has been shown to influence disease susceptibility in the offspring. Early-life epigenetic modifications, which determine the expression of genetic information stored in the genome, are viewed as one of the general mechanisms linking prenatal exposure and phenotypic changes later in life. From atmospheric pollution, endocrine-disrupting chemicals to heavy metals, research increasingly suggests that environmental pollutions have already produced significant consequences on human health. Moreover, mounting evidence now links such pollution to relevant modification in the epigenome. The epigenetics diet, referring to a class of bioactive dietary compounds such as isothiocyanates in broccoli, genistein in soybean, resveratrol in grape, epigallocatechin-3-gallate in green tea, and ascorbic acid in fruits, has been shown to modify the epigenome leading to beneficial health outcomes. This review will primarily focus on the causes and consequences of prenatal environment pollution exposure on the epigenome, and the potential protective role of the epigenetics diet, which could play a central role in neutralizing epigenomic aberrations against environmental pollutions.
Collapse
Affiliation(s)
- Shizhao Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Min Chen
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yuanyuan Li
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
21
|
Fuso A, Lucarelli M. CpG and Non-CpG Methylation in the Diet–Epigenetics–Neurodegeneration Connection. Curr Nutr Rep 2019; 8:74-82. [DOI: 10.1007/s13668-019-0266-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Mo'men YS, Hussein RM, Kandeil MA. Involvement of PI3K/Akt pathway in the protective effect of hesperidin against a chemically induced liver cancer in rats. J Biochem Mol Toxicol 2019; 33:e22305. [PMID: 30779474 DOI: 10.1002/jbt.22305] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/14/2018] [Accepted: 01/09/2019] [Indexed: 12/14/2022]
Abstract
Hesperidin is a flavanone glycoside that is found in the Citrus species and showed antioxidant, hepatoprotective as well as anticancer activity. This study investigated the effect of hesperidin on the PI3K/Akt pathway as a possible mechanism for its protective effect against diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC). Adult Wistar rats were divided into Control group (received drug vehicle); DEN group (received 100 mg/L of DEN solution for 8 weeks), and hesperidin + DEN group (received 200 mg/kg body weight of hesperidin/day orally for 16 weeks + DEN solution as DEN group). Our findings showed that the administration of hesperidin significantly decreased the elevation in liver function enzymes, serum AFP level, and oxidative stress markers. Moreover, hesperidin administration suppressed DEN-induced upregulation of PI3K, Akt, CDK-2 protein expression, and preserved the integrity of the liver tissues from HCC formation. In conclusion, the hepatoprotective activity of hesperidin is mediated via its antioxidation and downregulation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yomna S Mo'men
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rasha M Hussein
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed A Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
23
|
Fernández-Bedmar Z, Anter J, Alonso-Moraga A, Delgado de la Torre P, Luque de Castro MD, Millán-Ruiz Y, Sánchez-Frías M, Guil-Luna S. Red and White Wine Lees Show Inhibitory Effects on Liver Carcinogenesis. Mol Nutr Food Res 2019; 63:e1800864. [PMID: 30730089 DOI: 10.1002/mnfr.201800864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/21/2019] [Indexed: 11/08/2022]
Abstract
SCOPE Wine has shown anticarcinogenic benefits in hepatocarcinoma and polyphenols seem to be responsible for these effects. Wine lees are the sediments produced during fermentation and they endow wine with organoleptic and physicochemical properties. However, the anticarcinogenic role of these compounds is still unknown. Thus, the purpose of this work is to determine the phytochemical profiles of wine lees and then to analyze their anticarcinogenic effect and DNA methylation on a model of hepatocarcinogenesis. METHODS AND RESULTS The phytochemical composition of lees is determined by the Folin-Ciocalteu method and high-performance liquid chromatography. An in vivo study using a diethyl nitrosamine-hepatocarcinogenesis-induced model is performed to investigate the hepatoprotective properties of different doses of wine lees. For the DNA methylation analysis, a bisulfite-based method is used. Both types of lees mostly contain pyrogallol, gallic, and syringic acid with a high content of catechins in red lees. The carcinogen hypermethylates the Alu-M2 repetitive sequence and white lees decreases the hypermethylation at all tested concentrations. Low concentration of red and white lees and high concentration of white lees significantly improve the hepatocellular architecture and decrease the mitotic index in the murine model. CONCLUSION These findings suggest that wine lees are promising agents for chemoprevention of hepatocarcinoma.
Collapse
Affiliation(s)
| | - Jaouad Anter
- Department of Genetics, Campus of Rabanales, University of Córdoba, Córdoba, 14014, Spain
| | - Angeles Alonso-Moraga
- Department of Genetics, Campus of Rabanales, University of Córdoba, Córdoba, 14014, Spain
| | - Pilar Delgado de la Torre
- Department of Analytical Chemistry, Campus of Rabanales, University of Córdoba, Córdoba, 14014, Spain
| | | | - Yolanda Millán-Ruiz
- Department of Comparative Pathology, Campus of Rabanales, University of Córdoba, Córdoba, 14014, Spain
| | - Marina Sánchez-Frías
- Department of Pathology, Hospital Universitario Reina Sofía, Córdoba, 14005, Spain
| | - Silvia Guil-Luna
- Department of Comparative Pathology, Campus of Rabanales, University of Córdoba, Córdoba, 14014, Spain.,New Therapies in Cancer Group, Maimónides Institute for Biomedical Research of Córdoba, 14005, Spain
| |
Collapse
|
24
|
Krasilnikova J, Lauberte L, Stoyanova E, Abadjieva D, Chervenkov M, Mori M, De Paolis E, Mladenova V, Telysheva G, Botta B, Kistanova E. Oregonin from Alnus incana bark affects DNA methyltransferases expression and mitochondrial DNA copies in mouse embryonic fibroblasts. J Enzyme Inhib Med Chem 2018; 33:1055-1063. [PMID: 29877148 PMCID: PMC6010114 DOI: 10.1080/14756366.2018.1476504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 01/24/2023] Open
Abstract
Oregonin is an open-chain diarylheptanoid isolated from Alnus incana bark that possesses remarkable antioxidant and anti-inflammatory properties, inhibits adipogenesis, and can be used in the prevention of obesity and related metabolic disorders. Here, we aimed to investigate the effects of oregonin on the epigenetic regulation in cells as well as its ability to modulate DNA methylating enzymes expression and mitochondrial DNA (mtDNA) copies. Our results show that oregonin altered the expression of DNA methyltransferases and mtDNA copy numbers in dependency on concentration and specificity of cells genotype. A close correlation between mtDNA copy numbers and mRNA expression of the mtDnmt1 and Dnmt3b was established. Moreover, molecular modeling suggested that oregonin fits the catalytic site of DNMT1 and partially overlaps with binding of the cofactor. These findings further extend the knowledge on oregonin, and elucidate for the first time its potential to affect the key players of the DNA methylation process, namely DNMTs transcripts and mtDNA.
Collapse
Affiliation(s)
| | - Liga Lauberte
- Latvian State Institute of Wood Chemistry, Riga, Latvia
| | - Elena Stoyanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Desislava Abadjieva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mihail Chervenkov
- Faculty of Veterinary Medicine, University of Forestry, Sofia, Bulgaria
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mattia Mori
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Elisa De Paolis
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Vanya Mladenova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Bruno Botta
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|