1
|
Que Y, Lu X, Lu S, Sun F, Zhu J, Zhang Y, Wang J, Huang J, Liu W, Wang F, Li L, Zhang L, Gao M, Zhen Z, Zhang Y. Genomic and clinical characterization of pediatric lymphoepithelioma-like carcinoma. J Transl Med 2024; 22:1102. [PMID: 39633439 PMCID: PMC11616302 DOI: 10.1186/s12967-024-05921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Pediatric lymphoepithelioma-like carcinoma (pLELC) is a rare neoplasm with unclear prognosis, genome, and tumor microenvironment. Our study aims to elucidate its genomic and clinical characteristics. METHODS Forty-one pLELC patients were enrolled at Sun Yat-sen University Cancer Center from 2012 to 2023. Kaplan-Meier analysis was utilized to estimate progression-free survival (PFS) and overall survival (OS). Baseline plasma protein levels from 16 patients and 9 health controls were analyzed using a Olink proteomic platform and whole exon sequence (WES) was performed on 11 tumor samples from 10 pediatric patients. Immunohistochemistry (IHC) for PD-L1was performed, and the infiltration of CD4+ or CD8+ T cells was evaluated. RESULTS Patients receiving anti PD-1 in combination with chemotherapy had a 1-year PFS of 100%, while the 2-year PFS was 72.92% (95%CI: 46.80‒100%). The 1-year OS for patients receiving anti PD-1 in combination with chemotherapy was 100%, and the 2-year OS was 87.5% (95%CI: 67.34-100%). Significant upregulation of immune checkpoint molecules was detected including LAG-3, PD-L1, and galectin-9 in LELC group by proteomic analysis (P < 0.05). The mutational landscape of pediatric LELC presented more genes mutated in pathways associated with immune, DNA repair, cell cycle and NOTCH. Pathway analysis of mutational profiles indicated DNA repair pathway and SWI/SNF complex were potential drug targets for pLELC patients. All the pediatric LELC patients evaluated exhibited positive PD-L1 expression and CD4+/CD8+ T cells infiltration. CONCLUSIONS Our findings indicate a promising response rate associated with the combination of PD-1 antibody treatment and chemotherapy in pediatric patients with LELC, providing a theoretical basis for targeting DNA repair pathways. These outcomes suggest that clinical trials involving immune checkpoint inhibitors are warranted in pediatric patients with LELC.
Collapse
Affiliation(s)
- Yi Que
- Department of Pediatric Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Xiuxia Lu
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Suying Lu
- Department of Pediatric Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Feifei Sun
- Department of Pediatric Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Jia Zhu
- Department of Pediatric Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Yu Zhang
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Juan Wang
- Department of Pediatric Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Junting Huang
- Department of Pediatric Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Wei Liu
- Department of Thoracic Surgery, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, People's Republic of China
| | - Fenghua Wang
- Department of Thoracic Surgery, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, People's Republic of China
| | - Liping Li
- Department of Pathology, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, People's Republic of China
| | - Li Zhang
- Department of Pediatric Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Min Gao
- Department of Pediatric Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Zijun Zhen
- Department of Pediatric Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Yizhuo Zhang
- Department of Pediatric Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
2
|
Rodriguez C, Chocarro L, Echaide M, Ausin K, Escors D, Kochan G. Fractalkine in Health and Disease. Int J Mol Sci 2024; 25:8007. [PMID: 39125578 PMCID: PMC11311528 DOI: 10.3390/ijms25158007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
CX3CL1 is one of the 50 up-to-date identified and characterized chemokines. While other chemokines are produced as small, secreted proteins, CX3CL1 (fractalkine) is synthetized as a transmembrane protein which also leads to a soluble form produced as a result of proteolytic cleavage. The membrane-bound protein and the soluble forms exhibit different biological functions. While the role of the fractalkine/CX3CR1 signaling axis was described in the nervous system and was also related to the migration of leukocytes to sites of inflammation, its actions are controversial in cancer progression and anti-tumor immunity. In the present review, we first describe the known biology of fractalkine concerning its action through its cognate receptor, but also its role in the activation of different integrins. The second part of this review is dedicated to its role in cancer where we discuss its role in anti-cancer or procarcinogenic activities.
Collapse
Grants
- FIS PI23/00196 Instituto de Salud Carlos III-FEDER
- FIS PI20/00010 Instituto de Salud Carlos III-FEDER
- BMED 036-2023 Departamento de Salud del Gobierno de Navarra-FEDER, Spain
- LINTERNA, Ref. 0011-1411-2020-000033 Departamento de Industria, Gobierno de Navarra, Spain
- ARNMUNE, 0011-1411-2023-000111 Departamento de Industria, Gobierno de Navarra, Spain
- ISOLDA project, under grant agreement ID: 848166. Horizon 2020, European Union
- PFIS, FI21/00080 Instituto de Salud Carlos III-FEDER
Collapse
Affiliation(s)
| | | | | | | | - David Escors
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain; (C.R.); (L.C.); (M.E.); (K.A.)
| | - Grazyna Kochan
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain; (C.R.); (L.C.); (M.E.); (K.A.)
| |
Collapse
|
3
|
Akdeniz YS, Özkan S. New markers in chronic obstructive pulmonary disease. Adv Clin Chem 2024; 123:1-63. [PMID: 39181619 DOI: 10.1016/bs.acc.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Chronic obstructive pulmonary disease (COPD), a global healthcare and socioeconomic burden, is a multifaceted respiratory disorder that results in substantial decline in health status and life quality. Acute exacerbations of the disease contribute significantly to increased morbidity and mortality. Consequently, the identification of reliable and effective biomarkers for rapid diagnosis, prediction, and prognosis of exacerbations is imperative. In addition, biomarkers play a crucial role in monitoring responses to therapeutic interventions and exploring innovative treatment strategies. Although established markers such as CRP, fibrinogen and neutrophil count are routinely used, a universal marker is lacking. Fortunately, an increasing number of studies based on next generation analytics have explored potential biomarkers in COPD. Here we review those advances and the need for standardized validation studies in the appropriate clinical setting.
Collapse
Affiliation(s)
- Yonca Senem Akdeniz
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye.
| | - Seda Özkan
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye
| |
Collapse
|
4
|
Singh S, Urs AB, Kumar P. Expression and analysis of CX3CL1 chemokine and CD57+ lymphocytes in oral squamous cell carcinoma and their correlation with clinicopathologic features. J Cancer Res Ther 2024; 20:770-775. [PMID: 39023581 DOI: 10.4103/jcrt.jcrt_79_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/23/2022] [Indexed: 07/20/2024]
Abstract
INTRODUCTION CX3CL1 exhibits chemoattraction for T-cells, monocytes, and CD57+ natural killer cells mediating antitumor immunity. The role of CX3CL1 has been studied in tumors of the breast, lung, colon, pancreas, prostate, etc. The current study was undertaken to understand the importance of CX3CL1 and its correlation with CD57+ cells in oral squamous cell carcinoma (OSCC). MATERIAL AND METHODS Seventy-five primary OSCC were staged and histopathologically graded, followed by immunohistochemistry for CX3CL1 and CD57. Mann-Whitney U-test, Kruskal-Wallis test, Post hoc Bonferroni test, and Pearson's correlation coefficient were applied. RESULTS CX3CL1 assessment within the tumor cells was high in 62.66% of cases, and the CD57 Labeling Index (LI) varied over a wide range of 8.2-111.6. A statistically significant reduction in expression of both CX3CL1 and CD57 was observed with an increase in histologic grade (p = 0.021 and 0.038, respectively). DISCUSSION It is concluded that CX3CL1 and CD57 may be important players in the immune surveillance of OSCC. Further studies with detailed follow-up for the overall survival of patients will help in studying the diagnostic, prognostic, and therapeutic roles of CX3CL1 in OSCC.
Collapse
Affiliation(s)
- Shivani Singh
- Department of Radiation Oncology, Maulana Azad Medical College, New Delhi, India
| | - Aadithya B Urs
- Department of Oral Pathology and Microbiology, Maulana Azad Medical College, New Delhi, India
| | - Priya Kumar
- Department of Oral Pathology and Microbiology, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
5
|
Sharma A, Singh P, Jha R, Almatroodi SA, Alrumaihi F, Rahmani AH, Alharbi HO, Dohare R, Syed MA. Exploring the role of miR-200 family in regulating CX3CR1 and CXCR1 in lung adenocarcinoma tumor microenvironment: implications for therapeutic intervention. Sci Rep 2023; 13:16333. [PMID: 37770496 PMCID: PMC10539366 DOI: 10.1038/s41598-023-43484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/25/2023] [Indexed: 09/30/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common malignant subtype of lung cancer (LC). miR-200 family is one of the prime miR regulators of epithelial-mesenchymal transition (EMT) and worst overall survival (OS) in LC patients. The study aimed to identify and validate the key differentially expressed immune-related genes (DEIRGs) regulated by miR-200 family which may serve for therapeutic aspects in LUAD tumor microenvironment (TME) by affecting cancer progression, invasion, and metastasis. The study identified differentially expressed miRNAs (DEMs) in LUAD, consisting of hsa-miR-200a-3p and hsa-miR-141-5p, respectively. Two highest-degree subnetwork motifs identified from 3-node miRNA FFL were: (i) miR-200a-3p-CX3CR1-SPIB and (ii) miR-141-5p-CXCR1-TBX21. TIMER analysis showed that the expression levels of CX3CR1 and CXCR1 were significantly positively correlated with infiltrating levels of M0-M2 macrophages and natural killer T (NKT) cells. The OS of LUAD patients was significantly affected by lower expression levels of hsa-miR-200a-3p, CX3CR1 and SPIB. These DEIRGs were validated using the human protein atlas (HPA) web server. Further, we validated the regulatory role of hsa-miR-200a-3p in an in-vitro indirect co-culture model using conditioned media from M0, M1 and M2 polarized macrophages (THP-1) and LUAD cell lines (A549 and H1299 cells). The results pointed out the essential role of hsa-miR-200a-3p regulated CX3CL1 and CX3CR1 expression in progression of LC TME. Thus, the study augments a comprehensive understanding and new strategies for LUAD treatment where miR-200 family regulated immune-related genes, especially chemokine receptors, which regulate the metastasis and invasion of LUAD, leading to the worst associated OS.
Collapse
Affiliation(s)
- Archana Sharma
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Rishabh Jha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Hajed Obaid Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
6
|
Trinh T, Adams WA, Calescibetta A, Tu N, Dalton R, So T, Wei M, Ward G, Kostenko E, Christiansen S, Cen L, McLemore A, Reed K, Whitting J, Gilvary D, Blanco NL, Segura CM, Nguyen J, Kandell W, Chen X, Cheng P, Wright GM, Cress WD, Liu J, Wright KL, Wei S, Eksioglu EA. CX3CR1 deficiency-induced TIL tumor restriction as a novel addition for CAR-T design in solid malignancies. iScience 2023; 26:106443. [PMID: 37070068 PMCID: PMC10105289 DOI: 10.1016/j.isci.2023.106443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 11/15/2022] [Accepted: 03/14/2023] [Indexed: 04/19/2023] Open
Abstract
Advances in the understanding of the tumor microenvironment have led to development of immunotherapeutic strategies, such as chimeric antigen receptor T cells (CAR-Ts). However, despite success in blood malignancies, CAR-T therapies in solid tumors have been hampered by their restricted infiltration. Here, we used our understanding of early cytotoxic lymphocyte infiltration of human lymphocytes in solid tumors in vivo to investigate the receptors in normal, adjacent, and tumor tissues of primary non-small-cell lung cancer specimens. We found that CX3CL1-CX3CR1 reduction restricts cytotoxic cells from the solid-tumor bed, contributing to tumor escape. Based on this, we designed a CAR-T construct using the well-established natural killer group 2, member D (NKG2D) CAR-T expression together with overexpression of CX3CR1 to promote their infiltration. These CAR-Ts infiltrate tumors at higher rates than control-activated T cells or IL-15-overexpressing NKG2D CAR-Ts. This construct also had similar functionality in a liver-cancer model, demonstrating potential efficacy in other solid malignancies.
Collapse
Affiliation(s)
- ThuLe Trinh
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - William A. Adams
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alexandra Calescibetta
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Nhan Tu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Robert Dalton
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Tina So
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Max Wei
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Grace Ward
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Cancer Biology PhD Program, University of South Florida and H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Elena Kostenko
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sean Christiansen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ling Cen
- Bioinformatics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Amy McLemore
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kayla Reed
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Junmin Whitting
- Cancer Biology PhD Program, University of South Florida and H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Danielle Gilvary
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Neale Lopez Blanco
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Carlos Moran Segura
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jonathan Nguyen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Wendy Kandell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Cancer Biology PhD Program, University of South Florida and H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xianghong Chen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Pingyan Cheng
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Gabriela M. Wright
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - W. Douglas Cress
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jinghong Liu
- Department of Anesthesiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kenneth L. Wright
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sheng Wei
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Erika A. Eksioglu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
7
|
Tang W, Jia P, Zuo L, Zhao J. Suppression of CX3CL1 by miR-497-5p inhibits cell growth and invasion through inactivating the ERK/AKT pathway in NSCLC cells. Cell Cycle 2022; 21:1697-1709. [PMID: 35485293 PMCID: PMC9302515 DOI: 10.1080/15384101.2022.2067438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common lung cancer with a highest mortality rate. MiR-497-5p has been reported as tumor suppressor in many cancers, but the role and mechanism of miR-497-5p in regulating NSCLC progression are still largely unknown in vitro and in vivo. Here, miR-497-5p was significantly downregulated in human NSCLC tissues and cell lines, compared with matched adjacent tissues and normal lung epithelial cell line. Then, miR-497-5p mimic and inhibitor were, respectively, transfected into human NSCLC cells A549 and H460, CCK-8 assay, transwell assay, and flow cytometry were used to detect the capacities of cell proliferation, invasion and apoptosis. MiR-497-5p negatively regulated proliferation and invasion of NSCLC cancer cells. MiR-497-5p was demonstrated to directly bound to 3'-UTR of CX3CL1 mRNA and post-transcriptionally suppressed its expression thus inactivating its downstream oncogenic pathway ERK/AKT. Moreover, transfection with short hairpin RNA (shRNA) against CX3CL1 decreased capacity of cell proliferation and invasion and promoted cell apoptosis in NSCLC cells. In addition, ERK inhibitor U0126 attenuated the promotion effect of miR-497-5p inhibitor on activation of ERK/AKT and cell proliferation and migration. Finally, overexpression of miR-497-5p substantially suppressed activation of the ERK/AKT pathway and tumor growth in tumor-bearing mice in vivo. Taken together, our findings showed that miR-497-5p is downregulated in human NSCLC tissues and cell lines, and it inhibited tumor growth and cell invasion by targeting CX3CL1 gene to inactivate the ERK/AKT pathway in NSCLC cells.
Collapse
Affiliation(s)
- Wen Tang
- Department of Thoracic Surgery, the Third People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Ping Jia
- Surgery Intensive Care Unit, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, Qingyang, China
| | - Lin Zuo
- Department of Radiology, Air Force Medical University, Xi'an, Xincheng, China
| | - Jia Zhao
- Department of Laboratory, Xi'an Central Hospital, Xi'an, Xincheng, China
| |
Collapse
|
8
|
Sun Y, Zhang XX, Huang S, Pan H, Gai YZ, Zhou YQ, Zhu L, Nie HZ, Li DX. Diet-Induced Obesity Promotes Liver Metastasis of Pancreatic Ductal Adenocarcinoma via CX3CL1/CX3CR1 Axis. J Immunol Res 2022; 2022:5665964. [PMID: 35478937 PMCID: PMC9038430 DOI: 10.1155/2022/5665964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, and the patients are generally diagnosed with distant metastasis. Liver is one of the preferred organs of distant metastasis, and liver metastasis is the leading cause of death in PDAC. Diet-induced obesity (DIO) is a risk factor for PDAC, and it remains unclear whether and how DIO contributes to liver metastasis of PDAC. In our study, we found that DIO significantly promoted PDAC liver metastasis compared with normal diet (ND) in intrasplenic injection mouse model. RNA-seq analysis for liver metastasis nodules showed that the various chemokines and several chemokine receptors were altered between ND and DIO samples. The expression levels of CX3CL1 and CX3CR1 were significantly upregulated in DIO-induced liver metastasis of PDAC compared to ND. Increased CX3CL1 promoted the recruitment of CX3CR1-expressing pancreatic tumor cells. Taken together, our data demonstrated that DIO promoted PDAC liver metastasis via CX3CL1/CX3CR1 axis.
Collapse
Affiliation(s)
- Yue Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200240, China
| | - Xiao-Xin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu, China
| | - Shan Huang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200240, China
| | - Hong Pan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200240, China
| | - Yan-Zhi Gai
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200240, China
| | - Yao-Qi Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200240, China
| | - Lei Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200240, China
| | - Hui-Zhen Nie
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200240, China
| | - Dong-Xue Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200240, China
| |
Collapse
|
9
|
Wu M, Jin M, Cao X, Qian K, Zhao L. RNA editing enzyme adenosine deaminases acting on RNA 1 deficiency increases the sensitivity of non-small cell lung cancer cells to anlotinib by regulating CX3CR1-fractalkine expression. Drug Dev Res 2021; 83:328-338. [PMID: 34319598 DOI: 10.1002/ddr.21861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 02/02/2023]
Abstract
Adenosine deaminases acting on RNA 1 (ADAR1) has been identified to play key roles in non-small cell lung cancer (NSCLC) progression, and can modulate the sensitivity of cancer cells to anticancer drugs. The current study aimed to investigate the effect of ADAR1 on the sensitivity of NSCLC cells to anlotinib. We established anlotinib-resistant NSCLC (NSCLC/AR) cells, including NCI-H1975/AR and A549/AR cells. Results showed that ADAR1 was significantly upregulated in NSCLC/AR cells. Genetic-knockdown of ADAR1 increased the sensitivity of NSCLC/AR cells to anlotinib by inducing cell proliferation suppression, cell cycle arrest, and apoptosis. Furthermore, knockdown of ADAR1 decreased the level of C-X3-C motif chemokine ligand 1 (CX3CL1) in NCI-H1975/AR and A549/AR cells after anlotinib treatment. Introduction of exogenous CX3CL1 significantly reversed the positive effect of ADAR1 deficiency on NSCLC/AR cell sensitivity, exhibited by the increase of cell viability and decrease of apoptosis. Further in-vivo study demonstrated that knockdown of ADAR1 inhibited NCI-H1975/AR cell tumorigenesis by reducing CX3CL1 expression. Collectively, ADAR1 deficiency increased the sensitivity of NSCLC/AR cells to anlotinib by downregulating CX3CL1, which might provide a potential strategy for NSCLC/AR therapy.
Collapse
Affiliation(s)
- Min Wu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mengmeng Jin
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaohui Cao
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kun Qian
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Zhao
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Liao CY, Yang SF, Wu TJ, Chang H, Huang CYF, Liu YF, Wang CH, Liou JC, Hsu SL, Lee H, Sheu GT, Chang JT. Novel function of PERP-428 variants impacts lung cancer risk through the differential regulation of PTEN/MDM2/p53-mediated antioxidant activity. Free Radic Biol Med 2021; 167:307-320. [PMID: 33731308 DOI: 10.1016/j.freeradbiomed.2021.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 01/11/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Identifying genetic risk factors and understanding their mechanisms will help reduce lung cancer incidence. The p53 apoptosis effect is related to PMP-22 (PERP), a tetraspan membrane protein, and an apoptotic effector protein downstream of p53. Although historically considered a tumor suppressor, PERP is highly expressed in lung cancers. Stable knockdown of PERP expression induces CL1-5 and A549 lung cancer cell death, but transient knockdown has no effect. Interestingly, relative to the PERP-428GG genotype, PERP-428CC was associated with the highest lung cancer risk (OR = 5.38; 95% CI = 2.12-13.65, p < 0.001), followed by the PERP-428CG genotype (OR = 2.34; 95% CI = 1.55-3.55, p < 0.001). Ectopic expression of PERP-428G, but not PERP-428C, protects lung cancer cells against ROS-induced DNA damage. Mechanistically, PERP-428 SNPs differentially regulate p53 protein stability. p53 negatively regulates the expression of the antioxidant enzymes catalase (CAT) and glutathione reductase (GR), thereby modulating redox status. p53 protein stability is higher in PERP-428C-expressing cells than in PERP-428G-expressing cells because MDM2 expression is decreased and p53 Ser20 phosphorylation is enhanced in PERP-428C-expressing cells. The MDM2 mRNA level is decreased in PERP-428C-expressing cells via PTEN-mediated downregulation of the MDM2 constitutive p1 promoter. This study reveals that in individuals with PERP-428CC, CAT/GR expression is decreased via the PTEN/MDM2/p53 pathway. These individuals have an increased lung cancer risk. Preventive antioxidants and avoidance of ROS stressors are recommended to prevent lung cancer or other ROS-related chronic diseases.
Collapse
Affiliation(s)
- Chen-Yi Liao
- Institute of Medicine, Chung Shan Medical University, 110 Sec. 1, Chien-Kuo N. Road, Taichung, 40203, Taiwan.
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, 110 Sec. 1, Chien-Kuo N. Road, Taichung, 40203, Taiwan; CSMU Lung Cancer Research Center, Chung Shan Medical University, 110 Sec. 1, Chien-Kuo N. Road, Taichung, 40203, Taiwan.
| | - Ting-Jian Wu
- Institute of Medicine, Chung Shan Medical University, 110 Sec. 1, Chien-Kuo N. Road, Taichung, 40203, Taiwan.
| | - Han Chang
- Department of Pathology, China Medical University Hospital, No. 91, Hsueh-Shih Road, Taichung, 40402 Taiwan.
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, National Yang Ming University, No. 155, Sec. 2, Linong Street, Taipei, 11221, Taiwan.
| | - Yu-Fan Liu
- Department of Biomedical Sciences, Chung Shan Medical University, 110 Sec. 1, Chien-Kuo N. Road, Taichung, 40203, Taiwan.
| | - Chi-Hsiang Wang
- Institute of Medical and Molecular Toxicology, Chung Shan Medical University, 110 Sec. 1, Chien-Kuo N. Road, Taichung, 40203, Taiwan.
| | - Jhong-Chio Liou
- Institute of Medical and Molecular Toxicology, Chung Shan Medical University, 110 Sec. 1, Chien-Kuo N. Road, Taichung, 40203, Taiwan.
| | - Shih-Lan Hsu
- Department of Education & Research, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sec. 4, Taichung 407204, Taiwan.
| | - Huei Lee
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.
| | - Gwo-Tarng Sheu
- Institute of Medicine, Chung Shan Medical University, 110 Sec. 1, Chien-Kuo N. Road, Taichung, 40203, Taiwan; CSMU Lung Cancer Research Center, Chung Shan Medical University, 110 Sec. 1, Chien-Kuo N. Road, Taichung, 40203, Taiwan; Divisions of Medical Oncology and Pulmonary Medicine, Chung Shan Medical University Hospital, 110 Sec. 1, Chien-Kuo N. Road, Taichung, 40203, Taiwan.
| | - Jinghua Tsai Chang
- Institute of Medicine, Chung Shan Medical University, 110 Sec. 1, Chien-Kuo N. Road, Taichung, 40203, Taiwan; CSMU Lung Cancer Research Center, Chung Shan Medical University, 110 Sec. 1, Chien-Kuo N. Road, Taichung, 40203, Taiwan; Divisions of Medical Oncology and Pulmonary Medicine, Chung Shan Medical University Hospital, 110 Sec. 1, Chien-Kuo N. Road, Taichung, 40203, Taiwan.
| |
Collapse
|
11
|
Rivas-Fuentes S, Salgado-Aguayo A, Arratia-Quijada J, Gorocica-Rosete P. Regulation and biological functions of the CX3CL1-CX3CR1 axis and its relevance in solid cancer: A mini-review. J Cancer 2021; 12:571-583. [PMID: 33391453 PMCID: PMC7738983 DOI: 10.7150/jca.47022] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022] Open
Abstract
CX3CL1 is a transmembrane protein from which a soluble form can be generated by proteolytic shedding. Membranal and soluble forms of CX3CL1 exhibit different functions, although both bind to the CX3CR1 chemokine receptor. The CX3CL1-CX3CR1 axis mediates the adhesion of leukocytes and is also involved in cell survival and recruitment of immune cell subpopulations. The function of CX3CL1 is finely tuned by cytokines and transcription factors regulating its expression and post-translational modifications. On homeostasis, the CX3CL1-CX3CR1 axis participates in the removal of damaged neurons and neurogenesis, and it is also involved on several pathological contexts. The CX3CL1-CX3CR1 axis induces several cellular responses relevant to cancer such as proliferation, migration, invasion and apoptosis resistance. In this review, we address biological aspects of this molecular axis with important therapeutic potential, emphasizing its role in cancer, one of the most prevalent chronic diseases which significantly affect the quality of life and life expectancy of patients.
Collapse
Affiliation(s)
- Selma Rivas-Fuentes
- Department of Research on Biochemistry, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Alfonso Salgado-Aguayo
- Laboratory of Research on Rheumatic Diseases, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Jenny Arratia-Quijada
- Department of Biomedical Sciences, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá Jalisco, Mexico
| | - Patricia Gorocica-Rosete
- Department of Research on Biochemistry, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
12
|
Wang N, Wang S, Wang X, Zheng Y, Yang B, Zhang J, Pan B, Gao J, Wang Z. Research trends in pharmacological modulation of tumor-associated macrophages. Clin Transl Med 2021; 11:e288. [PMID: 33463063 PMCID: PMC7805405 DOI: 10.1002/ctm2.288] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the most abundant immune cell populations in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play important roles in multiple solid malignancies, including breast cancer, prostate cancer, liver cancer, lung cancer, ovarian cancer, gastric cancer, pancreatic cancer, and colorectal cancer. TAMs could contribute to carcinogenesis, neoangiogenesis, immune-suppressive TME remodeling, cancer chemoresistance, recurrence, and metastasis. Therefore, reprogramming of the immune-suppressive TAMs by pharmacological approaches has attracted considerable research attention in recent years. In this review, the promising pharmaceutical targets, as well as the existing modulatory strategies of TAMs were summarized. The chemokine-chemokine receptor signaling, tyrosine kinase receptor signaling, metabolic signaling, and exosomal signaling have been highlighted in determining the biological functions of TAMs. Besides, both preclinical research and clinical trials have suggested the chemokine-chemokine receptor blockers, tyrosine kinase inhibitors, bisphosphonates, as well as the exosomal or nanoparticle-based targeting delivery systems as the promising pharmacological approaches for TAMs deletion or reprogramming. Lastly, the combined therapies of TAMs-targeting strategies with traditional treatments or immunotherapies as well as the exosome-like nanovesicles for cancer therapy are prospected.
Collapse
Affiliation(s)
- Neng Wang
- The Research Center for Integrative MedicineSchool of Basic Medical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Shengqi Wang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Xuan Wang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Yifeng Zheng
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Bowen Yang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Juping Zhang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Bo Pan
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Jianli Gao
- Academy of Traditional Chinese MedicineZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Zhiyu Wang
- The Research Center for Integrative MedicineSchool of Basic Medical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| |
Collapse
|
13
|
Liu Y, Ma H, Dong T, Yan Y, Sun L, Wang W. Clinical significance of expression level of CX3CL1-CX3CR1 axis in bone metastasis of lung cancer. Clin Transl Oncol 2020; 23:378-388. [PMID: 32638214 DOI: 10.1007/s12094-020-02431-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate the clinical significance of CX3 chemokine ligand 1(CX3CL1) and CX3CR1 in patients with bone metastasis from lung cancer. The expression levels of CX3CL1 and CX3CR1 mRNA and protein in primary lung cancer and lung cancer bone metastasis were detected by qRT-PCR and Western blot. METHODS One hundred patients with lung cancer were divided into a boneless metastasis group (50 patients with bone metastasis) and a bone metastasis group (50 patients without distant metastasis). The bone transfer component was graded by Soloway classification (0 to III). The expression levels of serum CX3CL1-CX3CR1 axis were detected by enzyme-linked immunosorbent assay (ELISA). RT-qPCR and Western Blot were used to verify the transfection efficiency. The scratching assay was used to detect the migration of CX3CL1 to 95-D cells after down-regulating the expression of CX3CR1. RESULTS The expression levels of CX3CL1 and CX3CR1 mRNA and protein in the primary lung cancer and lung cancer bone metastasis were significantly higher than those in the adjacent tissues (P < 0.0001). The levels of serum CX3CL1 and CX3CR1 in bone metastasis group were significantly higher than those in boneless metastasis group and healthy control group (P < 0.05). In the bone metastasis group, the levels of serum CX3CL1 and CX3CR1 were significantly positively correlated with the degree of disease progression (P < 0.01). CONCLUSION The expression level of serum CX3CL1-CX3CR1 axis is expected to be an auxiliary reference index for monitoring bone metastasis of lung cancer.
Collapse
Affiliation(s)
- Y Liu
- Test Room of Clinical Laboratory, The First Affiliated Hospital of Harbin Medical University, 199 Dongdazhi Street, Nangang District, Harbin, 150001, Heilongjiang, China.
| | - H Ma
- Department of Human Resources, Xiamen Hospital of T.C.M, Xiamen, 361000, China
| | - T Dong
- Department of Obstetrics, Xiamen Hospital of T.C.M, Xiamen, 361000, China
| | - Y Yan
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - L Sun
- Ward 1, Department of Thoracic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - W Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| |
Collapse
|
14
|
Temples MN, Adjei IM, Nimocks PM, Djeu J, Sharma B. Engineered Three-Dimensional Tumor Models to Study Natural Killer Cell Suppression. ACS Biomater Sci Eng 2020; 6:4179-4199. [PMID: 33463353 DOI: 10.1021/acsbiomaterials.0c00259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A critical hurdle associated with natural killer (NK) cell immunotherapies is inadequate infiltration and function in the solid tumor microenvironment. Well-controlled 3D culture systems could advance our understanding of the role of various biophysical and biochemical cues that impact NK cell migration in solid tumors. The objectives of this study were to establish a biomaterial which (i) supports NK cell migration and (ii) recapitulates features of the in vivo solid tumor microenvironment, to study NK infiltration and function in a 3D system. Using peptide-functionalized poly(ethylene glycol)-based hydrogels, the extent of NK-92 cell migration was observed to be largely dependent on the density of integrin binding sites and the presence of matrix metalloproteinase degradable sites. When lung cancer cells were encapsulated into the hydrogels to create tumor microenvironments, the extent of NK-92 cell migration and functional activity was dependent on the cancer cell type and duration of 3D culture. NK-92 cells showed greater migration into the models consisting of nonmetastatic A549 cells relative to metastatic H1299 cells, and reduced migration in both models when cancer cells were cultured for 7 days versus 1 day. In addition, the production of NK cell-related pro-inflammatory cytokines and chemokines was reduced in H1299 models relative to A549 models. These differences in NK-92 cell migration and cytokine/chemokine production corresponded to differences in the production of various immunomodulatory molecules by the different cancer cells, namely, the H1299 models showed increased stress ligand shedding and immunosuppressive cytokine production, particularly TGF-β. Indeed, inhibition of TGF-β receptor I in NK-92 cells restored their infiltration in H1299 models to levels similar to that in A549 models and increased overall infiltration in both models. Relative to conventional 2D cocultures, NK-92 cell mediated cytotoxicity was reduced in the 3D tumor models, suggesting the hydrogel serves to mimic some features of the biophysical barriers in in vivo tumor microenvironments. This study demonstrates the feasibility of a synthetic hydrogel system for investigating the biophysical and biochemical cues impacting NK cell infiltration and NK cell-cancer cell interactions in the solid tumor microenvironment.
Collapse
Affiliation(s)
- Madison N Temples
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-56, 1275 Center Drive, Gainesville, Florida 32611-6131, United States
| | - Isaac M Adjei
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-56, 1275 Center Drive, Gainesville, Florida 32611-6131, United States
| | - Phoebe M Nimocks
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-56, 1275 Center Drive, Gainesville, Florida 32611-6131, United States
| | - Julie Djeu
- Department of Immunology, Moffitt Cancer Center MRC 4E, 12902 Magnolia Drive, Tampa, Florida 33612-9497, United States
| | - Blanka Sharma
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-56, 1275 Center Drive, Gainesville, Florida 32611-6131, United States
| |
Collapse
|
15
|
Fractalkine/CX3CL1 in Neoplastic Processes. Int J Mol Sci 2020; 21:ijms21103723. [PMID: 32466280 PMCID: PMC7279446 DOI: 10.3390/ijms21103723] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Fractalkine/CX3C chemokine ligand 1 (CX3CL1) is a chemokine involved in the anticancer function of lymphocytes-mainly NK cells, T cells and dendritic cells. Its increased levels in tumors improve the prognosis for cancer patients, although it is also associated with a poorer prognosis in some types of cancers, such as pancreatic ductal adenocarcinoma. This work focuses on the 'hallmarks of cancer' involving CX3CL1 and its receptor CX3CR1. First, we describe signal transduction from CX3CR1 and the role of epidermal growth factor receptor (EGFR) in this process. Next, we present the role of CX3CL1 in the context of cancer, with the focus on angiogenesis, apoptosis resistance and migration and invasion of cancer cells. In particular, we discuss perineural invasion, spinal metastasis and bone metastasis of cancers such as breast cancer, pancreatic cancer and prostate cancer. We extensively discuss the importance of CX3CL1 in the interaction with different cells in the tumor niche: tumor-associated macrophages (TAM), myeloid-derived suppressor cells (MDSC) and microglia. We present the role of CX3CL1 in the development of active human cytomegalovirus (HCMV) infection in glioblastoma multiforme (GBM) brain tumors. Finally, we discuss the possible use of CX3CL1 in immunotherapy.
Collapse
|
16
|
Puderecki M, Szumiło J, Marzec-Kotarska B. Novel prognostic molecular markers in lung cancer. Oncol Lett 2020; 20:9-18. [PMID: 32565929 DOI: 10.3892/ol.2020.11541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
Lung carcinoma, especially in its most commonly diagnosed non-small cell histological form, is a challenge to diagnose and treat worldwide, due to the prognosis in patients with this type of cancer being poor and mortality rates being high. However, a number of patients with this type of lung carcinoma exhibit a longer than average overall survival. The specific molecular background of non-small-cell lung cancer that favors longer survival has not yet been determined. The aim of the current study was to review articles published in the years 2017-2018 and create a list of the most important and strongest non-conventional factors that could be used in the future assessment of the prognosis of patients with adenocarcinoma and squamous cell carcinoma of the lung who cannot undergo current targeted therapy. Analysis identified multiple prognostic factors in non-small cell lung carcinoma, including tumor mutational burden, which was revealed to be independent of the tumor stage or grade as well as other factors, including age, sex or targeted therapy effects. The selected molecular factors exhibit the potential to be used in the treatment of patients with specific problematic lung cancer, and may contribute to setting recommendations for the diagnosis, prognosis and treatment of individual patients with lung cancer.
Collapse
Affiliation(s)
- Michał Puderecki
- Department of Clinical Pathomorphology, The Medical University of Lublin, 20-090 Lublin, Poland
| | - Justyna Szumiło
- Department of Clinical Pathomorphology, The Medical University of Lublin, 20-090 Lublin, Poland
| | - Barbara Marzec-Kotarska
- Department of Clinical Pathomorphology, The Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
17
|
Sarode P, Schaefer MB, Grimminger F, Seeger W, Savai R. Macrophage and Tumor Cell Cross-Talk Is Fundamental for Lung Tumor Progression: We Need to Talk. Front Oncol 2020; 10:324. [PMID: 32219066 PMCID: PMC7078651 DOI: 10.3389/fonc.2020.00324] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Regardless of the promising results of certain immune checkpoint blockers, current immunotherapeutics have met a bottleneck concerning response rate, toxicity, and resistance in lung cancer patients. Accumulating evidence forecasts that the crosstalk between tumor and immune cells takes center stage in cancer development by modulating tumor malignancy, immune cell infiltration, and immune evasion in the tumor microenvironment (TME). Cytokines and chemokines secreted by this crosstalk play a major role in cancer development, progression, and therapeutic management. An increased infiltration of Tumor-associated macrophages (TAMs) was observed in most of the human cancers, including lung cancer. In this review, we emphasize the role of cytokines and chemokines in TAM-tumor cell crosstalk in the lung TME. Given the role of cytokines and chemokines in immunomodulation, we propose that TAM-derived cytokines and chemokines govern the cancer-promoting immune responses in the TME and offer a new immunotherapeutic option for lung cancer treatment.
Collapse
Affiliation(s)
- Poonam Sarode
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Martina Barbara Schaefer
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany.,Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
18
|
CX3CL1 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1231:1-12. [PMID: 32060841 DOI: 10.1007/978-3-030-36667-4_1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
CX3CL1 (Fractalkine) is a multifunctional inflammatory chemokine with a single receptor CX3CR1. The biological effects elicited by CX3CL1 on surrounding cells vary depending on a number of factors including its structure, the expression pattern of CX3CR1, and the cell type. For instance, the transmembrane form of CX3CL1 primarily serves as an adhesion molecule, but when cleaved to a soluble form, CX3CL1 predominantly functions as a chemotactic cytokine (Fig. 1.1). However, the biological functions of CX3CL1 also extend to immune cell survival and retention. The pro-inflammatory nature of CX3CR1-expressing immune cells place the CX3CL1:CX3CR1 axis as a central player in multiple inflammatory disorders and position this chemokine pathway as a potential therapeutic target. However, the emerging role of this chemokine pathway in the maintenance of effector memory cytotoxic T cell populations implicates it as a key chemokine in anti-viral and anti-tumor immunity, and therefore an unsuitable therapeutic target in inflammation. The reported role of CX3CL1 as a key regulator of cytotoxic T cell-mediated immunity is supported by several studies that demonstrate CX3CL1 as an important TIL-recruiting chemokine and a positive prognostic factor in colorectal, breast, and lung cancer. Such reports are conflicting with an overwhelming number of studies demonstrating a pro-tumorigenic and pro-metastatic role of CX3CL1 across multiple blood and solid malignancies.This chapter will review the unique structure, function, and biology of CX3CL1 and address the diversity of its biological effects in the immune system and the tumor microenvironment. Overall, this chapter highlights how we have just scratched the surface of CX3CL1's capabilities and suggests that further in-depth and mechanistic studies incorporating all CX3CL1 interactions must be performed to fully appreciate its role in cancer and its potential as a therapeutic target.
Collapse
|
19
|
High Serum Fractalkine/CX3CL1 in Patients with Chronic Obstructive Pulmonary Disease: Relationship with Emphysema Severity and Frequent Exacerbation. Lung 2018; 197:29-35. [PMID: 30382361 DOI: 10.1007/s00408-018-0176-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/26/2018] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The purpose of this study was to investigate the relationship between serum fractalkine (CX3CL1/FKN) level and the multi-slice spiral computed tomography (MSCT) emphysema index in Chinese patients with chronic obstructive pulmonary disease (COPD). METHODS We detected chemokine CX3CL1 in serum from 95 Chinese patients with COPD by using an enzyme-linked immunosorbent assay. According to the MSCT emphysema index, the selected cases were divided into an emphysema-dominant group (n = 25) and a non-emphysema-dominant group (n = 70). RESULTS There were significant differences in body mass index and lung function between the two groups. The serum level of CX3CL1 in the emphysema-dominant group was significantly higher than that in the non-emphysema-dominant group. Through multivariate logistic regression analysis, it was found that high serum CX3CL1 levels were independently associated with emphysema, with a relative risk of 2.617 (95% CI 1.018-6.121; P = 0.029). The percentage of frequent acute exacerbations during the first year of follow-up was significantly higher in the high-level serum CX3CL1 group (P = 0.039). After 3 years of follow-up, there was no significant difference in the CT emphysema index between the high and low serum CX3CL1 groups (P = 0.503). CONCLUSION Our results suggest that the serum level of CX3CL1 is related to the MSCT emphysema index. Chemokine CX3CL1 might be a useful predictor for identifying frequent exacerbation and emphysema severity in patients with COPD.
Collapse
|