1
|
Müller MR, Burmeister A, Skowron MA, Stephan A, Söhngen C, Wollnitzke P, Petzsch P, Alves Avelar LA, Kurz T, Köhrer K, Levkau B, Nettersheim D. Characterization of the dehydrogenase-reductase DHRS2 and its involvement in histone deacetylase inhibition in urological malignancies. Exp Cell Res 2024; 439:114055. [PMID: 38704080 DOI: 10.1016/j.yexcr.2024.114055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/18/2024] [Accepted: 04/21/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Being implicated during tumor migration, invasion, clonogenicity, and proliferation, the nicotinamide adenine dinucleotide (NAD)/-phosphate (NADP)-dependent dehydrogenase/reductase member 2 (DHRS2) has been considered to be induced upon inhibition of histone deacetylases (HDACi). In this study, we evaluated the current knowledge on the underlying mechanisms of the (epi)genetic regulation of DHRS2, as well as its function during tumor progression. METHODS DHRS2 expression was evaluated on mRNA- and protein-level upon treatment with HDACi by means of qRT-PCR and western blot analyses, respectively. Re-analysis of RNA-sequencing data gained insight into expression of specific DHRS2 isoforms, while re-analysis of ATAC-sequencing data shed light on the chromatin accessibility at the DHRS2 locus. Further examination of the energy and lipid metabolism of HDACi-treated urologic tumor cells was performed using liquid chromatography-mass spectrometry. RESULTS Enhanced DHRS2 expression levels upon HDACi treatment were directly linked to an enhanced chromatin accessibility at the DHRS2 locus. Particularly the DHRS2 ENST00000250383.11 protein-coding isoform was increased upon HDACi treatment. Application of the HDACi quisinostat only mildly influenced the energy metabolism of urologic tumor cells, though, the analysis of the lipid metabolism showed diminished sphingosine levels, as well as decreased S1P levels. Also the ratios of S1P/sphingosine and S1P/ceramides were reduced in all four quisinostat-treated urologic tumor cells. CONCLUSIONS With the emphasis on urologic malignancies (testicular germ cell tumors, urothelial, prostate, and renal cell carcinoma), this study concluded that elevated DHRS2 levels are indicative of a successful HDACi treatment and, thereby offering a novel putative predictive biomarker.
Collapse
Affiliation(s)
- Melanie R Müller
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Aaron Burmeister
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Margaretha A Skowron
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Alexa Stephan
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Christian Söhngen
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Philipp Wollnitzke
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Patrick Petzsch
- Genomics and Transcriptomics Laboratory (GTL), Biological and Medical Research Center (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Germany
| | - Leandro A Alves Avelar
- Department of Pharmaceutical and Medical Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas Kurz
- Department of Pharmaceutical and Medical Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory (GTL), Biological and Medical Research Center (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Daniel Nettersheim
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany.
| |
Collapse
|
2
|
Wang W, Albadari N, Du Y, Fowler JF, Sang HT, Xian W, McKeon F, Li W, Zhou J, Zhang R. MDM2 Inhibitors for Cancer Therapy: The Past, Present, and Future. Pharmacol Rev 2024; 76:414-453. [PMID: 38697854 PMCID: PMC11068841 DOI: 10.1124/pharmrev.123.001026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 05/05/2024] Open
Abstract
Since its discovery over 35 years ago, MDM2 has emerged as an attractive target for the development of cancer therapy. MDM2's activities extend from carcinogenesis to immunity to the response to various cancer therapies. Since the report of the first MDM2 inhibitor more than 30 years ago, various approaches to inhibit MDM2 have been attempted, with hundreds of small-molecule inhibitors evaluated in preclinical studies and numerous molecules tested in clinical trials. Although many MDM2 inhibitors and degraders have been evaluated in clinical trials, there is currently no Food and Drug Administration (FDA)-approved MDM2 inhibitor on the market. Nevertheless, there are several current clinical trials of promising agents that may overcome the past failures, including agents granted FDA orphan drug or fast-track status. We herein summarize the research efforts to discover and develop MDM2 inhibitors, focusing on those that induce MDM2 degradation and exert anticancer activity, regardless of the p53 status of the cancer. We also describe how preclinical and clinical investigations have moved toward combining MDM2 inhibitors with other agents, including immune checkpoint inhibitors. Finally, we discuss the current challenges and future directions to accelerate the clinical application of MDM2 inhibitors. In conclusion, targeting MDM2 remains a promising treatment approach, and targeting MDM2 for protein degradation represents a novel strategy to downregulate MDM2 without the side effects of the existing agents blocking p53-MDM2 binding. Additional preclinical and clinical investigations are needed to finally realize the full potential of MDM2 inhibition in treating cancer and other chronic diseases where MDM2 has been implicated. SIGNIFICANCE STATEMENT: Overexpression/amplification of the MDM2 oncogene has been detected in various human cancers and is associated with disease progression, treatment resistance, and poor patient outcomes. This article reviews the previous, current, and emerging MDM2-targeted therapies and summarizes the preclinical and clinical studies combining MDM2 inhibitors with chemotherapy and immunotherapy regimens. The findings of these contemporary studies may lead to safer and more effective treatments for patients with cancers overexpressing MDM2.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Najah Albadari
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Yi Du
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Josef F Fowler
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Hannah T Sang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Wa Xian
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Frank McKeon
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Wei Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Jia Zhou
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| |
Collapse
|
3
|
Mazziotta C, Iaquinta MR, Tramarin ML, Badiale G, Cervellera CF, Tonnini G, Patergnani S, Pinton P, Lanza G, Gafà R, Tognon M, Martini F, De Mattei M, Rotondo JC. Hsa-microRNA-1249-3p/Homeobox A13 axis modulates the expression of β-catenin gene in human epithelial cells. Sci Rep 2023; 13:22872. [PMID: 38129477 PMCID: PMC10739948 DOI: 10.1038/s41598-023-49837-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Intercellular adhesion is a key function for epithelial cells. The fundamental mechanisms relying on epithelial cell adhesion have been partially uncovered. Hsa-microRNA-1249-3p (hsa-miR-1249-3p) plays a role in the epithelial mesenchymal transition in carcinoma cells, but its physiological function in epithelial cells is unknown. We aimed to investigate the role and molecular mechanisms of hsa-miR-1249-3p on epithelial cell functions. Hsa-miR-1249-3p was overexpressed in human epithelial cells and uterine cervical tissues, compared to cervical carcinoma cells and precancerous tissues, respectively. Hsa-miR-1249-3p was analyzed to verify its regulatory function on Homeobox A13 (HOXA13) target gene and its downstream cell adhesion gene β-catenin. Functional experiments indicated that hsa-miR-1249-3p inhibition prompted the mRNA and protein overexpression of HOXA13 which, in turn, led to the β-catenin protein expression. Moreover, hsa-miR-1249-3p inhibition induced a strong colony forming ability in epithelial cells, suggesting the miR involvement in cell adhesion machinery. These data indicate that hsa-miR-1249-3p regulates the expression of HOXA13 and its downstream cell adhesion gene β-catenin, possible resulting in cell adhesion modification in epithelial cells. This study will allow the set-up of further investigations aimed at exploring the relationship between the hsa-miR-1249-3p/HOXA13 axis and downstream cell adhesion genes.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Maria Letizia Tramarin
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Giada Badiale
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Christian Felice Cervellera
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Giulia Tonnini
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Simone Patergnani
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121, Ferrara, Italy
| | - Giovanni Lanza
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Roberta Gafà
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121, Ferrara, Italy
| | - Monica De Mattei
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
4
|
Liu J, Feng H, Wang D, Wang Y, Luo J, Xu S, Zhao F, Qin G. HOXA13 promotes the proliferation, migration, and invasion of nasopharyngeal carcinoma HNE1 cells by upregulating the expression of Snail and MMP-2. Sci Rep 2023; 13:12978. [PMID: 37563232 PMCID: PMC10415404 DOI: 10.1038/s41598-023-40041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
Homeobox A13 (HOXA13) has been verified as an oncogen in some malignancies. However, its role in nasopharyngeal carcinoma (NPC) is still unclear. This study aims to explore the role of HOXA13 in NPC and its underlying mechanism. The mRNA expression of HOXA13 in NPC was obtained from the GSE53819 and GSE64634 datasets in the Gene Expression Omnibus (GEO) database. MTT, colony formation and transwell assays and xenograft tumour models were used to investigate the effects of HOXA13 on NPC HNE1 cells in vitro and in vivo. The expression of HOXA13, epithelial-mesenchymal transition-transcription factor (EMT-TF) Snail and matrix metalloproteinase 2 (MMP-2) was detected by immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. The results showed that HOXA13 was upregulated in NPC. Silencing HOXA13 suppressed the proliferation, migration, and invasion of HNE1 cells, which inhibited tumour growth, while overexpression of HOXA13 induced the opposite effects. In addition, the expression of Snail and MMP-2 at the transcriptional and protein levels was associated with the expression of HOXA13. In summary, our results suggest that HOXA13 plays a role as a cancer-promoting gene in NPC. The underlying mechanism may be related to the upregulation of Snail and MMP-2.
Collapse
Affiliation(s)
- Jinping Liu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, NO: 25, Taiping Street, Jiangyang District, Luzhou, 646000, China
| | - Huajun Feng
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, NO: 25, Taiping Street, Jiangyang District, Luzhou, 646000, China
| | - Dingting Wang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, NO: 25, Taiping Street, Jiangyang District, Luzhou, 646000, China
| | - Yuanyuan Wang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, NO: 25, Taiping Street, Jiangyang District, Luzhou, 646000, China
| | - Jian Luo
- Department of Otolaryngology Head and Neck Surgery, The First People's Hospital of Yibin, Yibin, 644000, China
| | - Shengen Xu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, NO: 25, Taiping Street, Jiangyang District, Luzhou, 646000, China
| | - Feipeng Zhao
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, NO: 25, Taiping Street, Jiangyang District, Luzhou, 646000, China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, NO: 25, Taiping Street, Jiangyang District, Luzhou, 646000, China.
| |
Collapse
|
5
|
Yang X, Ling L, Li C, Hu T, Zhou C, Chen J, Wang Y, Hu L. STAMBPL1 promotes the progression of lung adenocarcinoma by inhibiting DHRS2 expression. Transl Oncol 2023; 35:101728. [PMID: 37393834 DOI: 10.1016/j.tranon.2023.101728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/04/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND Lung cancer is responsible for the majority of cancer deaths in the world. We found a significant increase of STAMBPL1 expression in lung adenocarcinoma (LUAD) tissues and cells. However, its mechanism has not been clarified. METHODS LUAD tissues and adjacent normal tissues were collected from 62 patients treated in the First Affiliated Hospital of Wenzhou Medical University from August 2018 to August 2021. In vivo, the clinical data and STAMBPL1 expression of 62 patients with LUAD were analyzed by qPCR. In vitro, cell experiments were carried out after STAMBPL1 knockdown in A549 and H1299 cells to determine cell growth, migration rate, evasiveness, colony-forming ability, and apoptosis. Gene sequencing was used to explore the expression of various genes in A549 and H1299 cells to verify that DHRS2 was up-regulated after STAMBPL1 knockdown; cell experiments further detected the role of the DHRS2 gene after DHRS2 overexpression in A549 and H1299 cells. A rescue experiment was conducted to certify that STAMBPL1 promotes NSCLC progression by regulating DHRS2 expression. RESULTS After STAMBPL1 knockdown by siRNA. Migration, invasion, colony formation, and proliferation of siRNA groups were suppressed than those of NC groups in A549 and H1299 cells, while the cell apoptosis rate of siRNA groups increased significantly. By using gene-sequence analysis, we found that the expression level of the DHRS2 gene was up-regulated in STAMBPL1 siRNA groups, compared with STAMBPL1 NC (negative control) groups in A549 and H1299, which was verified by qPCR and WB. Further experiments showed that the DHRS2 OE group was suppressed in cell proliferation, migration, and invasion in the A549 and H1299 cell lines compared to the DHRS2 NC group, while DHRS2 OE group was significantly enhanced in the cell apoptosis in the A549 and H1299 cell lines. According to the rescue experiment, cell proliferation, migration, and invasion of the STAMBPL1 SI+DHRS2 SI group were enhanced compared with the STAMBPL1 SI+DHRS2 NC group in A549 and H1299 cells, while the STAMBPL1 SI+DHRS2 OE group were further decreased. CONCLUSIONS The expression of STAMBPL1 mRNA is significantly up-regulated in LUAD, promoting the progression of LUAD by down-regulating the expression of DHRS2 and acting as a potential biomarker of LUAD.
Collapse
Affiliation(s)
- Xiang Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, PR China
| | - Liqun Ling
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, PR China
| | - Changhong Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, PR China
| | - Tianqi Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, PR China
| | - Chenkang Zhou
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, PR China
| | - Jian Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, PR China
| | - Yumin Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, PR China.
| | - Lijuan Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, PR China.
| |
Collapse
|
6
|
Rotolo R, Leuci V, Donini C, Galvagno F, Massa A, De Santis MC, Peirone S, Medico G, Sanlorenzo M, Vujic I, Gammaitoni L, Basiricò M, Righi L, Riganti C, Salaroglio IC, Napoli F, Tabbò F, Mariniello A, Vigna E, Modica C, D’Ambrosio L, Grignani G, Taulli R, Hirsch E, Cereda M, Aglietta M, Scagliotti GV, Novello S, Bironzo P, Sangiolo D. Novel Lymphocyte-Independent Antitumor Activity by PD-1 Blocking Antibody against PD-1+ Chemoresistant Lung Cancer Cells. Clin Cancer Res 2023; 29:621-634. [PMID: 36165915 PMCID: PMC9890136 DOI: 10.1158/1078-0432.ccr-22-0761] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/18/2022] [Accepted: 09/16/2022] [Indexed: 02/05/2023]
Abstract
PURPOSE Antibodies against the lymphocyte PD-1 (aPD-1) receptor are cornerstone agents for advanced non-small cell lung cancer (NSCLC), based on their ability to restore the exhausted antitumor immune response. Our study reports a novel, lymphocyte-independent, therapeutic activity of aPD-1 against NSCLC, blocking the tumor-intrinsic PD-1 receptors on chemoresistant cells. EXPERIMENTAL DESIGN PD-1 in NSCLC cells was explored in vitro at baseline, including stem-like pneumospheres, and following treatment with cisplatin both at transcriptional and protein levels. PD-1 signaling and RNA sequencing were assessed. The lymphocyte-independent antitumor activity of aPD-1 was explored in vitro, by PD-1 blockade and stimulation with soluble ligand (PD-L1s), and in vivo within NSCLC xenograft models. RESULTS We showed the existence of PD-1+ NSCLC cell subsets in cell lines and large in silico datasets (Cancer Cell Line Encyclopedia and The Cancer Genome Atlas). Cisplatin significantly increased PD-1 expression on chemo-surviving NSCLC cells (2.5-fold P = 0.0014), while the sequential treatment with anti-PD-1 Ab impaired their recovery after chemotherapy. PD-1 was found to be associated with tumor stemness features. PD-1 expression was enhanced in NSCLC stem-like pneumospheres (P < 0.0001), significantly promoted by stimulation with soluble PD-L1 (+27% ± 4, P < 0.0001) and inhibited by PD-1 blockade (-30% ± 3, P < 0.0001). The intravenous monotherapy with anti-PD-1 significantly inhibited tumor growth of NSCLC xenografts in immunodeficient mice, without the contribution of the immune system, and delayed the occurrence of chemoresistance when combined with cisplatin. CONCLUSIONS We report first evidence of a novel lymphocyte-independent activity of anti-PD-1 antibodies in NSCLC, capable of inhibiting chemo-surviving NSCLC cells and exploitable to contrast disease relapses following chemotherapy. See related commentary by Augustin et al., p. 505.
Collapse
Affiliation(s)
- Ramona Rotolo
- Department of Oncology, University of Turin, Torino, Italy
- Candiolo Cancer Institute FPO – IRCCS, Candiolo (Torino), Italy
| | - Valeria Leuci
- Candiolo Cancer Institute FPO – IRCCS, Candiolo (Torino), Italy
| | - Chiara Donini
- Department of Oncology, University of Turin, Torino, Italy
- Candiolo Cancer Institute FPO – IRCCS, Candiolo (Torino), Italy
| | - Federica Galvagno
- Department of Oncology, University of Turin, Torino, Italy
- Candiolo Cancer Institute FPO – IRCCS, Candiolo (Torino), Italy
| | - Annamaria Massa
- Department of Oncology, University of Turin, Torino, Italy
- Candiolo Cancer Institute FPO – IRCCS, Candiolo (Torino), Italy
| | - Maria Chiara De Santis
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Serena Peirone
- Department of Biosciences, University of Milan, Milan, Italy
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo (Torino), Italy
| | | | - Martina Sanlorenzo
- Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Igor Vujic
- The Rudolfstiftung Hospital, Vienna, Austria
- Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| | | | - Marco Basiricò
- Candiolo Cancer Institute FPO – IRCCS, Candiolo (Torino), Italy
| | - Luisella Righi
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano (TO), Italy
| | - Chiara Riganti
- Department of Oncology, University of Turin, Torino, Italy
| | | | - Francesca Napoli
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano (TO), Italy
| | - Fabrizio Tabbò
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano (TO), Italy
| | - Annapaola Mariniello
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano (TO), Italy
| | - Elisa Vigna
- Department of Oncology, University of Turin, Torino, Italy
- Candiolo Cancer Institute FPO – IRCCS, Candiolo (Torino), Italy
| | - Chiara Modica
- Candiolo Cancer Institute FPO – IRCCS, Candiolo (Torino), Italy
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Lorenzo D’Ambrosio
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano (TO), Italy
| | | | - Riccardo Taulli
- Department of Oncology, University of Turin, Torino, Italy
- Center for Experimental Research and Medical Studies (CeRMS), City of Health and Science University Hospital di Torino, Torino, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Matteo Cereda
- Department of Biosciences, University of Milan, Milan, Italy
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo (Torino), Italy
| | - Massimo Aglietta
- Department of Oncology, University of Turin, Torino, Italy
- Candiolo Cancer Institute FPO – IRCCS, Candiolo (Torino), Italy
| | | | - Silvia Novello
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano (TO), Italy
| | - Paolo Bironzo
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano (TO), Italy
| | - Dario Sangiolo
- Department of Oncology, University of Turin, Torino, Italy
- Candiolo Cancer Institute FPO – IRCCS, Candiolo (Torino), Italy
| |
Collapse
|
7
|
Gabrielli F, Antinucci M, Tofanelli S. Gene Structure Evolution of the Short-Chain Dehydrogenase/Reductase (SDR) Family. Genes (Basel) 2022; 14:110. [PMID: 36672851 PMCID: PMC9859523 DOI: 10.3390/genes14010110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
SDR (Short-chain Dehydrogenases/Reductases) are one of the oldest and heterogeneous superfamily of proteins, whose classification is problematic because of the low percent identity, even within families. To get clearer insights into SDR molecular evolution, we explored the splicing site organization of the 75 human SDR genes across their vertebrate and invertebrate orthologs. We found anomalous gene structures in members of the human SDR7C and SDR42E families that provide clues of retrogene properties and independent evolutionary trajectories from a common invertebrate ancestor. The same analyses revealed that the identity value between human and invertebrate non-allelic variants is not necessarily associated with the homologous gene structure. Accordingly, a revision of the SDR nomenclature is proposed by including the human SDR40C1 and SDR7C gene in the same family.
Collapse
Affiliation(s)
- Franco Gabrielli
- Department of Biology, University of Pisa, Via Ghini, 13-56126 Pisa, Italy
| | - Marco Antinucci
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Sergio Tofanelli
- Department of Biology, University of Pisa, Via Ghini, 13-56126 Pisa, Italy
| |
Collapse
|
8
|
Liu S, Zhang R, Yang Z, Wang Y, Guo X, Zhao Y, Lin H, Xiang Y, Ding C, Dong Z, Xu C. HOXA13 serves as a biomarker to predict neoadjuvant therapy efficacy in advanced colorectal cancer patients. Acta Biochim Biophys Sin (Shanghai) 2022; 55:304-313. [PMID: 36514224 PMCID: PMC10157630 DOI: 10.3724/abbs.2022182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Neoadjuvant therapy (NAT) for advanced colorectal cancer (ACRC) is a kind of well-evidenced therapy, yet a portion of ACRC patients have poor therapeutic response. To date, no suitable biomarker used for assessing NAT efficacy has been reported. Here, we collect 72 colonoscopy biopsy tissue specimens from ACRC patients before undergoing NAT and investigate the relationship between HOXA13 expression and NAT efficacy. The results show that HOXA13 expression in pretreated tumor specimens is negatively associated with tumor regression ( P<0.001) and progression-free survival ( P<0.05) in ACRC patients who underwent NAT. Silencing of HOXA13 or its regulator HOTTIP significantly enhances the chemosensitivity of colorectal cancer (CRC) cells, leading to an increase in cell apoptosis and the DNA damage response (DDR) to chemotherapeutic drug treatment. In contrast, HOXA13 overexpression causes a significant increase in chemoresistance in CRC cells. In summary, we find that the HOTTIP/HOXA13 axis is involved in regulating chemotherapeutic sensitivity in CRC cells by modulating the DDR and that HOXA13 serves as a promising marker for NAT efficacy prediction in ACRC patients.
Collapse
Affiliation(s)
- Shuanghui Liu
- Department of Colorectal Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.,Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Rui Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhengquan Yang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Yajiao Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Xingxiu Guo
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Youjuan Zhao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Huangjue Lin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Youqun Xiang
- Department of Colorectal Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chunming Ding
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhixiong Dong
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Chang Xu
- Department of Colorectal Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
9
|
Li Z, Tan Y, Li X, Quan J, Bode AM, Cao Y, Luo X. DHRS2 inhibits cell growth and metastasis in ovarian cancer by downregulation of CHKα to disrupt choline metabolism. Cell Death Dis 2022; 13:845. [PMID: 36192391 PMCID: PMC9530226 DOI: 10.1038/s41419-022-05291-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 01/23/2023]
Abstract
The short-chain dehydrogenase/reductase (SDR) superfamily has essential roles in lipid metabolism and redox sensing. In recent years, accumulating evidence highlights the emerging association between SDR family enzymes and cancer. Dehydrogenase/reductase member 2(DHRS2) belongs to the NADH/NADPH-dependent SDR family, and extensively participates in the regulation of the proliferation, migration, and chemoresistance of cancer cells. However, the underlying mechanism has not been well defined. In the present study, we have demonstrated that DHRS2 inhibits the growth and metastasis of ovarian cancer (OC) cells in vitro and in vivo. Mechanistically, the combination of transcriptome and metabolome reveals an interruption of choline metabolism by DHRS2. DHRS2 post-transcriptionally downregulates choline kinase α (CHKα) to inhibit AKT signaling activation and reduce phosphorylcholine (PC)/glycerophosphorylcholine (GPC) ratio, impeding choline metabolism reprogramming in OC. These actions mainly account for the tumor-suppressive role of DHRS2 in OC. Overall, our findings establish the mechanistic connection among metabolic enzymes, metabolites, and the malignant phenotype of cancer cells. This could result in further development of novel pharmacological tools against OC by the induction of DHRS2 to disrupt the choline metabolic pathway.
Collapse
Affiliation(s)
- Zhenzhen Li
- grid.216417.70000 0001 0379 7164Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078 PR China
| | - Yue Tan
- grid.412017.10000 0001 0266 8918Hengyang Medical College, University of South China, Hengyang, 421001 Hunan PR China
| | - Xiang Li
- grid.216417.70000 0001 0379 7164Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078 PR China
| | - Jing Quan
- grid.216417.70000 0001 0379 7164Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078 PR China
| | - Ann M. Bode
- grid.17635.360000000419368657The Hormel Institute, University of Minnesota, Austin, MN 55912 USA
| | - Ya Cao
- grid.216417.70000 0001 0379 7164Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078 China
| | - Xiangjian Luo
- grid.216417.70000 0001 0379 7164Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078 China ,grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410078 China ,grid.216417.70000 0001 0379 7164Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan 410078 China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078 China
| |
Collapse
|
10
|
Shenoy US, Adiga D, Kabekkodu SP, Hunter KD, Radhakrishnan R. Molecular implications of HOX genes targeting multiple signaling pathways in cancer. Cell Biol Toxicol 2022; 38:1-30. [PMID: 34617205 PMCID: PMC8789642 DOI: 10.1007/s10565-021-09657-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022]
Abstract
Homeobox (HOX) genes encode highly conserved homeotic transcription factors that play a crucial role in organogenesis and tissue homeostasis. Their deregulation impacts the function of several regulatory molecules contributing to tumor initiation and progression. A functional bridge exists between altered gene expression of individual HOX genes and tumorigenesis. This review focuses on how deregulation in the HOX-associated signaling pathways contributes to the metastatic progression in cancer. We discuss their functional significance, clinical implications and ascertain their role as a diagnostic and prognostic biomarker in the various cancer types. Besides, the mechanism of understanding the theoretical underpinning that affects HOX-mediated therapy resistance in cancers has been outlined. The knowledge gained shall pave the way for newer insights into the treatment of cancer.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Keith D Hunter
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, UK
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
11
|
Nie W, Wang B, Mi X, Chen J, Yu T, Miao J, Lin Y, Yang T, Ran M, Hong Z, Liu X, Liang X, Qian Z, Gao X. Co-Delivery of Paclitaxel and shMCL-1 by Folic Acid-Modified Nonviral Vector to Overcome Cancer Chemotherapy Resistance. SMALL METHODS 2021; 5:e2001132. [PMID: 34928100 DOI: 10.1002/smtd.202001132] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/05/2021] [Indexed: 02/05/2023]
Abstract
Acquired chemoresistance presents a major clinical impediment, which is an urgent problem to be solved. Interestingly, myeloma cell leukemia-1 (MCL-1) and folate receptor expression levels are higher in chemotherapy-resistant patients than in pretreatment patients. In this study, a multifunctional folic acid (FA)-targeting core-shell structure is presented for simultaneous delivery of shMCL-1 and paclitaxel (PTX). The transfection efficiency of shMCL-1 with the FA-targeting delivery system is higher than with a nontargeting delivery system in Skov3 and A2780T cells. The FA-targeting system significantly inhibits cell growth, blocks cell cycles, and promotes apoptosis of cancer cells in vitro. The mechanisms involved in inhibiting growth are related to Bcl-2/Bax and cdc2/Cyclin B1 pathways. An analysis of RNA sequencing suggests that shMCL-1 reverses chemoresistance through regulating genes such as regulator of chromosome condensation 2 (RCC2). The synergetic effect of shMCL-1 and PTX effectively inhibits tumor growth in both PTX-resistant and normal cancer models by inducing tumor apoptosis, inhibiting proliferation, and limiting tumor angiogenesis. The study results indicate that a FA-targeting delivery system combining shMCL-1 with PTX can simultaneously target tumor sites and restore the sensitivity of chemotherapy-resistant cancer to PTX. These findings have important implications for patients with normal or PTX-resistant cancer.
Collapse
Affiliation(s)
- Wen Nie
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Bilan Wang
- Department of Pharmacy, West China Second University Hospital of Sichuan University, Chengdu, 610041, P. R. China
| | - Xue Mi
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Jing Chen
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Ting Yu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Junming Miao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Yunzhu Lin
- Department of Pharmacy, West China Second University Hospital of Sichuan University, Chengdu, 610041, P. R. China
| | - Tingting Yang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Mengni Ran
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Zehuo Hong
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Xiaoxiao Liu
- Department of Radiation Oncology, Cancer Center, Affiliated Hospital of Xuzhou Medical University, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221000, P. R. China
| | - Xiao Liang
- Department of Pharmacy, West China Second University Hospital of Sichuan University, Chengdu, 610041, P. R. China
| | - Zhiyong Qian
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| |
Collapse
|
12
|
DHRS2 is a potential marker of breast cancer metastasis. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Lu D, Yang N, Wang S, Liu W, Zhang D, Wang J, Huang B, Li X. Identifying the Predictive Role of Oxidative Stress Genes in the Prognosis of Glioma Patients. Med Sci Monit 2021; 27:e934161. [PMID: 34836934 PMCID: PMC8634738 DOI: 10.12659/msm.934161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Gliomas are primary aggressive brain tumors with poor prognoses. Oxidative stress plays a crucial role in the tumorigenesis and drug resistance of gliomas. The aim of the present study was to use integrated bioinformatics analyses to evaluate the prognostic value of oxidative stress-related genes (OSRGs) in glioma. Material/Methods Disease- and prognosis-associated OSRGs were identified using microarray and clinical data from the Chinese Glioma Genome Atlas database. Functional enrichment, gene-gene interaction, protein-protein interaction, and survival analyses were performed in screened OSRGs. The protein expression was validated by the Human Protein Atlas database. A risk score model was constructed and verified through Cox regression, receiver operating characteristic curve, principal component, and stratified analyses. The Cancer Genome Atlas (TCGA) database was used for external validation. A nomogram was constructed to facilitate the clinical application. Results Twenty-one disease-associated and 14 prognosis-associated OSRGs were identified. Enrichment analyses indicated that these signature OSRGs were involved in tumorigenesis and drug resistance of glioma. The risk score model demonstrated a significant difference in overall survival between the high- and low-risk groups. The area under the curve and hazard ratio (1.296) revealed the independent prognostic value of the model. The model exhibited good predictive efficacy in the TCGA cohort. A clinical nomogram was constructed to calculate survival rates in glioma patients at 1, 3, and 5 years. Conclusions Our comprehensive study indicated that OSRGs were valuable for prognosis prediction in glioma, which provides a novel insight into the relationship between oxidative stress and glioma and a potential therapeutic strategy for glioma patients.
Collapse
Affiliation(s)
- Di Lu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Shuai Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Wenyu Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland).,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
14
|
Attri P, Kurita H, Koga K, Shiratani M. Impact of Reactive Oxygen and Nitrogen Species Produced by Plasma on Mdm2-p53 Complex. Int J Mol Sci 2021; 22:ijms22179585. [PMID: 34502494 PMCID: PMC8431430 DOI: 10.3390/ijms22179585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
The study of protein–protein interactions is of great interest. Several early studies focused on the murine double minute 2 (Mdm2)–tumor suppressor protein p53 interactions. However, the effect of plasma treatment on Mdm2 and p53 is still absent from the literature. This study investigated the structural changes in Mdm2, p53, and the Mdm2–p53 complex before and after possible plasma oxidation through molecular dynamic (MD) simulations. MD calculation revealed that the oxidized Mdm2 bounded or unbounded showed high flexibility that might increase the availability of tumor suppressor protein p53 in plasma-treated cells. This study provides insight into Mdm2 and p53 for a better understanding of plasma oncology.
Collapse
Affiliation(s)
- Pankaj Attri
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka 819-0395, Japan;
- Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence:
| | - Hirofumi Kurita
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Aichi, Japan;
| | - Kazunori Koga
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan;
- Center for Novel Science Initiatives, National Institute of Natural Science, Tokyo 105-0001, Japan
| | - Masaharu Shiratani
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka 819-0395, Japan;
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan;
| |
Collapse
|
15
|
Na D, Chae J, Cho SY, Kang W, Lee A, Min S, Kang J, Kim MJ, Choi J, Lee W, Shin D, Min A, Kim YJ, Lee KH, Kim TY, Suh YS, Kong SH, Lee HJ, Kim WH, Park H, Im SA, Yang HK, Lee C, Kim JI. Predictive biomarkers for 5-fluorouracil and oxaliplatin-based chemotherapy in gastric cancers via profiling of patient-derived xenografts. Nat Commun 2021; 12:4840. [PMID: 34376661 PMCID: PMC8355375 DOI: 10.1038/s41467-021-25122-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 07/16/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is commonly treated by chemotherapy using 5-fluorouracil (5-FU) derivatives and platinum combination, but predictive biomarker remains lacking. We develop patient-derived xenografts (PDXs) from 31 GC patients and treat with a combination of 5-FU and oxaliplatin, to determine biomarkers associated with responsiveness. When the PDXs are defined as either responders or non-responders according to tumor volume change after treatment, the responsiveness of PDXs is significantly consistent with the respective clinical outcomes of the patients. An integrative genomic and transcriptomic analysis of PDXs reveals that pathways associated with cell-to-cell and cell-to-extracellular matrix interactions enriched among the non-responders in both cancer cells and the tumor microenvironment (TME). We develop a 30-gene prediction model to determine the responsiveness to 5-FU and oxaliplatin-based chemotherapy and confirm the significant poor survival outcomes among cases classified as non-responder-like in three independent GC cohorts. Our study may inform clinical decision-making when designing treatment strategies.
Collapse
Affiliation(s)
- Deukchae Na
- Ewha Institute of Convergence Medicine, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Jeesoo Chae
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Cancer Evolution Research Center, The Catholic University of Korea, Seoul, Korea
| | - Sung-Yup Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Medical Research Center, Genomic Medicine Institute (GMI), Seoul National University, Seoul, Korea
| | - Wonyoung Kang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Ahra Lee
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Seoyeon Min
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Jinjoo Kang
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Min Jung Kim
- Medical Research Center, Genomic Medicine Institute (GMI), Seoul National University, Seoul, Korea
| | - Jaeyong Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Woochan Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Dongjin Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Ahrum Min
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yu-Jin Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Kyung-Hun Lee
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Tae-Yong Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Yun-Suhk Suh
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
- Department of Surgery, Seoul National University Bundang Hospital, Seoul, Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Hyuk-Joon Lee
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Woo-Ho Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Hansoo Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Seock-Ah Im
- Cancer Research Institute, Seoul National University, Seoul, Korea.
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.
| | - Han-Kwang Yang
- Cancer Research Institute, Seoul National University, Seoul, Korea.
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Life Science, Ewha Womans University, Seoul, Korea.
- Precision Medicine Center, The First Affiliated Hospital of Xiu'an Jiaotong University, Shaanxi, People's Republic of China.
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
- Cancer Research Institute, Seoul National University, Seoul, Korea.
- Medical Research Center, Genomic Medicine Institute (GMI), Seoul National University, Seoul, Korea.
| |
Collapse
|
16
|
Chen Z, Qin Z, Li L, Wo Q, Chen X. HOXA13, Negatively Regulated by miR-139-5p, Decreases the Sensitivity of Gastric Cancer to 5-Fluorouracil Possibly by Targeting ABCC4. Front Oncol 2021; 11:645979. [PMID: 34094932 PMCID: PMC8175971 DOI: 10.3389/fonc.2021.645979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/19/2021] [Indexed: 12/28/2022] Open
Abstract
Purpose Chemoresistance remains a major challenge in the therapy of gastric cancer (GC). The homeobox (HOX) gene family has gained attention in carcinogenesis and chemoresistance. Here, this study aimed to explore the mechanism of HOXA13 in GC chemoresistance. Methods Quantitative real-time PCR (qRT-PCR) and Western blot were used to evaluate the expression of HOXA13 in GC tissues. The Kaplan–Meier plotter database was mined for prognosis analysis of GC patients with different HOXA13 expression receiving 5-Fluorouracil (5-FU) therapy. The effects of HOXA13 on sensitivity of GC cells to 5-FU were investigated by Cell Counting Kit-8 (CCK-8), 5-Ethynyl-2’-deoxyuridine (EdU) incorporation, flow cytometry and experiment in vivo. RNA-Sequencing analysis was performed to explore the underlying mechanism of HOXA13-mediated 5-FU resistance in GC. Chromatin immunoprecipitation (ChIP) and rescue experiments were applied to determine the relationship between HOXA13 and ABCC4. Luciferase reporter assay was performed to assess interaction of miR-139-5p and HOXA13. Results HOXA13 was upregulated in GC and its high expression was associated with poor prognosis of GC patients with 5-FU treatment. Overexpression of HOXA13 impaired the inhibitory effects of 5-FU on GC cells proliferation in vitro and vivo, and knockdown of HOXA13 exacerbated 5-FU-induced GC cells apoptosis. Mechanistically, HOXA13, directly targeted by miR-139-5p in GC, might upregulate ABCC4 expression, thereby accentuating 5-FU resistance of GC cells. Conclusion Our study suggests that HOXA13 attenuates 5-FU sensitivity of GC possibly by upregulating ABCC4. Thus, targeting HOXA13 would provide a novel prospective into the potential therapeutic strategy for reversing chemoresistance.
Collapse
Affiliation(s)
- Zhengqian Chen
- Department of Breast Surgical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China.,Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwei Qin
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Wo
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Chen
- Department of Breast Surgical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
17
|
Wang Y, He B, Dong Y, He GJ, Qi XW, Li Y, Yang YF, Rao Y, Cen ZS, Han F, Ding J, Li JJ. Homeobox-A13 acts as a functional prognostic and diagnostic biomarker via regulating P53 and Wnt signaling pathways in lung cancer. Cancer Biomark 2021; 31:239-254. [PMID: 33896818 DOI: 10.3233/cbm-200540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The prognosis of lung cancer patients is poor without useful prognostic and diagnostic biomarker. To search for novel prognostic and diagnostic markers, we previously found homeobox-A13 (HOXA13) as a promising candidate in lung cancer. OBJECTIVE To determine the precisely clinical feature, prognostic and diagnostic value, possible role and mechanism of HOXA13. METHODS Gene-expression was explored by real-time quantitative-PCR, western-blot and tissue-microarray. The associations were analyzed by Chi-square test, Kaplan-Meier and Cox-regression. The roles and mechanisms were evaluated by MTS, EdU, transwell, xenograft tumor and luciferase-reporter assays. RESULTS HOXA13 expression is increased in tumors, and correlated with age of patients. HOXA13 expression is associated with unfavorable overall survival and relapse-free survival of patients in four cohorts. Interestingly, HOXA13 has different prognostic significance in adenocarcinoma (ADC) and squamous-cell carcinoma (SCC), and is a sex- and smoke-related prognostic factor only in ADC. Importantly, HOXA13 can serve as a diagnostic biomarker for lung cancer, especially for SCC. HOXA13 can promote cancer-cell proliferation, migration and invasion in vitro, and facilitate tumorigenicity and tumor metastasis in vivo. HOXA13 acts the oncogenic roles on tumor growth and metastasis by regulating P53 and Wnt/β-catenin signaling activities in lung cancer. CONCLUSIONS HOXA13 is a new prognostic and diagnostic biomarker associated with P53 and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pediatrics, Southwest Hospital, Army Medical University, Chongqing, China.,Department of Pediatrics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Bo He
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, China.,Department of Pediatrics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yan Dong
- Department of Oncology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Gong-Jing He
- Department of Otolaryngology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiao-Wei Qi
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yan Li
- Chongqing University Cancer Hospital, Chongqing, China
| | - Yi-Fei Yang
- Department of Pediatrics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yu Rao
- Department of Pediatrics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhong-Shun Cen
- Department of Pediatrics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Jun Ding
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Jun Li
- Department of Oncology, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
18
|
Emerging roles of dehydrogenase/reductase member 2 (DHRS2) in the pathology of disease. Eur J Pharmacol 2021; 898:173972. [PMID: 33652058 DOI: 10.1016/j.ejphar.2021.173972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/25/2021] [Accepted: 02/19/2021] [Indexed: 01/02/2023]
Abstract
Dehydrogenase/reductase member 2 (DHRS2) belongs to the short-chain dehydrogenase/reductase (SDR) family. It was initially isolated from the nuclear extract of hepatocellular carcinoma HepG2 cells and was identified as a specific cell cycle regulator. DHRS2 is a reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent carbonyl reductase and catalyzes the reduction of dicarbonyl compounds. It is also functionally active in lipid metabolism and acts as a metabolic enzyme of hormones. Recent studies have shown that DHRS2 reprograms lipid metabolism and redox homeostasis to regulate proliferation, migration, invasion, and drug resistance of cancer cells. Here, we describe the structure, organelle localization and function of DHRS2, and also highlight its roles in the pathologic progression of diseases.
Collapse
|
19
|
Spirina LV, Avgustinovich AV, Afanas'ev SG, Cheremisina OV, Volkov MY, Choynzonov EL, Gorbunov AK, Usynin EA. Molecular Mechanism of Resistance to Chemotherapy in Gastric Cancers, the Role of Autophagy. Curr Drug Targets 2021; 21:713-721. [PMID: 31775598 DOI: 10.2174/1389450120666191127113854] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/11/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Gastric cancer (GC) is biologically and genetically heterogeneous with complex carcinogenesis at the molecular level. Despite the application of multiple approaches in the GC treatment, its 5-year survival is poor. A major limitation of anti-cancer drugs application is intrinsic or acquired resistance, especially to chemotherapeutical agents. It is known that the effectiveness of chemotherapy remains debatable and varies according to the molecular type of GC. Chemotherapy has an established role in the management of GC. Perioperative chemotherapy or postoperative chemotherapy is applied for localized ones. Most of the advanced GC patients have a poor response to treatment and unfavorable outcomes with standard therapies. Resistance substantially limits the depth and duration of clinical responses to targeted anticancer therapies. Through the use of complementary experimental approaches, investigators have revealed that cancer cells can achieve resistance through adaptation or selection driven by specific genetic, epigenetic, or microenvironmental alterations. Ultimately, these diverse alterations often lead to the activation of MAPK, AKT/mTOR, and Wnt/β-catenin signaling pathways that, when co-opted, enable cancer cells to survive drug treatments. We have summarized the mechanisms of resistance development to cisplatin, 5-fluorouracil, and multidrug resistance in the GC management. The complexity of molecular targets and components of signaling cascades altered in the resistance development results in the absence of significant benefits in GC treatment, and its efficacy remains low. The universal process responsible for the failure in the multimodal approach in GC treatment is autophagy. Its dual role in oncogenesis is the most unexplored issue. We have discussed the possible mechanism of autophagy regulation upon the action of endogenous factors and drugs. The experimental data obtained in the cultured GC cells need further verification. To overcome the cancer resistance and to prevent autophagy as the main reason of ineffective treatment, it is suggested the concept of the direct influence of autophagy molecular markers followed by the standard chemotherapy. Dozen of studies have focused on finding the rationale for the benefits of such complex therapy. The perspectives in the molecular-based management of GC are associated with the development of molecular markers predicting the protective autophagy initiation and search for novel targets of effective anticancer therapy.
Collapse
Affiliation(s)
- Liudmila V Spirina
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation.,Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russian Federation
| | - Alexandra V Avgustinovich
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Sergey G Afanas'ev
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Olga V Cheremisina
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Maxim Yu Volkov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Evgeny L Choynzonov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation.,Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russian Federation
| | - Alexey K Gorbunov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Evgeny A Usynin
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation.,Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russian Federation
| |
Collapse
|
20
|
Lin J, Zhu H, Hong L, Tang W, Wang J, Hu H, Wu X, Chen Y, Liu G, Yang Q, Li J, Wang Y, Lin Z, Xiao Y, Dai W, Huang M, Li G, Li A, Wang J, Xiang L, Liu S. Coexpression of HOXA6 and PBX2 promotes metastasis in gastric cancer. Aging (Albany NY) 2021; 13:6606-6624. [PMID: 33535170 PMCID: PMC7993744 DOI: 10.18632/aging.202426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/03/2020] [Indexed: 01/23/2023]
Abstract
HOXA6 gene plays a role of the oncogene in various cancers. Nonetheless, its effect on gastric cancer (GC) occurrence and development is still unclear. We analysed whether HOXA6 interacts with the PBX2 protein using the STRING database. The molecular mechanism by which HOXA6 synergizes with PBX2 in GC metastasis is not fully understood. Here, we found that the expression of HOXA6 was increased in GC tissues and cell lines. The upregulation of HOXA6 was closely associated with differentiation, lymph node metastasis, AJCC stage, TNM stage, and poor survival outcome in GC patients based on tissue microarray (TMA) data. Moreover, the overexpression of HOXA6 promoted, whereas siRNA-mediated repression of HOXA6 inhibited, the cell proliferation, migration, and invasion of GC cells. Furthermore, HOXA6 could physically interact with and stabilize PBX2. In addition, HOXA6 and PBX2 expression was positively correlated in GC cells and tissue. HOXA6 and PBX2 suppression in GC cells also led to decreased migration and invasion potential in vitro. In vivo, HOXA6 was shown to cooperate with PBX2 to enhance cell metastasis via orthotopic implantation. These data indicate that HOXA6 promotes cell proliferation, migration, and invasion and that the HOXA6-PBX2 axis may be a useful biomarker for disease progression in GC.
Collapse
Affiliation(s)
- Jianjiao Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Gastroenterology, Longgang District People’s Hospital, Shenzhen 518172, China
| | - Huiqiong Zhu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Linjie Hong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Weimei Tang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jing Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hongsong Hu
- Department of Gastroenterology, Longgang District People’s Hospital, Shenzhen 518172, China
| | - Xiaosheng Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yaying Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510515, China
| | - Guangnan Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiong Yang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- The Second Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Jiaying Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yusi Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhizhao Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yizhi Xiao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Weiyu Dai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Miaojvan Huang
- Department of Gastroenterology, Longgang District People’s Hospital, Shenzhen 518172, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jide Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Gastroenterology, Longgang District People’s Hospital, Shenzhen 518172, China
| | - Li Xiang
- Department of Gastroenterology, Longgang District People’s Hospital, Shenzhen 518172, China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Gastroenterology, Longgang District People’s Hospital, Shenzhen 518172, China
| |
Collapse
|
21
|
Sırma Ekmekci S, Emrence Z, Abacı N, Sarıman M, Salman B, Ekmekci CG, Güleç Ç. LEF1 Induces DHRS2 Gene Expression in Human Acute Leukemia Jurkat T-Cells. Turk J Haematol 2020; 37:226-233. [PMID: 32586085 PMCID: PMC7702649 DOI: 10.4274/tjh.galenos.2020.2020.0144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease resulting from the accumulation of genetic changes that affect the development of T-cells. The precise role of lymphoid enhancer-binding factor 1 (LEF1) in T-ALL has been controversial since both overexpression and inactivating LEF1 mutations have been reported to date. Here, we investigate the potential gene targets of LEF1 in the Jurkat human T-cell leukemia cell line. Materials and Methods We used small interfering RNA (siRNA) technology to knock down LEF1 in Jurkat cells and then compared the gene expression levels in the LEF1 knockdown cells with non-targeting siRNA-transfected and non-transfected cells by employing microarray analysis. Results We identified DHRS2, a tumor suppressor gene, as the most significantly downregulated gene in LEF1 knockdown cells, and we further confirmed its downregulation by real-time quantitative polymerase chain reaction (qRT-PCR) in mRNA and at protein level by western blotting. Conclusion Our results revealed that DHRS2 is positively regulated by LEF1 in Jurkat cells, which indicates the capability of LEF1 as a tumor suppressor and, together with previous reports, suggests that LEF1 exhibits a regulatory role in T-ALL via not only its oncogenic targets but also tumor suppressor genes.
Collapse
Affiliation(s)
- Sema Sırma Ekmekci
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, İstanbul, Turkey
| | - Zeliha Emrence
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, İstanbul, Turkey
| | - Neslihan Abacı
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, İstanbul, Turkey
| | - Melda Sarıman
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, İstanbul, Turkey
| | - Burcu Salman
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, İstanbul, Turkey
| | - Cumhur Gökhan Ekmekci
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, İstanbul, Turkey
| | - Çağrı Güleç
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, İstanbul, Turkey
| |
Collapse
|
22
|
Ubiquitin-proteasome system (UPS) as a target for anticancer treatment. Arch Pharm Res 2020; 43:1144-1161. [PMID: 33165832 PMCID: PMC7651821 DOI: 10.1007/s12272-020-01281-8] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023]
Abstract
The ubiquitin-proteasome system (UPS) plays an important role in the cellular processes for protein quality control and homeostasis. Dysregulation of the UPS has been implicated in numerous diseases, including cancer. Indeed, components of UPS are frequently mutated or abnormally expressed in various cancers. Since Bortezomib, a proteasome inhibitor, received FDA approval for the treatment of multiple myeloma and mantle cell lymphoma, increasing numbers of researchers have been seeking drugs targeting the UPS as a cancer therapeutic strategy. Here, we introduce the essential component of UPS, including ubiquitinating enzymes, deubiquitinating enzymes and 26S proteasome, and we summarize their targets and mechanisms that are crucial for tumorigenesis. In addition, we briefly discuss some UPS inhibitors, which are currently in clinical trials as cancer therapeutics.
Collapse
|
23
|
Jin X, Dai L, Ma Y, Wang J, Yan H, Jin Y, Zhu X, Liu Z. Homeobox proteins are potential biomarkers and therapeutic targets in gastric cancer: a systematic review and meta-analysis. BMC Cancer 2020; 20:866. [PMID: 32907552 PMCID: PMC7487678 DOI: 10.1186/s12885-020-07346-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND An increasing number of studies have described the aberrant expression of homeobox (HOX) proteins in gastric cancer (GC), which is critically associated with the prognosis and clinicopathological characteristics of GC. This study was conducted to investigate the clinical value and action mechanisms of HOX proteins in GC. METHODS A comprehensive search of PubMed, Embase, Web of Science and Cochrane Library was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement. The pooled hazard ratio (HR) with its 95% confidence interval (95% CI) and the pooled odds ratio (OR) with its 95% CI were used to assess the effect of HOX protein expression on the prognosis and clinicopathological features of GC, respectively. RESULTS Nineteen studies containing 3775 patients were selected for this study. Heterogeneity among HRs of overall survival (OS) was markedly high (I2 = 90.5%, p = 0.000). According to the subgroup analysis, increased expression of HOX protein in the downregulated subgroup was associated with a good prognosis for patients with GC (pooled HR: 0.46, 95% CI: 0.36-0.59, I2 = 3.1%, p = 0.377), while overexpression of HOX protein in the upregulated subgroup was correlated with a reduced OS (pooled HR: 2.59, 95% CI: 1.79-3.74, I2 = 73.5%, p = 0.000). The aberrant expression of HOX protein was crucially related to the TNM stage, depth of tumour invasion, tumour size, lymph node metastasis, distant metastasis, vascular invasion, histological differentiation and Lauren classification in patients with GC. In addition, the molecular mechanisms by which HOX proteins regulate tumorigenesis and development of GC were also explored. CONCLUSIONS HOX proteins play vital roles in GC progression, which might serve as prognostic markers and therapeutic targets for GC.
Collapse
Affiliation(s)
- Xiao Jin
- Institute of Digestive Endoscopy and Medical Centre for Digestive Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210011, People's Republic of China
| | - Lu Dai
- Institute of Digestive Endoscopy and Medical Centre for Digestive Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210011, People's Republic of China
| | - Yilan Ma
- Institute of Digestive Endoscopy and Medical Centre for Digestive Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210011, People's Republic of China
| | - Jiayan Wang
- Institute of Digestive Endoscopy and Medical Centre for Digestive Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210011, People's Republic of China
| | - Haihao Yan
- Institute of Digestive Endoscopy and Medical Centre for Digestive Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210011, People's Republic of China
| | - Ye Jin
- Institute of Digestive Endoscopy and Medical Centre for Digestive Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210011, People's Republic of China
| | - Xiaojuan Zhu
- Institute of Digestive Endoscopy and Medical Centre for Digestive Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210011, People's Republic of China
| | - Zheng Liu
- Institute of Digestive Endoscopy and Medical Centre for Digestive Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210011, People's Republic of China.
| |
Collapse
|
24
|
Gu Y, Gu J, Shen K, Zhou H, Hao J, Li F, Yu H, Chen Y, Li J, Li Y, Liang H, Dong Y. HOXA13 promotes colon cancer progression through β-catenin-dependent WNT pathway. Exp Cell Res 2020; 395:112238. [PMID: 32822724 DOI: 10.1016/j.yexcr.2020.112238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/29/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022]
Abstract
Human class I homeobox A13 (HOXA13) was initially identified as a transcription factor and has an important role in embryonic development and malignant transformation. However, the clinical significance and the molecular mechanisms of HOXA13 in colon cancer development and progression are still unknown. In this study, we found that HOXA13 was highly expressed in colon cancer tissues, and its expression was associated with histological grade, T stage, N stage and tumour size. In vitro studies showed that HOXA13 promoted colon cancer cell proliferation, migration and invasion. Bioinformatics analysis revealed that HOXA13 expression was positively correlated with the WNT signalling pathway. In vitro studies showed that HOXA13 promoted the malignant phenotype of colon cancer cells by facilitating the nuclear translocation of β-Catenin. Moreover, XAV939, an inhibitor of β-Catenin, reversed the HOXA13-mediated effects on invasion and proliferation of colon cancer cells. In vivo studies further verified that HOXA13 promoted tumour formation through the Wnt/β-Catenin pathway. Collectively, these results suggest that HOXA13 is a potential oncogene that functions by promoting the nuclear translocation of β-Catenin, thereby maintaining the proliferation and metastasis of colon cancer.
Collapse
Affiliation(s)
- Yan Gu
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China
| | - Jun Gu
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China
| | - Kaicheng Shen
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China
| | - Hongxu Zhou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China
| | - Jie Hao
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China
| | - Fu Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China
| | - Hua Yu
- Department of General Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, 610072, China
| | - Yueqi Chen
- Department of Orthopaedic, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China
| | - Jianjun Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China
| | - Yifei Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China
| | - Houjie Liang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China.
| | - Yan Dong
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
25
|
Lu T, Tang J, Shrestha B, Heath BR, Hong L, Lei YL, Ljungman M, Neamati N. Up-regulation of hypoxia-inducible factor antisense as a novel approach to treat ovarian cancer. Theranostics 2020; 10:6959-6976. [PMID: 32550915 PMCID: PMC7295058 DOI: 10.7150/thno.41792] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer (OC) is estimated to kill ~14,000 women in the United States in 2019. Current chemotherapies to treat OC initially show therapeutic efficacy but frequently drug resistance develops, at which point therapies with alternative targets are needed. Herein, we are describing a novel approach to sensitize these tumors to standard chemotherapies by increasing the transcription of hypoxia-inducible factor antisense. Methods: Genome-wide Bru-seq analysis was performed to fully capture the nascent transcriptional signature of OC cells treated with the gp130 inhibitor, SC144. In vitro and in vivo analysis, including characterization of hypoxia and select protein expression, combination with standard of care chemotherapy and antitumor efficacy were performed to assess the biological activity of SC144 on induction of hypoxia in OC cells. Results: Bru-seq analysis of OVCAR8 cells treated with SC144 shows upregulation of hypoxia related genes. In addition, transcription of hypoxia-inducible factor antisense (HIF1A-AS2) was induced that in turn reduced expression of HIF-1α and simultaneously increased expression of NDRG1. Furthermore, we observed decreased protein levels of EGFR, Met, c-Myc, cyclin D1, MMP-2, MMP-9 and TF, and phosphorylation of Src and P130-cas. SC144-induced alterations of HIF-1α and NDRG1 were also confirmed in prostate cancer cells. Ciclopirox olamine (CPX) induces a cellular transcriptional profile comparable to SC144, suggesting a similar cellular mechanism of action between these two compounds. In addition, SC144 sensitized OC cells to olaparib, carboplatin and cisplatin, and shows better in vivo efficacy than CPX. Conclusion: Induction of hypoxic stress responses through inhibition of gp130 represents a novel approach to design effective anticancer treatments in combination with standard-of-care chemotherapy in OC and the efficacy reported here strongly supports their clinical development.
Collapse
|
26
|
Cui Y, Yan M, Zhang C, Xue J, Zhang Q, Ma S, Guan F, Cao W. Comprehensive analysis of the HOXA gene family identifies HOXA13 as a novel oncogenic gene in kidney renal clear cell carcinoma. J Cancer Res Clin Oncol 2020; 146:1993-2006. [PMID: 32444962 DOI: 10.1007/s00432-020-03259-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/13/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Kidney renal clear cell carcinoma (KIRC) is one of the most common lethal cancers in the human urogenital system. As members of the Homeobox (HOX) family, Homeobox-A (HOXA) cluster genes have been reported to be involved in the development of many cancer types. However, the expression and clinical significance of HOXA genes in KIRC remain largely unknown. MATERIALS AND METHODS In this study, we comprehensively analyzed the mRNA expression and prognostic values of HOXA genes in KIRC using The Cancer Genome Atlas (TCGA) analysis databases online. Colony formation assay, flow cytometry and Western blot were used to detect cell proliferation, apoptosis, cell cycle, and protein level of the indicated gene. RESULTS We found that the HOXA genes were differentially expressed in KIRC tissues when compared with normal tissues. The expression of HOXA4 and HOXA13 were significantly up-regulated, while HOXA7 and HOXA11 were down-regulated in KIRC. High mRNA levels of HOXA2, HOXA3 and HOXA13, and low level of HOXA7 predicted poor overall survival (OS) of KIRC patients. High mRNA level of HOXA13 further indicated a poor disease-free survival (DFS) of KIRC patients. Functionally, knockdown of HOXA13 significantly suppressed cell proliferation of KIRC in vitro, increased the protein level of p53 and decreased the protein level of cyclin D1 in KIRC cells. Over-expression of HOXA13 had the opposite effects on KIRC cells. CONCLUSION Collectively, our findings suggest that HOXA13 functions as a novel oncogene in KIRC and may be a potential biomarker for this malignancy.
Collapse
Affiliation(s)
- Yuanbo Cui
- Department of Translational Medicine Center, Zhengzhou Central Hospital Affiliated To Zhengzhou University, Zhengzhou, 450007, China. .,School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Ming Yan
- Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunyan Zhang
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated To Zhengzhou University, Zhengzhou, 450007, China
| | - Jinhui Xue
- Department of Pathology, Zhengzhou Central Hospital Affiliated To Zhengzhou University, Zhengzhou, 450007, China
| | - Quanwu Zhang
- Department of Pathology, Zhengzhou Central Hospital Affiliated To Zhengzhou University, Zhengzhou, 450007, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Wei Cao
- Department of Translational Medicine Center, Zhengzhou Central Hospital Affiliated To Zhengzhou University, Zhengzhou, 450007, China.
| |
Collapse
|
27
|
Nesteruk K, Janmaat VT, Liu H, Ten Hagen TLM, Peppelenbosch MP, Fuhler GM. Forced expression of HOXA13 confers oncogenic hallmarks to esophageal keratinocytes. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165776. [PMID: 32222541 DOI: 10.1016/j.bbadis.2020.165776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022]
Abstract
HOXA13 overexpression has been detected in human ESCC tissue and high HOXA13 protein expression is correlated with a shorter median survival time in ESCC patients. Although aberrant expression of HOXA13 in ESCC has thus been established, little is known regarding the functional consequences thereof. The present study aimed to examine to what extent aberrant HOXA13 might drive carcinogenesis in esophageal keratinocytes. To this end, we overexpressed HOXA13 in a non-transformed human esophageal cell line EPC2-hTERT, performed gene expression profiling to identify key processes and functions, and performed functional experiments. We found that HOXA13 expression confers oncogenic hallmarks to esophageal keratinocytes. It provides proliferation advantage to keratinocytes, reduces sensitivity to chemical agents, regulates MHC class I expression and differentiation status and promotes cellular migration. Our data indicate a crucial role of HOXA13 at early stages of esophageal carcinogenesis.
Collapse
Affiliation(s)
| | | | - Hui Liu
- Erasmus MC- University Medical Center Rotterdam, the Netherlands
| | | | | | - Gwenny M Fuhler
- Erasmus MC- University Medical Center Rotterdam, the Netherlands..
| |
Collapse
|
28
|
Towards the overcoming of anticancer drug resistance mediated by p53 mutations. Drug Resist Updat 2020; 49:100671. [DOI: 10.1016/j.drup.2019.100671] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
|
29
|
Zhang C, Ge S, Wang J, Jing X, Li H, Mei S, Zhang J, Liang K, Xu H, Zhang X, Zhang C. Epigenomic profiling of DNA methylation for hepatocellular carcinoma diagnosis and prognosis prediction. J Gastroenterol Hepatol 2019; 34:1869-1877. [PMID: 31038805 DOI: 10.1111/jgh.14694] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 03/31/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM DNA hypermethylation has emerged as a novel molecular biomarker for the diagnosis and prognosis prediction of many cancers. We aimed to identify clinically useful biomarkers regulated by DNA methylation in hepatocellular carcinoma (HCC). METHODS Genome-wide methylation analysis in HCCs and paired noncancerous tissues was performed using an Illumina Infinium HumanMethylation 450K BeadChip array. Methylation-specific polymerase chain reaction and pyrosequencing were used to validate the methylation status of selected genes in 100 paired HCCs and noncancerous samples. RESULTS A total of 97 027 (20.0%) out of 485 577 CpG sites significantly were differed between HCC and noncancerous tissues. Among all the significant CpG sites, 48.8% are hypermethylated and 51.2% are hypomethylated in HCCs. Multiple signaling pathways (AMP-activated protein kinase, estrogen, and adipocytokine) involved in gene methylation were identified in HCC. FES was selected for further analysis based on its high level of methylation confirmed by polymerase chain reaction and pyrosequencing. The result showed that FES hypermethylation was correlated with tumor size (0.001), serum alpha fetoprotein (0.023), and tumor differentiation (0.006). FES protein was significantly downregulated in 51/100 (51%) HCCs, and 94.12% (48/51) of them were due to promoter hypermethylation. Both FES hypermethylation and protein downregulation were associated with the progression-free survival and overall survival of HCC patients. Overexpressed and knockdown of FES confirmed its inhibitory effect on the proliferation and migration of HCC cells. CONCLUSIONS We identified many new differentially methylated CpGs in HCCs and demonstrate that FES functions as a tumor suppressor gene in HCC and its methylation status could be used as an indicator for prognosis of HCC.
Collapse
Affiliation(s)
- Cheng Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, China
| | - Shuang Ge
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, China
| | - Jun Wang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, China
| | - Xiaotong Jing
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, China
| | | | - Shuyu Mei
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, China
| | - Juan Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, China
| | - Ke Liang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, China
| | - Hui Xu
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, China
| | - Xiaoying Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, China
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, China
| |
Collapse
|
30
|
Han Y, Wang Z, Sun S, Zhang Z, Liu J, Jin X, Wu P, Ji T, Ding W, Wang B, Gao Q. Decreased DHRS2 expression is associated with HDACi resistance and poor prognosis in ovarian cancer. Epigenetics 2019; 15:122-133. [PMID: 31423895 DOI: 10.1080/15592294.2019.1656155] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Histone deacetylases (HDACs) have been linked to a variety of cancers, and HDAC inhibitors (HDACi) are a promising class of drugs that have demonstrated anti-cancer effects. However, we have little knowledge regarding the selection and application of HDAC inhibitors to the personalized treatment of ovarian cancer (OC). Here, we report a correlation between the high expression of HDACs and poor outcomes in OC patients, which reveals that HDACi are a class of agents that show great promise for the treatment of OC. Furthermore, we found that HDACi increased both the mRNA and protein levels of DHRS2, which has been shown to be closely linked to HDACi sensitivity when it is highly expressed, especially in ovarian cancer cells. Consistently, we found that suppression of DHRS2 reduced the sensitivity of OC cells to HDAC inhibitors via attenuation of the inhibitory effects of HDAC inhibitors on Mcl-1 in vitro. Our study demonstrated that DHRS2 expression was decreased in OC tissues and that high expression of DHRS2 was correlated with better outcomes in OC patients. In addition, DHRS2 expression was closely related to the effects of chemotherapy. Our study reveals the role of DHRS2 in cell apoptosis induced by HDAC inhibitors and explores the clinical attributes of DHRS2 in OC from a new perspective, suggesting that OC patients with high DHRS2 expression may benefit from treatment with HDAC inhibitors.
Collapse
Affiliation(s)
- Yingyan Han
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujuan Sun
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyu Zhang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Jin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Wu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Teng Ji
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wencheng Ding
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Beibei Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Dehydrogenase/reductase SDR family member 2 silencing sensitizes an oxaliplatin‑resistant cell line to oxaliplatin by inhibiting excision repair cross‑complementing group 1 protein expression. Oncol Rep 2019; 42:1725-1734. [PMID: 31436301 PMCID: PMC6775812 DOI: 10.3892/or.2019.7291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
Oxaliplatin (Oxa)-based chemotherapy is widely used as the first-line treatment for colorectal cancer (CRC). However, Oxa-resistance is common for many postoperative CRC patients. To explore drug resistance in CRC, an Oxa-resistant cell line, HCT116/Oxa, was established from parental HCT116 cells. These Oxa-resistant cells exhibited characteristics of epithelial-mesenchymal transition (EMT) and a higher migratory capacity than parental cells. Protein profiles of HCT116/Oxa and HCT116 cells were compared using a tandem mass tag-based quantitative proteomics technique. The protein dehydrogenase/reductase SDR family member 2 (DHRS2) was revealed to be highly expressed in HCT116/Oxa cells. Silencing of DHRS2 in HCT116/Oxa cells effectively restored Oxa-sensitivity by suppressing the expression of excision repair cross-complementing group 1 protein via a p53-dependent pathway, and reversed the EMT phenotype. Overall, the suppression of DHRS2 expression may be a promising strategy for the prevention of Oxa-resistance in CRC.
Collapse
|
32
|
Hou H, Sun D, Zhang X. The role of MDM2 amplification and overexpression in therapeutic resistance of malignant tumors. Cancer Cell Int 2019; 19:216. [PMID: 31440117 PMCID: PMC6704499 DOI: 10.1186/s12935-019-0937-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 08/18/2019] [Indexed: 01/09/2023] Open
Abstract
The MDM2 protein encoded by the mouse double minute 2 (MDM2) gene is the primary negative regulatory factor of the p53 protein. MDM2 can ligate the p53 protein via its E3 ubiquitin ligase, and the ubiquitinated p53 can be transferred to the cytoplasm and degraded by proteasomes. Therefore, MDM2 can maintain the stability of p53 signaling pathway. MDM2 amplification has been detected in many human malignancies, including lung cancer, colon cancer and other malignancies. MDM2 overexpression is associated with chemotherapeutic resistance in human malignancies. The mechanisms of chemotherapeutic resistance by MDM2 overexpression mainly include the p53–MDM2 loop-dependent and p53–MDM2 loop-independent pathways. But the role of MDM2 overexpression in tyrosine kinase inhibitors resistance remains to be further study. This paper reviews the possible mechanisms of therapeutic resistance of malignancies induced by MDM2 amplification and overexpression, including chemotherapy, radiotherapy, targeted agents and hyperprogressive disease of immunotherapy. Besides, MDM2-targeted therapy may be a potential new strategy for treating advanced malignancies.
Collapse
Affiliation(s)
- Helei Hou
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266005 China
| | - Dantong Sun
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266005 China
| | - Xiaochun Zhang
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266005 China
| |
Collapse
|
33
|
Russi S, Verma HK, Laurino S, Mazzone P, Storto G, Nardelli A, Zoppoli P, Calice G, La Rocca F, Sgambato A, Lucci V, Falco G, Ruggieri V. Adapting and Surviving: Intra and Extra-Cellular Remodeling in Drug-Resistant Gastric Cancer Cells. Int J Mol Sci 2019; 20:ijms20153736. [PMID: 31370155 PMCID: PMC6695752 DOI: 10.3390/ijms20153736] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Despite the significant recent advances in clinical practice, gastric cancer (GC) represents a leading cause of cancer-related deaths in the world. In fact, occurrence of chemo-resistance still remains a daunting hindrance to effectiveness of the current approach to GC therapy. There is accumulating evidence that a plethora of cellular and molecular factors is implicated in drug-induced phenotypical switching of GC cells. Among them, epithelial-mesenchymal transition (EMT), autophagy, drug detoxification, DNA damage response and drug target alterations, have been reported as major determinants. Intriguingly, resistant GC phenotype may be the result of GC cell-induced tumor microenvironment (TME) remodeling, which is currently emerging as a key player in promoting drug resistance and overcoming cytotoxic effects of drugs. In this review, we discuss the possible mechanisms of drug resistance and their involvement in determining current GC therapies failure.
Collapse
Affiliation(s)
- Sabino Russi
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Henu Kumar Verma
- Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
- Section of Stem Cell and Development, Istituto di Ricerche Genetiche "Gaetano Salvatore" Biogem s.c. a.r.l., 83031 Ariano Irpino, Italy
| | - Simona Laurino
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Pellegrino Mazzone
- Section of Stem Cell and Development, Istituto di Ricerche Genetiche "Gaetano Salvatore" Biogem s.c. a.r.l., 83031 Ariano Irpino, Italy
| | - Giovanni Storto
- Department of Nuclear Medicine, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Anna Nardelli
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, 80145 Napoli, Italy
| | - Pietro Zoppoli
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Giovanni Calice
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Francesco La Rocca
- Laboratory of Clinical Research and Advanced Diagnostics, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Alessandro Sgambato
- Scientific Direction, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Valeria Lucci
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Geppino Falco
- Section of Stem Cell and Development, Istituto di Ricerche Genetiche "Gaetano Salvatore" Biogem s.c. a.r.l., 83031 Ariano Irpino, Italy.
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| | - Vitalba Ruggieri
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy.
| |
Collapse
|
34
|
Luo X, Li N, Zhao X, Liao C, Ye R, Cheng C, Xu Z, Quan J, Liu J, Cao Y. DHRS2 mediates cell growth inhibition induced by Trichothecin in nasopharyngeal carcinoma. J Exp Clin Cancer Res 2019; 38:300. [PMID: 31291971 PMCID: PMC6617617 DOI: 10.1186/s13046-019-1301-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/28/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cancer is fundamentally a deregulation of cell growth and proliferation. Cancer cells often have perturbed metabolism that leads to the alteration of metabolic intermediates. Dehydrogenase/reductase member 2 (DHRS2) belongs to short-chain alcohol dehydrogenase/reductase (SDR) superfamily, which is functionally involved in a number of intermediary metabolic processes and in the metabolism of lipid signaling molecules. DHRS2 displays closely association with the inhibition of cell proliferation, migration and quiescence in cancers. METHODS 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4- sulfophenyl)-2H-tetrazolium (MTS), 5-ethynyl-2'-deoxyuridine (EdU) and colony formation assays were applied to evaluate the proliferative ability of nasopharyngeal carcinoma (NPC) cells. We performed lipid metabolite profiling using gas chromatography coupled with mass spectrometry (GC/MS) to identify the proximal metabolite changes linked to DHRS2 overexpression. RNA sequencing technique combined with differentially expressed genes analysis was applied to identify the expression of genes responsible for the anti-tumor effect of trichothecin (TCN), a natural sesquiterpenoid compound isolated from an endophytic fungus. RESULTS Our current findings reveal that DHRS2 affects lipid metabolite profiling to induce cell cycle arrest and growth inhibition in NPC cells. Furthermore, we demonstrate that TCN is able to induce growth inhibition of NPC in vitro and in vivo by up-regulating DHRS2. CONCLUSIONS Our report suggests that activating DHRS2 to reprogram lipid homeostasis may be a target for the development of targeted therapies against NPC. Moreover, TCN could be exploited for therapeutic gain against NPC by targeting DHRS2 and it may also be developed as a tool to enhance understanding the biological function of DHRS2.
Collapse
Affiliation(s)
- Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China. .,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, People's Republic of China. .,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, 410078, Hunan, China. .,Molecular Imaging Research Center of Central South University, Changsha, 410078, Hunan, China.
| | - Namei Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, 410078, Hunan, China
| | - Xu Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, 410078, Hunan, China
| | - Chaoliang Liao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, 410078, Hunan, China
| | - Runxin Ye
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, 410078, Hunan, China
| | - Can Cheng
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, 410078, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| | - Jing Quan
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, 410078, Hunan, China
| | - Jikai Liu
- School of Pharmacy, South-central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, 410078, Hunan, China.,Molecular Imaging Research Center of Central South University, Changsha, 410078, Hunan, China
| |
Collapse
|
35
|
Identification of key genes involved in type 2 diabetic islet dysfunction: a bioinformatics study. Biosci Rep 2019; 39:BSR20182172. [PMID: 31088900 PMCID: PMC6542763 DOI: 10.1042/bsr20182172] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 05/03/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023] Open
Abstract
Aims: To identify the key differentially expressed genes (DEGs) in islet and investigate their potential pathway in the molecular process of type 2 diabetes. Methods: Gene Expression Omnibus (GEO) datasets (GSE20966, GSE25724, GSE38642) of type 2 diabetes patients and normal controls were downloaded from GEO database. DEGs were further assessed by enrichment analysis based on the Database for Annotation, Visualization and Integrated Discovery (DAVID) 6.8. Then, by using Search Tool for the Retrieval Interacting Genes (STRING) 10.0 and gene set enrichment analysis (GSEA), we identified hub gene and associated pathway. At last, we performed quantitative real-time PCR (qPCR) to validate the expression of hub gene. Results: Forty-five DEGs were co-expressed in the three datasets, most of which were down-regulated. DEGs are mostly involved in cell pathway, response to hormone and binding. In protein–protein interaction (PPI) network, we identified ATP-citrate lyase (ACLY) as hub gene. GSEA analysis suggests low expression of ACLY is enriched in glycine serine and threonine metabolism, drug metabolism cytochrome P450 (CYP) and NOD-like receptor (NLR) signaling pathway. qPCR showed the same expression trend of hub gene ACLY as in our bioinformatics analysis. Conclusion: Bioinformatics analysis revealed that ACLY and the pathways involved are possible target in the molecular mechanism of type 2 diabetes.
Collapse
|
36
|
Paralogous HOX13 Genes in Human Cancers. Cancers (Basel) 2019; 11:cancers11050699. [PMID: 31137568 PMCID: PMC6562813 DOI: 10.3390/cancers11050699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/17/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Hox genes (HOX in humans), an evolutionary preserved gene family, are key determinants of embryonic development and cell memory gene program. Hox genes are organized in four clusters on four chromosomal loci aligned in 13 paralogous groups based on sequence homology (Hox gene network). During development Hox genes are transcribed, according to the rule of “spatio-temporal collinearity”, with early regulators of anterior body regions located at the 3’ end of each Hox cluster and the later regulators of posterior body regions placed at the distal 5’ end. The onset of 3’ Hox gene activation is determined by Wingless-type MMTV integration site family (Wnt) signaling, whereas 5’ Hox activation is due to paralogous group 13 genes, which act as posterior-inhibitors of more anterior Hox proteins (posterior prevalence). Deregulation of HOX genes is associated with developmental abnormalities and different human diseases. Paralogous HOX13 genes (HOX A13, HOX B13, HOX C13 and HOX D13) also play a relevant role in tumor development and progression. In this review, we will discuss the role of paralogous HOX13 genes regarding their regulatory mechanisms during carcinogenesis and tumor progression and their use as biomarkers for cancer diagnosis and treatment.
Collapse
|
37
|
EMT is associated with an epigenetic signature of ECM remodeling genes. Cell Death Dis 2019; 10:205. [PMID: 30814494 PMCID: PMC6393505 DOI: 10.1038/s41419-019-1397-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
Abstract
Type III epithelial–mesenchymal transition (EMT) has been previously associated with increased cell migration, invasion, metastasis, and therefore cancer aggressiveness. This reversible process is associated with an important gene expression reprogramming mainly due to epigenetic plasticity. Nevertheless, most of the studies describing the central role of epigenetic modifications during EMT were performed in a single-cell model and using only one mode of EMT induction. In our study, we studied the overall modulations of gene expression and epigenetic modifications in four different EMT-induced cell models issued from different tissues and using different inducers of EMT. Pangenomic analysis (transcriptome and ChIP–sequencing) validated our hypothesis that gene expression reprogramming during EMT is largely regulated by epigenetic modifications of a wide range of genes. Indeed, our results confirmed that each EMT model is unique and can be associated with a specific transcriptome profile and epigenetic program. However, we could select some genes or pathways that are similarly regulated in the different models and that could therefore be used as a common signature of all EMT models and become new biomarkers of the EMT phenotype. As an example, we can cite the regulation of gene-coding proteins involved in the degradation of the extracellular matrix (ECM), which are highly induced in all EMT models. Based on our investigations and results, we identified ADAM19 as a new biomarker of in vitro and in vivo EMT and we validated this biological new marker in a cohort of non-small lung carcinomas.
Collapse
|
38
|
Long noncoding RNA LUCAT1 promotes malignancy of ovarian cancer through regulation of miR-612/HOXA13 pathway. Biochem Biophys Res Commun 2018; 503:2095-2100. [DOI: 10.1016/j.bbrc.2018.07.165] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 01/04/2023]
|
39
|
Zhang Y, Wu J, Jing H, Huang G, Dong J, Cui Z. Increased DHRS12 expression independently predicts poor survival in patients with high-grade serous ovarian cancer. Future Oncol 2018; 14:2579-2588. [PMID: 29783891 DOI: 10.2217/fon-2018-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To explore the expression profile of some DHRS genes in high-grade serous ovarian cancer (SOVC) and to study their prognostic values. PATIENTS & METHODS A retrospective bioinformatic analysis was performed using data in the Gene Expression Omnibus, the Human Protein Atlas and the Cancer Genome Atlas-Ovarian Cancer. RESULTS Increased DHRS12 expression was an independent indicator of poor overall survival (hazard ratio [HR]: 1.265, 95% CI: 1.075-1.488; p = 0.005) and recurrence-free survival (RFS; HR: 2.242, 95%CI: 1.464-3.432; p < 0.001) in patients with high-grade SOVC. DNA deletion was associated with decreased DHRS12 expression, as well as the best overall survival and RFS among the three copy number alteration groups. CONCLUSION DHRS12 might serve as a valuable prognostic biomarker in high-grade SOVC.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathology, Huaihe Hospital, Henan University, Kaifeng, 475000, PR China
| | - Jiang Wu
- Department of Pathology, Huaihe Hospital, Henan University, Kaifeng, 475000, PR China
| | - Hong Jing
- Department of Pathology, Huaihe Hospital, Henan University, Kaifeng, 475000, PR China
| | - Gui Huang
- Department of Pathology, Huaihe Hospital, Henan University, Kaifeng, 475000, PR China
| | - Jinlong Dong
- Department of Pathology, Huaihe Hospital, Henan University, Kaifeng, 475000, PR China
| | - Zhanjun Cui
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, PR China
| |
Collapse
|