1
|
Nurimanov C, Mammadinova I, Menlibayeva K, Aidarov S, Nurakay N, Kaliyev A, Makhambetov Y, Akshulakov SK. Managing Lead Fractures in Deep Brain Stimulation for Movement Disorders: A Decade-Long Case Series from a National Neurosurgical Centre. J Clin Med 2024; 13:7509. [PMID: 39768433 PMCID: PMC11676083 DOI: 10.3390/jcm13247509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Deep brain stimulation (DBS) is an effective treatment for movement disorders, but its long-term efficacy may be undermined by hardware complications such as lead fractures. These complications increase healthcare costs and necessitate surgical revisions. The frequency, timing, and clinical factors associated with lead fractures remain poorly understood. Objective: This study aimed to determine the incidence, timing, and clinical factors associated with lead fractures in a large cohort of DBS patients over a 10-year period. Methods: This retrospective study analyzed data from 325 patients who underwent bilateral DBS implantation at the National Centre for Neurosurgery from 2013 to 2023. The analysis specifically focused on 17 patients who experienced lead fractures during the long-term follow-up period. Results: Among the 325 patients, lead fractures were identified in 17 patients (5.23%), affecting 18 electrodes. The majority of cases involved patients with Parkinson's disease (76.5%) or dystonia (23.5%), with an average age of 59.17 ± 8.77 years. Nearly all patients with lead fractures had a history of trauma. Additionally, two cases were associated with active engagement in sports, particularly activities involving movements like pulling up on a horizontal bar, while Twiddler's Syndrome was identified in two other cases. All electrode fractures required surgical revision. Conclusions: Lead fractures, while rare, remain a significant complication in DBS systems. Precise surgical techniques, early detection, and advancements in DBS hardware design may help to mitigate this risk. Future innovations, such as durable leads or wireless systems, may improve long-term outcomes in DBS therapy for movement disorders.
Collapse
Affiliation(s)
- Chingiz Nurimanov
- Department of Vascular and Functional Neurosurgery, National Centre for Neurosurgery, 34/1 Turan Avenue, Astana 010000, Kazakhstan
| | - Iroda Mammadinova
- Department of Vascular and Functional Neurosurgery, National Centre for Neurosurgery, 34/1 Turan Avenue, Astana 010000, Kazakhstan
| | - Karashash Menlibayeva
- Hospital Management Department, National Centre for Neurosurgery, 34/1 Turan Avenue, Astana 010000, Kazakhstan
| | - Seitzhan Aidarov
- Department of Vascular and Functional Neurosurgery, National Centre for Neurosurgery, 34/1 Turan Avenue, Astana 010000, Kazakhstan
| | - Nurtay Nurakay
- Department of Vascular and Functional Neurosurgery, National Centre for Neurosurgery, 34/1 Turan Avenue, Astana 010000, Kazakhstan
| | - Assylbek Kaliyev
- Department of Vascular and Functional Neurosurgery, National Centre for Neurosurgery, 34/1 Turan Avenue, Astana 010000, Kazakhstan
| | - Yerbol Makhambetov
- Department of Vascular and Functional Neurosurgery, National Centre for Neurosurgery, 34/1 Turan Avenue, Astana 010000, Kazakhstan
| | - Serik K. Akshulakov
- Hospital Management Department, National Centre for Neurosurgery, 34/1 Turan Avenue, Astana 010000, Kazakhstan
| |
Collapse
|
2
|
Jalloh M, Kankam SB, Osifalo O, Ndjamen P HF, Fakorede O. Letter to the Editor Regarding Advancing Deep Brain Stimulation for Treatment of Movement Disorders in Resource-Limited African Settings. World Neurosurg 2024; 187:255-256. [PMID: 38970180 DOI: 10.1016/j.wneu.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 07/08/2024]
Affiliation(s)
- Mohamed Jalloh
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Brigham, Utah, USA
| | - Samuel Berchi Kankam
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Brigham, Utah, USA; Harvard T.H Chan School of Public Health, Harvard University, Boston, Massachusetts, USA.
| | - Oluwafeyisola Osifalo
- Harvard T.H Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Herman Franklin Ndjamen P
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Brigham, Utah, USA
| | - Olayinka Fakorede
- Harvard T.H Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Mishra A, Begley SL, Shah HA, Santhumayor BA, Ramdhani RA, Fenoy AJ, Schulder M. Why are clinical trials of deep brain stimulation terminated? An analysis of clinicaltrials.gov. World Neurosurg X 2024; 23:100378. [PMID: 38595675 PMCID: PMC11002890 DOI: 10.1016/j.wnsx.2024.100378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Background Although deep brain stimulation (DBS) has established uses for patients with movement disorders and epilepsy, it is under consideration for a wide range of neurologic and neuropsychiatric conditions. Objective To review successful and unsuccessful DBS clinical trials and identify factors associated with early trial termination. Methods The ClinicalTrials.gov database was screened for all studies related to DBS. Information regarding condition of interest, study aim, trial design, trial success, and, if applicable, reason for failure was collected. Trials were compared and logistic regression was utilized to identify independent factors associated with trial termination. Results Of 325 identified trials, 79.7% were successful and 20.3% unsuccessful. Patient recruitment, sponsor decision, and device issues were the most cited reasons for termination. 242 trials (74.5%) were interventional with 78.1% successful. There was a statistically significant difference between successful and unsuccessful trials in number of funding sources (p = 0.0375). NIH funding was associated with successful trials while utilization of other funding sources (academic institutions and community organizations) was associated with unsuccessful trials. 83 trials (25.5%) were observational with 84.0% successful; there were no statistically significant differences between successful and unsuccessful observational trials. Conclusion One in five clinical trials for DBS were found to be unsuccessful, most commonly due to patient recruitment difficulties. The source of funding was the only factor associated with trial success. As DBS research continues to grow, understanding the current state of clinical trials will help design successful future studies, thereby minimizing futile expenditures of time, cost, and patient engagement.
Collapse
Affiliation(s)
- Akash Mishra
- Department of Neurological Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, USA
| | - Sabrina L. Begley
- Department of Neurological Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, USA
| | - Harshal A. Shah
- Department of Neurological Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, USA
| | - Brandon A. Santhumayor
- Department of Neurological Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, USA
| | - Ritesh A. Ramdhani
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, USA
| | - Albert J. Fenoy
- Department of Neurological Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, USA
| | - Michael Schulder
- Department of Neurological Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, USA
| |
Collapse
|
4
|
Bishay AE, Lyons AT, Koester SW, Paulo DL, Liles C, Dambrino RJ, Feldman MJ, Ball TJ, Bick SK, Englot DJ, Chambless LB. Global Economic Evaluation of the Reported Costs of Deep Brain Stimulation. Stereotact Funct Neurosurg 2024; 102:257-274. [PMID: 38513625 PMCID: PMC11309055 DOI: 10.1159/000537865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Despite the known benefits of deep brain stimulation (DBS), the cost of the procedure can limit access and can vary widely. Our aim was to conduct a systematic review of the reported costs associated with DBS, as well as the variability in reporting cost-associated factors to ultimately increase patient access to this therapy. METHODS A systematic review of the literature for cost of DBS treatment was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PubMed and Embase databases were queried. Olsen & Associates (OANDA) was used to convert all reported rates to USD. Cost was corrected for inflation using the US Bureau of Labor Statistics Inflation Calculator, correcting to April 2022. RESULTS Twenty-six articles on the cost of DBS surgery from 2001 to 2021 were included. The median number of patients across studies was 193, the mean reported age was 60.5 ± 5.6 years, and median female prevalence was 38.9%. The inflation- and currency-adjusted mean cost of the DBS device was USD 21,496.07 ± USD 8,944.16, the cost of surgery alone was USD 14,685.22 ± USD 8,479.66, the total cost of surgery was USD 40,942.85 ± USD 17,987.43, and the total cost of treatment until 1 year of follow-up was USD 47,632.27 ± USD 23,067.08. There were no differences in costs observed across surgical indication or country. CONCLUSION Our report describes the large variation in DBS costs and the manner of reporting costs. The current lack of standardization impedes productive discourse as comparisons are hindered by both geographic and chronological variations. Emphasis should be put on standardized reporting and analysis of reimbursement costs to better assess the variability of DBS-associated costs in order to make this procedure more cost-effective and address areas for improvement to increase patient access to DBS.
Collapse
Affiliation(s)
| | | | | | - Danika L. Paulo
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Campbell Liles
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert J. Dambrino
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael J. Feldman
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tyler J. Ball
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah K. Bick
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dario J. Englot
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lola B. Chambless
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Coelho DRA, Salvi JD, Vieira WF, Cassano P. Inflammation in obsessive-compulsive disorder: A literature review and hypothesis-based potential of transcranial photobiomodulation. J Neurosci Res 2024; 102:e25317. [PMID: 38459770 DOI: 10.1002/jnr.25317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/10/2024]
Abstract
Obsessive-compulsive disorder (OCD) is a disabling neuropsychiatric disorder that affects about 2%-3% of the global population. Despite the availability of several treatments, many patients with OCD do not respond adequately, highlighting the need for new therapeutic approaches. Recent studies have associated various inflammatory processes with the pathogenesis of OCD, including alterations in peripheral immune cells, alterations in cytokine levels, and neuroinflammation. These findings suggest that inflammation could be a promising target for intervention. Transcranial photobiomodulation (t-PBM) with near-infrared light is a noninvasive neuromodulation technique that has shown potential for several neuropsychiatric disorders. However, its efficacy in OCD remains to be fully explored. This study aimed to review the literature on inflammation in OCD, detailing associations with T-cell populations, monocytes, NLRP3 inflammasome components, microglial activation, and elevated proinflammatory cytokines such as TNF-α, CRP, IL-1β, and IL-6. We also examined the hypothesis-based potential of t-PBM in targeting these inflammatory pathways of OCD, focusing on mechanisms such as modulation of oxidative stress, regulation of immune cell function, reduction of proinflammatory cytokine levels, deactivation of neurotoxic microglia, and upregulation of BDNF gene expression. Our review suggests that t-PBM could be a promising, noninvasive intervention for OCD, with the potential to modulate underlying inflammatory processes. Future research should focus on randomized clinical trials to assess t-PBM's efficacy and optimal treatment parameters in OCD. Biomarker analyses and neuroimaging studies will be important in understanding the relationship between inflammatory modulation and OCD symptom improvement following t-PBM sessions.
Collapse
Affiliation(s)
- David Richer Araujo Coelho
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Joshua D Salvi
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Center for OCD and Related Disorders, Massachusetts General Hospital, Boston, Massachusetts, USA
- McLean Hospital, Belmont, Massachusetts, USA
| | - Willians Fernando Vieira
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paolo Cassano
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Sasidharan A, Bagepally BS, Kumar SS. Cost Effectiveness of Deep Brain Stimulation for Parkinson's Disease: A Systematic Review. APPLIED HEALTH ECONOMICS AND HEALTH POLICY 2024; 22:181-192. [PMID: 38015368 DOI: 10.1007/s40258-023-00848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND AND OBJECTIVE Deep brain stimulation (DBS) is an established treatment for Parkinson's disease (PD) in patients with advanced motor symptoms with an inadequate response to pharmacotherapies. Despite its effectiveness, the cost effectiveness of DBS remains a subject of debate. This systematic review aims to update and synthesize evidence on the cost effectiveness of DBS for PD. METHODS To identify full economic evaluations that compared the cost effectiveness of DBS with other best medical treatments, a comprehensive search was conducted of the PubMed, Embase, Scopus, and Tufts Cost-Effective Analysis registry databases. The selected papers were systematically reviewed, and the results were summarized. For the quality appraisal, we used the modified economic evaluations bias checklist. The review protocol was a priori registered with PROSPERO, CRD42022345508. RESULTS Sixteen identified cost-utility analyses that reported 19 comparisons on the use of DBS for PD were systematically reviewed. The studies were primarily conducted in high-income countries and employed Markov models. The costs considered were direct costs: surgical expenses, calibration, pulse generator replacement, and annual drug expenses. The majority of studies used country-specific thresholds. Fourteen comparisons from 12 studies reported on the cost effectiveness of DBS compared to best medical treatments. Eleven comparisons reported DBS as cost effective based on incremental cost-utility ratio results. CONCLUSIONS The cost effectiveness of DBS for PD varies by time horizon, costs considered, threshold utilized, and stage of PD progression. Standardizing approaches and comparing DBS with other treatments are needed for future research on effective PD management.
Collapse
Affiliation(s)
- Akhil Sasidharan
- ICMR-National Institute of Epidemiology, Health Technology Assessment Resource Centre, ICMR-NIE, R-127, Tamil Nadu Housing Board, Phase I and II, Ayapakkam, Chennai, 600077, India
| | - Bhavani Shankara Bagepally
- ICMR-National Institute of Epidemiology, Health Technology Assessment Resource Centre, ICMR-NIE, R-127, Tamil Nadu Housing Board, Phase I and II, Ayapakkam, Chennai, 600077, India.
| | - S Sajith Kumar
- ICMR-National Institute of Epidemiology, Health Technology Assessment Resource Centre, ICMR-NIE, R-127, Tamil Nadu Housing Board, Phase I and II, Ayapakkam, Chennai, 600077, India
| |
Collapse
|
7
|
Lannon M, Duda T, Mastrolonardo A, Huang E, Martyniuk A, Farrokhyar F, Xie F, Bhandari M, Kalia SK, Sharma S. Economic Evaluations Comparing Deep Brain Stimulation to Best Medical Therapy for Movement Disorders: A Meta-Analysis. PHARMACOECONOMICS 2024; 42:41-68. [PMID: 37751075 DOI: 10.1007/s40273-023-01318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Movement disorders (Parkinson's disease, essential tremor, primary dystonia) are a debilitating group of conditions that are progressive in nature. The mainstay of treatment is best medical therapy; however, a number of surgical therapies are available, including deep brain stimulation. Economic evaluations are an important aspect of evidence to inform decision makers regarding funding allocated to these therapies. OBJECTIVE This systematic review and meta-analysis evaluated the cost effectiveness of including deep brain stimulation compared with best medical therapy for movement disorder indications in the adult population. METHODS Ovid Medical Literature Analysis and Retrieval System Online, Embase, and Cochrane Central Register of Controlled Trials were queried. Only economic evaluations reporting incremental cost-effectiveness ratios for including deep brain stimulation versus best medical therapy for movement disorders were included. Studies were reviewed in duplicate for inclusion and data abstraction. Data were harmonized using the Consumer Price Index and Purchasing Power Parity to standardize values to 2022 US dollars. For inclusion in meta-analyses, studies were required to have sufficient data available to calculate an estimate of the incremental net benefit. Meta-analyses of pooled incremental net benefit based on the time horizon were performed. The study was registered at PROSPERO (CRD42022335436). RESULTS There were 2190 studies reviewed, with 14 economic evaluations included following a title/abstract and full-text review. Only studies considering Parkinson's disease were available for the meta-analysis. Quality of the identified studies was low, with moderate transferability to the American Healthcare System, and certainty of evidence was low. However, studies with a longer time horizon (15 years to lifetime) were found to have significant positive incremental net benefit (indicating cost effectiveness) for including deep brain stimulation with a mean difference of US$40,504.81 (95% confidence interval 2422.42-78,587.19). CONCLUSIONS Deep brain stimulation was cost effective for Parkinson's disease when considered over the course of the patient's remaining life after implantation. TRIAL REGISTRATION Clinical Trial Registration: PROSPERO (CRD42022335436).
Collapse
Affiliation(s)
- Melissa Lannon
- Division of Neurosurgery, McMaster University, 237 Barton Street East, Hamilton, ON, Canada.
| | - Taylor Duda
- Division of Neurosurgery, McMaster University, 237 Barton Street East, Hamilton, ON, Canada
| | | | - Ellissa Huang
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Amanda Martyniuk
- Division of Neurosurgery, McMaster University, 237 Barton Street East, Hamilton, ON, Canada
| | - Forough Farrokhyar
- Department of Health, Evidence, Impact, McMaster University, Hamilton, ON, Canada
| | - Feng Xie
- Department of Health, Evidence, Impact, McMaster University, Hamilton, ON, Canada
| | - Mohit Bhandari
- Department of Health, Evidence, Impact, McMaster University, Hamilton, ON, Canada
- Division of Orthopaedic Surgery, McMaster University, Hamilton, ON, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Sunjay Sharma
- Division of Neurosurgery, McMaster University, 237 Barton Street East, Hamilton, ON, Canada
- Department of Health, Evidence, Impact, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
8
|
Tomskiy AA, Bril EV, Gamaleya AA, Poddubskaya AA, Fedorova NV, Levin OS, Illarioshkin SN. [Problems in organizing neurosurgical care for patients with Parkinson's disease in the Russian Federation]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2024; 88:5-13. [PMID: 38881010 DOI: 10.17116/neiro2024880315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
BACKGROUND Currently, there are some problems in the Russian Federation complicating development of neurosurgical care for patients with Parkinson's disease (PD). MATERIAL AND METHODS In 2022, neurologists - movement disorders specialists were surveyed to analyze situation with PD pharmacological treatment and referral of patients for surgical treatment in Russian constituent entities. Data on neurosurgical treatment of PD were obtained by collecting information on the surgical activity of medical institutions in the Russian Federation. Most hospitals involved in PD treatment took part in this study. RESULTS The state of neurosurgical care for patients with PD is analyzed and possible ways to improve the quality of treatment are discussed. CONCLUSION Over the past 20 years, a system of neurosurgical care for patients with PD has been formed in 14 centers in the Russian Federation (2022). Obstacles to its further development can be divided into 3 categories: problems of patient selection and routing, complexity of organization and financing surgeries, and imperfect postoperative patient management. Ways to overcome these obstacles imply expanding the network of centers for extrapyramidal diseases, development of domestic neurostimulation systems, improving the distribution of quotas taking into account the capabilities of hospitals, specialized training of neurologists for extrapyramidal centers and neurosurgeons for deep brain stimulation centers, adequate financing and systematization of postoperative management of patients with PD.
Collapse
Affiliation(s)
- A A Tomskiy
- Burdenko Neurosurgical Center, Moscow, Russia
| | - E V Bril
- Burnazyan Federal Medical Biophysical Center, Moscow, Russia
- Russian Medical Academy of Continuing Professional Education, Moscow, Russia
| | | | | | - N V Fedorova
- Russian Medical Academy of Continuing Professional Education, Moscow, Russia
| | - O S Levin
- Russian Medical Academy of Continuing Professional Education, Moscow, Russia
| | | |
Collapse
|
9
|
Dams J, Zapp JJ, König HH. Modelling the Cost Effectiveness of Treatments for Parkinson's Disease: An Updated Methodological Review. PHARMACOECONOMICS 2023; 41:1205-1228. [PMID: 37344724 PMCID: PMC10492764 DOI: 10.1007/s40273-023-01289-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/28/2023] [Indexed: 06/23/2023]
Abstract
OBJECTIVE This article systematically reviewed the methodological quality of modelling approaches for economic evaluations of the treatment of motor symptoms in Parkinson's disease in studies published after 2010. METHODS A systematic literature search was undertaken using PubMed, EconLit, the Cochrane Database of Systematic Reviews, National Health Service Economic Evaluation Database and Health Technology Assessment databases of the UK National Health Service Centre for Review and Dissemination (March 2010 to July 2022). Quality was assessed using a checklist from the German Scientific Working Group. RESULTS A total of 20 studies were evaluated, with the majority based on Markov models (n = 18). Studies assessed the cost effectiveness of medical (n = 12) or surgical (n = 8) treatment, and included costs from a payer or healthcare provider's perspective (n = 17). Furthermore, all studies included quality-adjusted life-years as an effect measure. In the quality assessment of the literature, a mean score of 42.1 points (out of 56 points) on the checklist of the German Scientific Working Group was achieved. Seventeen studies concluded the intervention under study was (likely) cost effective. No intervention was classified as cost ineffective. CONCLUSIONS The quality of economic evaluation models in Parkinson's disease has improved in terms of calculating cost and transition parameters, as well as carrying out probabilistic sensitivity analyses, compared with the published literature of previous systematic reviews up to 2010. However, there is still potential for further development in terms of the integration of non-motor complications and treatment changes, the transparent presentation of parameter estimates, as well as conducting sensitivity analyses and validations to support the interpretation of results.
Collapse
Affiliation(s)
- Judith Dams
- Department of Health Economics and Health Services Research, University Medical Center Hamburg-Eppendorf, Hamburg Center for Health Economics, Martinistraße 52, 20246, Hamburg, Germany.
| | - Johann-Jacob Zapp
- Department of Health Economics and Health Services Research, University Medical Center Hamburg-Eppendorf, Hamburg Center for Health Economics, Martinistraße 52, 20246, Hamburg, Germany
| | - Hans-Helmut König
- Department of Health Economics and Health Services Research, University Medical Center Hamburg-Eppendorf, Hamburg Center for Health Economics, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
10
|
Gilbert Z, Mason X, Sebastian R, Tang AM, Martin Del Campo-Vera R, Chen KH, Leonor A, Shao A, Tabarsi E, Chung R, Sundaram S, Kammen A, Cavaleri J, Gogia AS, Heck C, Nune G, Liu CY, Kellis SS, Lee B. A review of neurophysiological effects and efficiency of waveform parameters in deep brain stimulation. Clin Neurophysiol 2023; 152:93-111. [PMID: 37208270 DOI: 10.1016/j.clinph.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/09/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
Neurostimulation has diverse clinical applications and potential as a treatment for medically refractory movement disorders, epilepsy, and other neurological disorders. However, the parameters used to program electrodes-polarity, pulse width, amplitude, and frequency-and how they are adjusted have remained largely untouched since the 1970 s. This review summarizes the state-of-the-art in Deep Brain Stimulation (DBS) and highlights the need for further research to uncover the physiological mechanisms of neurostimulation. We focus on studies that reveal the potential for clinicians to use waveform parameters to selectively stimulate neural tissue for therapeutic benefit, while avoiding activating tissue associated with adverse effects. DBS uses cathodic monophasic rectangular pulses with passive recharging in clinical practice to treat neurological conditions such as Parkinson's Disease. However, research has shown that stimulation efficiency can be improved, and side effects reduced, through modulating parameters and adding novel waveform properties. These developments can prolong implantable pulse generator lifespan, reducing costs and surgery-associated risks. Waveform parameters can stimulate neurons based on axon orientation and intrinsic structural properties, providing clinicians with more precise targeting of neural pathways. These findings could expand the spectrum of diseases treatable with neuromodulation and improve patient outcomes.
Collapse
Affiliation(s)
- Zachary Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States.
| | - Xenos Mason
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Rinu Sebastian
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Austin M Tang
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Roberto Martin Del Campo-Vera
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Kuang-Hsuan Chen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Andrea Leonor
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Arthur Shao
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Emiliano Tabarsi
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Ryan Chung
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Alexandra Kammen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Jonathan Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Angad S Gogia
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Christi Heck
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - George Nune
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Spencer S Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
11
|
Surgical Outcomes in Rare Movement Disorders: A Report of Seventeen Patients from India and Review of Literature. Tremor Other Hyperkinet Mov (N Y) 2022; 12:22. [PMID: 35811746 PMCID: PMC9231568 DOI: 10.5334/tohm.693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Rare movement disorders (RMDs) throw remarkable challenges to their appropriate management particularly when they are medically refractory. We studied the outcome of functional neurosurgery among patients with RMDs. Methods: Retrospective chart-review from 2006 to 2021 of patients with RMDs who underwent either Deep brain Stimulation (DBS) or lesional surgeries in the department of Neurology and Neurosurgery at a tertiary care centre. Results: Seventeen patients were included. Generalized dystonia (11 patients, 64.7%) and tremor (5 patients, 29.4%) were the most common indication for surgery whereas, Wilson’s disease (8 patients, 47.1%) and Neurodegeneration with brain iron accumulation (5 patients, 29.4%) were the most common aetiology. Sixteen patients (94.1%) had objective clinical improvement. Significant improvement was noted in the dystonia motor scores both at 6-months and 12-months follow-up (n = 11, p-value of <0.01 and 0.01 respectively). Comparison between DBS and lesional surgery showed no significant difference in the outcomes (p = 0.95 at 6-months and p = 0.53 at 12-months), with slight worsening of scores in the DBS arm at 12-months. Among five patients of refractory tremor with Wilson’s disease, there was remarkable improvement in the tremor scores by 85.0 ± 7.8% at the last follow-up. Speech impairment was the main complication observed with most of the other adverse events either transient or reversible. Discussion: Surgical options should be contemplated among patients with disabling medically refractory RMDs irrespective of the aetiology. Key to success lies in appropriate patient selection. In situations when DBS is not feasible, lesional surgeries can offer an excellent alternative with comparable efficacy and safety.
Collapse
|
12
|
Alshenqiti U, Alzalabani Y, Siddiqui K, Alfaisal S, Albadrani M. Focused ultrasound and deep brain stimulation for Parkinsonism – Review of literature to investigate tradeoff between safety and efficacy. SAUDI JOURNAL FOR HEALTH SCIENCES 2022. [DOI: 10.4103/sjhs.sjhs_86_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
13
|
Cabrera LY, Young Han C, Ostendorf T, Jimenez-Shahed J, Sarva H. Neurologists' Attitudes Toward Use and Timing of Deep Brain Stimulation. Neurol Clin Pract 2021; 11:506-516. [PMID: 34992957 PMCID: PMC8723941 DOI: 10.1212/cpj.0000000000001098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/19/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVE We sought to explore current perspectives and attitudes of general neurologists and movement disorder specialists toward deep brain stimulation (DBS) for Parkinson disease (PD), focusing on perspectives on its earlier use in the clinical course of the disease. METHODS We designed a 30-question online survey comprised of Likert-type, multiple choice, and rank-order questions, which was distributed to 932 neurologist members of the American Academy of Neurology. We analyzed clinicians' sociodemographic information, treatment patterns used for patients with PD, reasons for and against patient referral for DBS, and general attitudes toward DBS. Data were analyzed using descriptive and inferential statistics. RESULTS We received 164/930 completed surveys (completion rate of 18%). Overall, most respondents agreed that DBS was more useful after the appearance of motor complications and that DBS utilization offered better management of PD than medication alone. However, respondents were divided on issues like minimum duration of disease needed to consider DBS as a treatment option and timing of DBS referral relative to disease progression. Specifically, differences between movement disorder specialists and general neurologists were seen in medication management of symptoms and dyskinesia. CONCLUSIONS There remains a lack of consensus on several aspects of DBS, including medical management before offering DBS and the appropriate timing of its consideration for patients. Given the effect of such lack of consensus on patients' outcomes and recent evidence on positive DBS results, it is essential to update DBS professional guidelines with a focus on medical management and the timely use of DBS.
Collapse
Affiliation(s)
- Laura Yenisa Cabrera
- Center for Ethics and Humanities in the Life Sciences (LYC), Department of Translational Neuroscience, Michigan State University, East Lansing, current affiliation: Center for Neural Engineering, Department of Engineering Science and Mechanics, Rock Ethics Institutes, Pennsylvania State University; Weill Cornell Medicine (CYH), New York; American Academy of Neurology (TO), Minneapolis, MN; Bonnie and Tom Strauss Movement Disorders Center (JJ-S), Icahn School of Medicine at Mount Sinai, New York; and Parkinson's Disease and Movement Disorders Institute (HS), Department of Neurology, Weill Cornell Medicine, New York
| | - Catherine Young Han
- Center for Ethics and Humanities in the Life Sciences (LYC), Department of Translational Neuroscience, Michigan State University, East Lansing, current affiliation: Center for Neural Engineering, Department of Engineering Science and Mechanics, Rock Ethics Institutes, Pennsylvania State University; Weill Cornell Medicine (CYH), New York; American Academy of Neurology (TO), Minneapolis, MN; Bonnie and Tom Strauss Movement Disorders Center (JJ-S), Icahn School of Medicine at Mount Sinai, New York; and Parkinson's Disease and Movement Disorders Institute (HS), Department of Neurology, Weill Cornell Medicine, New York
| | - Tasha Ostendorf
- Center for Ethics and Humanities in the Life Sciences (LYC), Department of Translational Neuroscience, Michigan State University, East Lansing, current affiliation: Center for Neural Engineering, Department of Engineering Science and Mechanics, Rock Ethics Institutes, Pennsylvania State University; Weill Cornell Medicine (CYH), New York; American Academy of Neurology (TO), Minneapolis, MN; Bonnie and Tom Strauss Movement Disorders Center (JJ-S), Icahn School of Medicine at Mount Sinai, New York; and Parkinson's Disease and Movement Disorders Institute (HS), Department of Neurology, Weill Cornell Medicine, New York
| | - Joohi Jimenez-Shahed
- Center for Ethics and Humanities in the Life Sciences (LYC), Department of Translational Neuroscience, Michigan State University, East Lansing, current affiliation: Center for Neural Engineering, Department of Engineering Science and Mechanics, Rock Ethics Institutes, Pennsylvania State University; Weill Cornell Medicine (CYH), New York; American Academy of Neurology (TO), Minneapolis, MN; Bonnie and Tom Strauss Movement Disorders Center (JJ-S), Icahn School of Medicine at Mount Sinai, New York; and Parkinson's Disease and Movement Disorders Institute (HS), Department of Neurology, Weill Cornell Medicine, New York
| | - Harini Sarva
- Center for Ethics and Humanities in the Life Sciences (LYC), Department of Translational Neuroscience, Michigan State University, East Lansing, current affiliation: Center for Neural Engineering, Department of Engineering Science and Mechanics, Rock Ethics Institutes, Pennsylvania State University; Weill Cornell Medicine (CYH), New York; American Academy of Neurology (TO), Minneapolis, MN; Bonnie and Tom Strauss Movement Disorders Center (JJ-S), Icahn School of Medicine at Mount Sinai, New York; and Parkinson's Disease and Movement Disorders Institute (HS), Department of Neurology, Weill Cornell Medicine, New York
| |
Collapse
|
14
|
Sarica C, Iorio-Morin C, Aguirre-Padilla DH, Najjar A, Paff M, Fomenko A, Yamamoto K, Zemmar A, Lipsman N, Ibrahim GM, Hamani C, Hodaie M, Lozano AM, Munhoz RP, Fasano A, Kalia SK. Implantable Pulse Generators for Deep Brain Stimulation: Challenges, Complications, and Strategies for Practicality and Longevity. Front Hum Neurosci 2021; 15:708481. [PMID: 34512295 PMCID: PMC8427803 DOI: 10.3389/fnhum.2021.708481] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/30/2021] [Indexed: 11/29/2022] Open
Abstract
Deep brain stimulation (DBS) represents an important treatment modality for movement disorders and other circuitopathies. Despite their miniaturization and increasing sophistication, DBS systems share a common set of components of which the implantable pulse generator (IPG) is the core power supply and programmable element. Here we provide an overview of key hardware and software specifications of commercially available IPG systems such as rechargeability, MRI compatibility, electrode configuration, pulse delivery, IPG case architecture, and local field potential sensing. We present evidence-based approaches to mitigate hardware complications, of which infection represents the most important factor. Strategies correlating positively with decreased complications include antibiotic impregnation and co-administration and other surgical considerations during IPG implantation such as the use of tack-up sutures and smaller profile devices.Strategies aimed at maximizing battery longevity include patient-related elements such as reliability of IPG recharging or consistency of nightly device shutoff, and device-specific such as parameter delivery, choice of lead configuration, implantation location, and careful selection of electrode materials to minimize impedance mismatch. Finally, experimental DBS systems such as ultrasound, magnetoelectric nanoparticles, and near-infrared that use extracorporeal powered neuromodulation strategies are described as potential future directions for minimally invasive treatment.
Collapse
Affiliation(s)
- Can Sarica
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Christian Iorio-Morin
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - David H Aguirre-Padilla
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Neurology & Neurosurgery, Center Campus, Universidad de Chile, Santiago, Chile
| | - Ahmed Najjar
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Surgery, College of Medicine, Taibah University, Almadinah Almunawwarah, Saudi Arabia
| | - Michelle Paff
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Neurosurgery, University of California, Irvine, Irvine, CA, United States
| | - Anton Fomenko
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Kazuaki Yamamoto
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Ajmal Zemmar
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Neurosurgery, Henan University School of Medicine, Zhengzhou, China.,Department of Neurosurgery, University of Louisville School of Medicine, Louisville, KY, United States
| | - Nir Lipsman
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - George M Ibrahim
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Clement Hamani
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Mojgan Hodaie
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, ON, Canada
| | - Renato P Munhoz
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Edmond J. Safra Program in Parkinson's Disease Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, and Division of Neurology, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Alfonso Fasano
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, ON, Canada.,Edmond J. Safra Program in Parkinson's Disease Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, and Division of Neurology, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, ON, Canada.,KITE, University Health Network, Toronto, ON, Canada
| |
Collapse
|
15
|
Current Therapies in Clinical Trials of Parkinson's Disease: A 2021 Update. Pharmaceuticals (Basel) 2021; 14:ph14080717. [PMID: 34451813 PMCID: PMC8398928 DOI: 10.3390/ph14080717] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that currently has no cure, but treatments are available to improve PD symptoms and maintain quality of life. In 2020, about 10 million people worldwide were living with PD. In 1970, the United States Food and Drug Administration approved the drug levodopa as a dopamine replacement to manage PD motor symptoms; levodopa-carbidopa combination became commercialized in 1975. After over 50 years of use, levodopa is still the gold standard for PD treatment. Unfortunately, levodopa therapy-induced dyskinesia and OFF symptoms remain unresolved. Therefore, we urgently need to analyze each current clinical trial's status and therapeutic strategy to discover new therapeutic approaches for PD treatment. We surveyed 293 registered clinical trials on ClinicalTrials.gov from 2008 to 16 June 2021. After excluded levodopa/carbidopa derivative add-on therapies, we identified 47 trials as PD treatment drugs or therapies. Among them, 19 trials are in phase I (41%), 25 trials are in phase II (53%), and 3 trials are in phase III (6%). The three phase-III trials use embryonic dopamine cell implant, 5-HT1A receptor agonist (sarizotan), and adenosine A2A receptor antagonist (caffeine). The therapeutic strategy of each trial shows 29, 5, 1, 5, 5, and 2 trials use small molecules, monoclonal antibodies, plasma therapy, cell therapy, gene therapy, and herbal extract, respectively. Additionally, we discuss the most potent drug or therapy among these trials. By systematically updating the current trial status and analyzing the therapeutic strategies, we hope this review can provide new ideas and insights for PD therapy development.
Collapse
|
16
|
Santana-Gómez CE, Pérez-Pérez D, Fonseca-Barriendos D, Arias-Carrión O, Besio W, Rocha L. Transcranial Focal Electrical Stimulation Modifies Biogenic Amines' Alterations Induced by 6-Hydroxydopamine in Rat Brain. Pharmaceuticals (Basel) 2021; 14:ph14080706. [PMID: 34451804 PMCID: PMC8401891 DOI: 10.3390/ph14080706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 01/12/2023] Open
Abstract
Transcranial focal stimulation (TFS) is a non-invasive neuromodulation strategy with neuroprotective effects. On the other hand, 6-hidroxidopamine (6-OHDA) induces neurodegeneration of the nigrostriatal system producing modifications in the dopaminergic, serotoninergic, and histaminergic systems. The present study was conducted to test whether repetitive application of TFS avoids the biogenic amines' changes induced by the intrastriatal injection of 6-OHDA. Experiments were designed to determine the tissue content of dopamine, serotonin, and histamine in the brain of animals injected with 6-OHDA and then receiving daily TFS for 21 days. Tissue content of biogenic amines was evaluated in the cerebral cortex, hippocampus, amygdala, and striatum, ipsi- and contralateral to the side of 6-OHDA injection. Results obtained were compared to animals with 6-OHDA, TFS alone, and a Sham group. The present study revealed that TFS did not avoid the changes in the tissue content of dopamine in striatum. However, TFS was able to avoid several of the changes induced by 6-OHDA in the tissue content of dopamine, serotonin, and histamine in the different brain areas evaluated. Interestingly, TFS alone did not induce significant changes in the different brain areas evaluated. The present study showed that repetitive TFS avoids the biogenic amines' changes induced by 6-OHDA. TFS can represent a new therapeutic strategy to avoid the neurotoxicity induced by 6-OHDA.
Collapse
Affiliation(s)
| | - Daniel Pérez-Pérez
- Plan of Combined Studies in Medicine (PECEM), Faculty of Medicine, UNAM, México City 04510, Mexico;
| | | | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Secretaria de Salud, Mexico City 14080, Mexico;
| | - Walter Besio
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, USA
- Correspondence: (W.B.); (L.R.)
| | - Luisa Rocha
- Pharmacobiology Department, Center for Research and Advanced Studies, México City 14330, Mexico;
- Correspondence: (W.B.); (L.R.)
| |
Collapse
|
17
|
Xu SS, Malpas CB, Bulluss KJ, McDermott HJ, Kalincik T, Thevathasan W. Lesser-Known Aspects of Deep Brain Stimulation for Parkinson's Disease: Programming Sessions, Hardware Surgeries, Residential Care Admissions, and Deaths. Neuromodulation 2021; 25:836-845. [PMID: 34114293 DOI: 10.1111/ner.13466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The long-term treatment burden, duration of community living, and survival of patients with Parkinson's disease (PD) after deep brain stimulation (DBS) implantation are unclear. This study aims to determine the frequency of programming, repeat hardware surgeries (of the intracranial electrode, implantable pulse generator [IPG], and extension-cable), and the timings of residential care and death in patients with PD treated with DBS. MATERIALS AND METHODS In this cross-sectional, population-based study, individual-level data were collected from the Australian government covering a 15-year period (2002-2016) on 1849 patients with PD followed from DBS implantation. RESULTS The mean DBS implantation age was 62.6 years and mean follow-up 5.0 years. Mean annual programming rates were 6.9 in the first year and 2.8 in subsequent years. 51.4% of patients required repeat hardware surgery. 11.3% of patients had repeat intracranial electrode surgery (including an overall 1.1% of patients who were completely explanted). 47.6% of patients had repeat IPG/extension-cable surgery including for presumed battery depletion. 6.2% of patients had early repeat IPG/extension-cable surgery (within one year of any previous such surgery). Thirty-day postoperative mortality was 0.3% after initial DBS implantation and 0.6% after any repeat hardware surgery. 25.3% of patients were admitted into residential care and 17.4% died. The median interval to residential care and death was 10.2 years and 11.4 years, respectively. Age more than 65 years was associated with fewer repeat hardware surgeries for presumed complications (any repeat surgery of electrodes, extension-cables, and early IPG surgery) and greater rates of residential care admission and death. CONCLUSIONS Data from a large cohort of patients with PD treated with DBS found that the median life span after surgery is ten years. Repeat hardware surgery, including of the intracranial electrodes, is common. These findings support development of technologies to reduce therapy burden such as enhanced surgical navigation, hardware miniaturization, and improved battery efficiency.
Collapse
Affiliation(s)
- San San Xu
- Bionics Institute, East Melbourne, VIC, Australia.,Department of Medical Bionics, The University of Melbourne, East Melbourne, VIC, Australia.,Department of Neurology, Austin Hospital, Heidelberg, VIC, Australia
| | - Charles B Malpas
- CORe, Department of Medicine, The University of Melbourne, Parkville, VIC, Australia.,Melbourne School of Psychological Sciences, University of Melbourne, Parkville, VIC, Australia.,MS Centre, Department of Neurology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Kristian J Bulluss
- Bionics Institute, East Melbourne, VIC, Australia.,Department of Neurosurgery, St Vincent's Hospital Melbourne, Fitzroy, and Department of Neurosurgery, Austin Hospital, Heidelberg, VIC, Australia
| | - Hugh J McDermott
- Bionics Institute, East Melbourne, VIC, Australia.,Department of Medical Bionics, The University of Melbourne, East Melbourne, VIC, Australia
| | - Tomas Kalincik
- CORe, Department of Medicine, The University of Melbourne, Parkville, VIC, Australia.,MS Centre, Department of Neurology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Wesley Thevathasan
- Bionics Institute, East Melbourne, VIC, Australia.,Department of Neurology, Austin Hospital, Heidelberg, VIC, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia.,Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
18
|
Wakefulness-Promoting Effects of Lateral Hypothalamic Area-Deep Brain Stimulation in Traumatic Brain Injury-Induced Comatose Rats: Upregulation of α1-Adrenoceptor Subtypes and Downregulation of Gamma-Aminobutyric Acid β Receptor Expression Via the Orexins Pathway. World Neurosurg 2021; 152:e321-e331. [PMID: 34062300 DOI: 10.1016/j.wneu.2021.05.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/21/2021] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Previous studies have shown that deep brain stimulation (DBS) can improve the level of consciousness of comatose patients with traumatic brain injuries (TBIs). However, the most suitable targets for DBS are unknown, and the mechanisms underlying recovery remain to be determined. The aim of the present study was to assess the effects of lateral hypothalamic area-DBS (LHA-DBS) in comatose rats with TBIs. METHODS A total of 55 Sprague-Dawley rats were randomly assigned to 5 groups: the control group, TBI group, stimulated (TBI+LHA-DBS) group, antagonist (TBI+SB334867+LHA-DBS) group, and antagonist control (TBI+saline+LHA-DBS) group. The rats in the control group had undergone a sham operation and anesthesia, without coma induction. Coma was induced using a free-fall drop method. The rats in the stimulated group received bilateral LHA stimulation (frequency, 200 Hz; voltage, 2-4 V; pulse width, 0.1 ms) for 1 hour, with 5-minute intervals between subsequent stimulations, which were applied alternately to the left and right sides of the lateral hypothalamus. The comatose rats in the antagonist group received an intracerebroventricular injection with an orexins receptor type 1 (OX1R) antagonist (SB334867) and then received LHA-DBS. A I-VI consciousness scale and electroencephalography were used to assess the level of consciousness in each group of rats after LHA-DBS. Western blotting and immunofluorescence were used to detect OX1R expression in the LHA and α1-adrenoceptor (α1-AR) subtype and gamma-aminobutyric acid β receptor (GABABR) expression in the prefrontal cortex. RESULTS In the TBI, stimulated, antagonist, and antagonist control groups, 5, 10, 6, and 9 rats were awakened. The electroencephalographic readings indicated that the proportion of δ waves was lower in the stimulated group than in the TBI and antagonist groups (P < 0.05). Western blotting and immunofluorescence analysis showed that OX1R expression was greater in the stimulated group than in the TBI group (P < 0.05). The expression of α1-AR was also greater in the stimulated group than in the TBI and antagonist groups (P < 0.05). In contrast, the GABABR levels in the stimulated group were lower than those in the TBI and antagonist groups (P < 0.05). A statistically significant difference was found between the antagonist and antagonist control groups. CONCLUSIONS Taken together, these results suggest that LHA-DBS promotes the recovery of consciousness in comatose rats with TBIs. Upregulation of α1-AR expression and downregulation of GABABR expression in the prefrontal cortex via the orexins and OX1R pathways might be involved in the wakefulness-promoting effects of LHA-DBS.
Collapse
|
19
|
Kuijper FM, Mahajan UV, Ku S, Barbosa DAN, Alessi SM, Stein SC, Kampman KM, Bentzley BS, Halpern CH. Deep Brain Stimulation Compared With Contingency Management for the Treatment of Cocaine Use Disorders: A Threshold and Cost-Effectiveness Analysis. Neuromodulation 2021; 25:253-262. [PMID: 34028131 DOI: 10.1111/ner.13410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/13/2021] [Accepted: 04/05/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Cocaine is the second most frequently used illicit drug worldwide (after cannabis), and cocaine use disorder (CUD) related deaths increased globally by 80% from 1990 to 2013. There is yet to be a regulatory-approved treatment. Emerging preclinical evidence indicates that deep brain stimulation (DBS) of the nucleus accumbens may be a therapeutic option. Prior to expanding the costly investigation of DBS for treatment of CUD, it is important to ensure societal cost-effectiveness. AIMS We conducted a threshold and cost-effectiveness analysis to determine the success rate at which DBS would be equivalent to contingency management (CM), recently identified as the most efficacious therapy for treatments of CUDs. MATERIALS AND METHODS Quality of life, efficacy, and safety parameters for CM were obtained from previous literature. Costs were calculated from a societal perspective. Our model predicted the utility benefit based on quality-adjusted-life-years (QALYs) and incremental-cost-effectiveness-ratio resulting from two treatments on a one-, two-, and five-year timeline. RESULTS On a one-year timeline, DBS would need to impart a success rate (i.e., cocaine free) of 70% for it to yield the same utility benefit (0.492 QALYs per year) as CM. At no success rate would DBS be more cost-effective (incremental-cost-effectiveness-ratio <$50,000) than CM during the first year. Nevertheless, as DBS costs are front-loaded, DBS would need to achieve success rates of 74% and 51% for its cost-effectiveness to exceed that of CM over a two- and five-year period, respectively. CONCLUSIONS We find DBS would not be cost-effective in the short-term (one year) but may be cost-effective in longer timelines. Since DBS holds promise to potentially be a cost-effective treatment for CUDs, future randomized controlled trials should be performed to assess its efficacy.
Collapse
Affiliation(s)
- Fiene Marie Kuijper
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Uma V Mahajan
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Seul Ku
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Daniel A N Barbosa
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Sherman C Stein
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kyle M Kampman
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brandon S Bentzley
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
20
|
Single-Stage Deep Brain Stimulator Placement for Movement Disorders: A Case Series. Brain Sci 2021; 11:brainsci11050592. [PMID: 34063572 PMCID: PMC8147611 DOI: 10.3390/brainsci11050592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
With more than two decades of experience and thousands of patients treated worldwide, deep brain stimulation (DBS) has established itself as an efficacious and common surgical treatment for movement disorders. However, a substantial majority of patients in the United States still undergo multiple, “staged” surgeries to implant a DBS system. Despite several reports suggesting no significant difference in complications or efficacy between staged and non-staged approaches, the continued use of staging implies surgeons harbor continued reservations about placing all portions of a system during the index procedure. In an effort to eliminate multiple surgeries and simplify patient care, DBS implantations at our institution have been routinely performed in a single surgery over the past four years. Patients who underwent placement of new DBS systems at our institution from January 2016 to June 2019 were identified and their records were reviewed. Revision surgeries were excluded. Total operative time, length of stay and rates of surgical site infections, lead fracture or migration, and other complications were evaluated. This series expands the body of evidence suggesting placement of a complete DBS system during a single procedure appears to be an efficacious and well-tolerated option.
Collapse
|
21
|
Youssef NA, Phung P, Patel RS. Characteristics of patients who received deep brain stimulation in obsessive-compulsive disorder versus major depressive disorder. J Psychiatr Res 2021; 136:384-387. [PMID: 33639331 DOI: 10.1016/j.jpsychires.2021.02.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is cleared for treatment of obsessive-compulsive disorder (OCD) but is an investigational treatment for major depressive disorder (MDD). The aim of this study is to compare the characteristics of patients who received DBS as part of standard care for OCD versus those who received it a part of a research protocol for MDD. METHODS The inpatient sample (N = 110) was drawn from the 2012-2014 Nationwide Inpatient Sample (NIS), and included adults with a primary discharge diagnosis of MDD (N = 50) or OCD (N = 60) and primary procedure of DBS. The study compared various patient demographics, clinical, hospital and insurance variables between the 2 groups. RESULTS DBS recipients with OCD were younger compared to those with MDD. DBS recipients with MDD tended to be from high-income families compared to those with OCD. DBS patients with MDD were in the South region, while DBS patients with OCD were in the Midwest and South regions of the United States (US). The study did not detect a significant difference in the length of stay and total charges among DBS recipients with OCD versus MDD. CONCLUSIONS DBS patients with MDD are typically older with more financial resources compared to those with OCD. DBS is federally cleared for OCD, but not for MDD, demonstrating the need for further investigation to establish DBS as a federally cleared treatment for difficult to treat MDD if well-powered randomized trials further support its use.
Collapse
Affiliation(s)
- Nagy A Youssef
- Department of Psychiatry and Health Behavior, Medical College of Georgia at Augusta University, 997 St. Sebastian Way, Augusta, GA, 30912, USA.
| | - Phung Phung
- Department of Psychiatry and Health Behavior, Medical College of Georgia at Augusta University, 997 St. Sebastian Way, Augusta, GA, 30912, USA.
| | - Rikinkumar S Patel
- Department of Psychiatry, Griffin Memorial Hospital, 900 E Main St, Norman, OK, 73071, USA; Department of Psychiatry and Behavioral Science, Oklahoma State University, 1111 W 17th St, Tulsa, OK, 74107, USA.
| |
Collapse
|
22
|
Yan H, Siegel L, Breitbart S, Gorodetsky C, Gonorazky HD, Yau I, Go C, Donner E, Kalia SK, Fasano A, Weil AG, Fallah A, Ibrahim GM. The Child & Youth CompreHensIve Longitudinal Database for Deep Brain Stimulation (CHILD-DBS). Childs Nerv Syst 2021; 37:607-615. [PMID: 32935233 DOI: 10.1007/s00381-020-04880-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Deep brain stimulation (DBS) is a common tool for the treatment of movement disorders in adults; however, it remains an emerging treatment modality in children with a growing number of indications, including epilepsy and dystonia. The Child & Youth CompreHensIve Longitudinal Database of DBS (CHILD-DBS) study aims to prospectively collect relevant data on quality of life (QoL), safety, efficacy, and long-term neurodevelopmental outcomes following DBS in children. METHODS Data are collected and managed using the Research Electronic Data Capture (REDCap). This database aims to collect multicentre comprehensive and longitudinal clinical, QoL, imaging and electrophysiologic data for children under the age of 19 undergoing DBS. RESULTS Both general and indication-specific measures are collected at baseline and at four time points postoperatively: 6 months, 1 year, 2 years, and 3 years. The database encompasses QoL metrics for children, including the PedsQL (Pediatric Quality of Life Inventory, generic), QOLCE (Quality of Life in Childhood Epilepsy Questionnaire, parent-rated), CHU 9D (Child Health Utility 9D), and KIDSCREEN. Caregiver clinical and QoL metrics, including QIDS (Quick Inventory of Depressive Symptomatology), GAD-7 (Generalized Anxiety Disorder 7-item scale), and CarerQoL-7D (The Care-related Quality of Life Instrument), are similarly prospectively collected. Healthcare resource utilization is also assessed before and after DBS. Lastly, stimulation parameters and radiographic and electrophysiologic data are collected within the database. CONCLUSIONS The development of the current prospective paediatric DBS database with carefully selected physical and psychosocial outcomes and assessments will complement existing efforts to enhance and facilitate multisite collaboration to further understand the role of DBS in childhood.
Collapse
Affiliation(s)
- Han Yan
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Lauren Siegel
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sara Breitbart
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Carolina Gorodetsky
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hernan D Gonorazky
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ivanna Yau
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cristina Go
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elizabeth Donner
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,University Health Network, Toronto, Ontario, Canada.,Division of Neurosurgery, Toronto Western Hospital, Toronto, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada.,CenteR for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada
| | - Alfonso Fasano
- Krembil Brain Institute, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,CenteR for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada
| | - Alexander G Weil
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Division of Neurosurgery and Pediatrics, Sainte Justine Hospital, Montreal, Quebec, Canada
| | - Aria Fallah
- Department of Neurosurgery, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - George M Ibrahim
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada. .,Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada. .,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada. .,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
23
|
Kantzanou M, Korfias S, Panourias I, Sakas DE, Karalexi MA. Deep Brain Stimulation-Related Surgical Site Infections: A Systematic Review and Meta-Analysis. Neuromodulation 2021; 24:197-211. [PMID: 33462954 DOI: 10.1111/ner.13354] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/23/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Over the last decades, the increased use of deep brain stimulation (DBS) has raised concerns about the potential adverse health effects of the treatment. Surgical site infections (SSIs) following an elective surgery remain a major challenge for neurosurgeons. Few studies have examined the prevalence and risk factors of DBS-related complications, particularly focusing on SSIs. OBJECTIVES We systematically searched published literature, up to June 2020, with no language restrictions. MATERIALS AND METHODS Eligible were studies that examined the prevalence of DBS-related SSIs, as well as studies that examined risk and preventive factors in relation to SSIs. We extracted information on study characteristics, follow-up, exposure and outcome assessment, effect estimate and sample size. Summary odds ratios (sOR) and 95% confidence intervals (CI) were calculated from random-effects meta-analyses; heterogeneity and small-study effects were also assessed. RESULTS We identified 66 eligible studies that included 12,258 participants from 27 countries. The summary prevalence of SSIs was estimated at 5.0% (95% CI: 4.0%-6.0%) with higher rates for dystonia (6.5%), as well as for newer indications of DBS, such as epilepsy (9.5%), Tourette syndrome (5.9%) and OCD (4.5%). Similar prevalence rates were found between early-onset and late-onset hardware infections. Among risk and preventive factors, the perioperative implementation of intra-wound vancomycin was associated with statistically significantly lower risk of SSIs (sOR: 0.26, 95% CI: 0.09-0.74). Heterogeneity was nonsignificant in most meta-analyses. CONCLUSION The present study confirms the still high prevalence of SSIs, especially for newer indications of DBS and provides evidence that preventive measures, such as the implementation of topical vancomycin, seem promising in reducing the risk of DBS-related SSIs. Large clinical trials are needed to confirm the efficacy and safety of such measures.
Collapse
Affiliation(s)
- Maria Kantzanou
- Department of Hygiene, Epidemiology & Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stefanos Korfias
- Department of Neurosurgery, School of Medicine Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Panourias
- Department of Neurosurgery, Korgialenio and Mpenakio General Hospital of Athens, Red Cross, Athens, Greece
| | - Damianos E Sakas
- Department of Neurosurgery, School of Medicine Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria A Karalexi
- Department of Hygiene, Epidemiology & Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
24
|
Iorio-Morin C, Fomenko A, Kalia SK. Deep-Brain Stimulation for Essential Tremor and Other Tremor Syndromes: A Narrative Review of Current Targets and Clinical Outcomes. Brain Sci 2020; 10:E925. [PMID: 33271848 PMCID: PMC7761254 DOI: 10.3390/brainsci10120925] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Tremor is a prevalent symptom associated with multiple conditions, including essential tremor (ET), Parkinson's disease (PD), multiple sclerosis (MS), stroke and trauma. The surgical management of tremor evolved from stereotactic lesions to deep-brain stimulation (DBS), which allowed safe and reversible interference with specific neural networks. This paper reviews the current literature on DBS for tremor, starting with a detailed discussion of current tremor targets (ventral intermediate nucleus of the thalamus (Vim), prelemniscal radiations (Raprl), caudal zona incerta (Zi), thalamus (Vo) and subthalamic nucleus (STN)) and continuing with a discussion of results obtained when performing DBS in the various aforementioned tremor syndromes. Future directions for DBS research are then briefly discussed.
Collapse
Affiliation(s)
- Christian Iorio-Morin
- Christian Iorio-Morin, Division of Neurosurgery, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada; (A.F.); (S.K.K.)
| | - Anton Fomenko
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada; (A.F.); (S.K.K.)
| | - Suneil K. Kalia
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada; (A.F.); (S.K.K.)
| |
Collapse
|
25
|
Osborn TM, Hallett PJ, Schumacher JM, Isacson O. Advantages and Recent Developments of Autologous Cell Therapy for Parkinson's Disease Patients. Front Cell Neurosci 2020; 14:58. [PMID: 32317934 PMCID: PMC7147334 DOI: 10.3389/fncel.2020.00058] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/27/2020] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s Disease (PD) is a progressive degenerative disease characterized by tremor, bradykinesia, rigidity and postural instability. There are approximately 7–10 million PD patients worldwide. Currently, there are no biomarkers available or pharmaceuticals that can halt the dopaminergic neuron degeneration. At the time of diagnosis about 60% of the midbrain dopamine (mDA) neurons have already degenerated, resulting in a depletion of roughly 70% of striatal dopamine (DA) levels and synapses. Symptomatic treatment (e.g., with L-dopa) can initially restore DA levels and motor function, but with time often lead to side-effects like dyskinesia. Deep-brain-stimulation can alleviate these side-effects and some of the motor symptoms but requires repeat procedures and adds limitations for the patients. Restoration of dopaminergic synapses using neuronal cell replacement therapy has shown benefit in clinical studies using cells from fetal ventral midbrain. This approach, if done correctly, increases DA levels and restores synapses, allowing biofeedback regulation between the grafted cells and the host brain. Drawbacks are that it is not scalable for a large patient population and the patients require immunosuppression. Stem cells differentiated in vitro to mDA neurons or progenitors have shown promise in animal studies and is a scalable approach that allows for cryopreservation of transplantable cells and rigorous quality control prior to transplantation. However, all allogeneic grafts require immunosuppression. HLA-donor-matching, reduces, but does not completely eliminate, the need for immunosuppression, and is currently investigated in a clinical trial for PD in Japan. Since immune compatibility is very important in all areas of transplantation, these approaches may ultimately be of less benefit to the patients than an autologous approach. By using the patient’s own somatic cells, reprogrammed to induced pluripotent stem cells (iPSCs) and differentiated to mDA neurons immunosuppression is not required, and may also present with several biological and functional advantages in the patients, as described in this article. The proof-of-principle of autologous iPSC mDA restoration of function has been shown in parkinsonian non-human primates (NHPs), and this can now be investigated in clinical trials in addition to the allogeneic and HLA-matched approaches. In this review, we focus on the autologous approach of cell therapy for PD.
Collapse
Affiliation(s)
- Teresia M Osborn
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Belmont, MA, United States
| | - Penelope J Hallett
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Belmont, MA, United States
| | - James M Schumacher
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Belmont, MA, United States
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Belmont, MA, United States
| |
Collapse
|
26
|
Dang TTH, Rowell D, Liddle J, Coyne T, Silburn P, Connelly LB. Economic evaluation of deep-brain stimulation for Tourette's syndrome: an initial exploration. J Neurol 2019; 266:2997-3008. [PMID: 31485722 DOI: 10.1007/s00415-019-09521-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Deep-brain stimulation (DBS) can be effective in controlling medically intractable symptoms of Tourette's syndrome (TS). There is no evidence to date, though, of the potential cost-effectiveness of DBS for this indication. OBJECTIVE To provide the first estimates of the likely cost-effectiveness of DBS in the treatment of severe TS. METHODS We conducted a cost-utility analysis using clinical data from 17 Australian patients receiving DBS. Direct medical costs for DBS using non-rechargeable and rechargeable batteries and for the alternative best medical treatment (BMT), and health utilities for BMT were sourced from the literature. Incremental cost-effectiveness ratios (ICERs) were estimated using a Markov models with a 10-year time horizon and 5% discount rate. RESULTS DBS increased quality-adjusted life year (QALY) gained from 2.76 to 4.60 over a 10-year time horizon. The ICER for DBS with non-rechargeable (rechargeable) batteries, compared to BMT, was A$33,838 (A$15,859) per QALY. The ICER estimates are sensitive to DBS costs and selected time horizon. CONCLUSIONS Our study indicates that DBS may be a cost-effective treatment for severe TS, based on the very limited clinical data available and under particular assumptions. While the limited availability of data presents a challenge, we also conduct sensitivity analyses to test the robustness of the results to the assumptions used in the analysis. We nevertheless recommend the implementation of randomised controlled trials that collect a comprehensive range of costs and the use of a widely accepted health-related quality of life instrument to enable more definitive statements about the cost-effectiveness of DBS for TS.
Collapse
Affiliation(s)
- Tho T H Dang
- Asia-Pacific Centre for Neuromodulation, Queensland Brain Institute, The University of Queensland, Brisbane, Australia. .,Centre for the Business and Economics of Health, The University of Queensland, Brisbane, Australia.
| | - David Rowell
- Centre for the Business and Economics of Health, The University of Queensland, Brisbane, Australia
| | - Jacki Liddle
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Terry Coyne
- Asia-Pacific Centre for Neuromodulation, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Peter Silburn
- Asia-Pacific Centre for Neuromodulation, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Luke B Connelly
- Asia-Pacific Centre for Neuromodulation, Queensland Brain Institute, The University of Queensland, Brisbane, Australia.,Centre for the Business and Economics of Health, The University of Queensland, Brisbane, Australia.,Dipartimento di Sociologia e Diritto dell'Economia, The University of Bologna, Bologna, Italy
| |
Collapse
|