1
|
Fan M, Song X, Lu L, He J, Shen Y, Zhang C, Wang F, Xie Y. Comprehensive safety evaluation of a novel multitargeting compound XYY-CP1106: A candidate for Alzheimer's disease. Biomed Pharmacother 2024; 176:116786. [PMID: 38805971 DOI: 10.1016/j.biopha.2024.116786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Multitargeting has become a promising strategy for the development of anti-Alzheimer's disease (AD) drugs, considering the complexity of molecular mechanisms in AD pathology. In most pre-clinical studies, the effectiveness of these multi-targeted anti-AD drugs has been demonstrated but comprehensive safety assessments are lacking. Here, the safety evaluation of a novel multi-targeted candidate in AD (XYY-CP1106), characterized by its dual-property of iron chelation and monoamine oxidase B inhibition, was conducted by multifaceted analysis. Acute toxicity in mice was conducted to investigate the safety of oral administration and the maximum tolerated dose of the agent. In vitro Ames analysis, CHL chromosomal aberration analysis, and bone marrow micronucleus analysis were executed to evaluate the genotoxicity. A teratogenesis investigation in pregnant mice were meticulously performed to evaluate the teratogenesis of XYY-CP1106. Furthermore, a 90-day long-term toxicity analysis in rats was investigated to evaluate the cumulative toxicity after long-term administration. Strikingly, no toxic phenomena were found in all investigations, demonstrating relatively high safety profile of the candidate compound. The securing of safety heightened the translational significance of XYY-CP1106 as a novel multi-targeted anti-AD candidate, supporting the rationality of multitargeting strategy in the designs of smart anti-AD drugs.
Collapse
Affiliation(s)
- Miaoliang Fan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoxin Song
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liwen Lu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiayan He
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yikai Shen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Fang Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, China.
| |
Collapse
|
2
|
Asano H, Tian YS, Hatabu A, Takagi T, Ueda M, Ikeda K. Safety comparisons among monoamine oxidase inhibitors against Parkinson's disease using FDA adverse event reporting system. Sci Rep 2023; 13:19272. [PMID: 37935702 PMCID: PMC10630381 DOI: 10.1038/s41598-023-44142-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 10/04/2023] [Indexed: 11/09/2023] Open
Abstract
Monoamine oxidase B (MAO-B) inhibitors are used to control Parkinson's disease (PD). Selegiline, rasagiline, and safinamide are widely used as MAO-B inhibitors worldwide. Although these drugs inhibit MAO-B, there are pharmacological and chemical differences, such as the inhibitory activity, the non-dopaminergic properties in safinamide, and the amphetamine-like structure in selegiline. MAO-B inhibitors may differ in adverse events (AEs). However, differences in actual practical clinics are not fully investigated. A retrospective study was conducted using FAERS, the largest database of spontaneous adverse events. AE signals for MAO-B inhibitors, including selegiline, rasagiline, and safinamide, were detected using the reporting odds ratio method and compared. Hypocomplementemia, hepatic cyst, hepatic function abnormal, liver disorder and cholangitis were detected for selegiline as drug-specific signals. The amphetamine effect was not confirmed for any of the three MAO-B inhibitors. The tyramine reaction was detected as an AE signal only for rasagiline. Moreover, the REM sleep behavior disorder was not detected as an AE signal for safinamide, suggesting that non-dopaminergic effects might be beneficial. Considering the differences in AEs for MAO-B inhibitors will assist with the appropriate PD medication.
Collapse
Affiliation(s)
- Hiroto Asano
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yu-Shi Tian
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Asuka Hatabu
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tatsuya Takagi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mikiko Ueda
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kenji Ikeda
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Kim KT, Cho DW, Cho JW, Im WJ, Kim DH, Park JH, Park KD, Yang YS, Han SC. Two weeks dose range-finding and four weeks repeated dose oral toxicity study of a novel reversible monoamine oxidase B inhibitor KDS2010 in cynomolgus monkeys. Toxicol Res 2023; 39:693-709. [PMID: 37779583 PMCID: PMC10541392 DOI: 10.1007/s43188-023-00182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 03/05/2023] [Accepted: 04/04/2023] [Indexed: 10/03/2023] Open
Abstract
A novel reversible monoamine oxidase B inhibitor, KDS2010, has been developed as a therapeutic candidate for neurodegenerative diseases. This study investigated its potential toxicity in non-human primates before human clinical trials. Daily KDS2010 doses (25, 50, or 100 mg/kg) were orally administered to cynomolgus monkeys (1 animal/sex/group, 4 males and 4 females) for 2 weeks to determine the dose range. One male was moribund, and one female was found dead in the 100 mg/kg/day group. One male was also found dead in the 50 mg/kg/day group. The death was considered an adverse effect in both sexes since distal tubules/collecting duct dilation and hypertrophy in the epithelium of the papillary duct were observed in their kidneys. Based on dose range finding results, KDS2010 (10, 20, or 40 mg/kg/day) was administered orally for 4 weeks, and animals were given 2 weeks for recovery. No significant changes were observed during daily clinical observations and macro-and microscopic examinations, including body weight, food consumption, hematology, clinical chemistry, and organ weight. And, the kidney was seen as the primary target organ of KDS2010 in the 2 weeks study, but no adverse effect was observed in the 4 weeks study. Therefore, 40 mg/kg/day is considered the no-observed-adverse-effect level in both sexes of cynomolgus monkeys. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00182-4.
Collapse
Affiliation(s)
- Kyung-Tai Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeonbuk, 56212 Republic of Korea
| | - Doo-Wan Cho
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeonbuk, 56212 Republic of Korea
| | - Jae-woo Cho
- Department of Advanced Toxicology Research, Korea Institute of Toxicology (KIT), 141 Gajeong-Ro, Yuseong-Gu, Daejeon, Republic of Korea
| | - Wan-Jung Im
- Department of Advanced Toxicology Research, Korea Institute of Toxicology (KIT), 141 Gajeong-Ro, Yuseong-Gu, Daejeon, Republic of Korea
| | - Da-Hee Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeonbuk, 56212 Republic of Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Young-Su Yang
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeonbuk, 56212 Republic of Korea
| | - Su-Cheol Han
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeonbuk, 56212 Republic of Korea
| |
Collapse
|
4
|
Agnieszka W, Paweł P, Małgorzata K. How to Optimize the Effectiveness and Safety of Parkinson's Disease Therapy? - A Systematic Review of Drugs Interactions with Food and Dietary Supplements. Curr Neuropharmacol 2022; 20:1427-1447. [PMID: 34784871 PMCID: PMC9881082 DOI: 10.2174/1570159x19666211116142806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/16/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Despite increasing worldwide incidence of Parkinson's disease, the therapy is still suboptimal due to the diversified clinical manifestations, lack of sufficient treatment, the poor adherence in advanced patients, and varied response. Proper intake of medications regarding food and managing drug-food interactions may optimize Parkinson's disease treatment. OBJECTIVES We investigated potential effects that food, beverages, and dietary supplements may have on the pharmacokinetics and pharmacodynamics of drugs used by parkinsonian patients; identified the most probable interactions; and shaped recommendations for the optimal intake of drugs regarding food. METHODS We performed a systematic review in adherence to PRISMA guidelines, and included a total of 81 studies in the qualitative synthesis. RESULTS AND CONCLUSION We found evidence for levodopa positive interaction with coffee, fiber and vitamin C, as well as for the potential beneficial impact of low-fat and protein redistribution diet. Contrastingly, high-protein diet and ferrous sulfate supplements can negatively affect levodopa pharmacokinetics and effectiveness. For other drugs, the data of food impact are scarce. Based on the available limited evidence, all dopamine agonists (bromocriptine, cabergoline, ropinirole), tolcapone, rasagiline, selegiline in tablets, safinamide, amantadine and pimavanserin can be taken with or without a meal. Opicapone and orally disintegrating selegiline tablets should be administered on an empty stomach. Of monoamine oxidase B inhibitors, safinamide is the least susceptible for interaction with the tyramine-rich food, whereas selegiline and rasagiline may lose selectivity to monoamine oxidase B when administered in supratherapeutic doses. The level of presented evidence is low due to the poor studies design, their insufficient actuality, and missing data.
Collapse
Affiliation(s)
- Wiesner Agnieszka
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland;
| | - Paśko Paweł
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland;
| | - Kujawska Małgorzata
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Str., 60-631 Poznań, Poland,Address correspondence to this author at the Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Str., 60-631 Poznań, Poland; Tel/Fax: +48618472081, +4861847072; E-mail:
| |
Collapse
|
5
|
GÜNEŞ M, KARAVANA SY. Non-Oral Drug Delivery in Parkinson’s Disease: Current Applications and Future. Turk J Pharm Sci 2022; 19:343-352. [DOI: 10.4274/tjps.galenos.2021.95226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
A critical appraisal of MAO-B inhibitors in the treatment of Parkinson's disease. J Neural Transm (Vienna) 2022; 129:723-736. [PMID: 35107654 PMCID: PMC9188534 DOI: 10.1007/s00702-022-02465-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/15/2022] [Indexed: 10/31/2022]
Abstract
Since the 1980s, the MAO-B inhibitors have gained considerable status in the therapy of the Parkinson's disease. In addition to the symptomatic effect in mono- and combination therapies, a neuroprotective effect has repeatedly been a matter of some discussion, which has unfortunately led to a good many misunderstandings. Due to potential interactions, selegiline has declined in significance in the field. For the MAO-B inhibitor safinamide, recently introduced to the market, an additional inhibition of pathological release of glutamate has been postulated. At present, rasagiline and selegiline are being administered in early therapy as well as in combination with levodopa. Safinamide has been approved only for combination therapy with levodopa when motor fluctuations have occurred. MAO-B inhibitors are a significant therapeutic option for Parkinson's disease, an option which is too often not appreciated properly.
Collapse
|
7
|
Abstract
Levodopa is the most effective medication for the treatment of the motor symptoms of Parkinson's disease. However, over time, the clinical response to levodopa becomes complicated by a reduction in the duration and reliability of motor improvement (motor fluctuations) and the emergence of involuntary movements (levodopa-induced dyskinesia). Strategies that have been attempted in an effort to delay the development of these motor complications include levodopa sparing and continuous dopaminergic therapy. Once motor complications occur, a wide array of medical treatments is available to maximize motor function through the day while limiting dyskinesia. Here, we review the clinical features, epidemiology, and risk factors for the development of motor complications, as well as strategies for their prevention and medical management.
Collapse
Affiliation(s)
- Stephen D Aradi
- Department of Neurology, Parkinson's Foundation Center of Excellence, University of South Florida, Tampa, FL, USA.
| | - Robert A Hauser
- Department of Neurology, Parkinson's Foundation Center of Excellence, University of South Florida, Tampa, FL, USA
| |
Collapse
|
8
|
Four-week repeated dose oral toxicity study of KDS2010, a novel selective monoamine oxidase B inhibitor, in Sprague Dawley rats. Regul Toxicol Pharmacol 2020; 117:104733. [PMID: 32758522 DOI: 10.1016/j.yrtph.2020.104733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/03/2020] [Accepted: 07/08/2020] [Indexed: 11/24/2022]
Abstract
Repeated dose oral toxicity and toxicokinetic of KDS2010, a new drug for Parkinson's disease, was investigated after 4-week repeated oral administration at 30, 50, 75, or 100 mg/kg/day in rats. Body weight and body weight gain decreased in rats of both sexes in the 75 and 100 mg/kg groups, and food consumption was reduced in male rats of the 75 and 100 mg/kg male groups. Histological alterations were observed in the kidney (urothelial hyperplasia, inflammatory cell infiltration in the renal pelvis, tubular vacuolation/degeneration, basophilic tubules, and hyaline droplets in the proximal tubules) of the 75 and 100 mg/kg male groups and the 50 and 100 mg/kg female groups. The 75 and 100 mg/kg male groups showed adverse effect in the testes (degeneration/exfoliation of germ cells, seminiferous tubules atrophy) and epididymis (cellular debris, oligospermia). These changes were partially recovered after a 2-week recovery period. However, basophilic tubules and hyaline droplets in the proximal tubules in the kidney and germ cell degeneration/exfoliation in the testis were not recovered. In toxicokinetics study, systemic exposure to KDS2010 increased proportionally in both sexes by in a dose -dependent manner. In addition, repeated administration for 4 weeks led to increased tendency of systemic exposure in both sexes compared with that in Day 1. In conclusion, KDS2010 was shown to target the kidney and testis with a no-observed-adverse-effect level of 50 and 30 mg/kg/day for males and females, respectively.
Collapse
|
9
|
Abstract
The deficiency pattern of neurotransmitters is heterogeneous in patients with Parkinson's disease. Consequence is an individual variable expression of motor and nonmotor features. They respond to agents with a broader spectrum of mode of actions, whereas dopamine substitution only targets impaired motor behavior. The pharmacological profile of safinamide includes reversible monoamine oxidase B inhibition and modulation of voltage-dependent sodium- and calcium channels with consecutive decline of glutamate release. Safinamide improves motor and nonmotor symptoms. Combination of safinamide with the catechol-O-methyltransferase inhibitor opicapone in one capsule is a promising future treatment alternative, which simplifies drug therapy in Parkinson's disease. Both agents complement each other in terms of application mode and efficacy on motor complications as adjuncts to levodopa therapy.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Neurology, St Joseph Hospital Berlin-Weißensee, Gartenstr. 1, 13088 Berlin, Germany
| |
Collapse
|
10
|
Alborghetti M, Nicoletti F. Different Generations of Type-B Monoamine Oxidase Inhibitors in Parkinson's Disease: From Bench to Bedside. Curr Neuropharmacol 2019; 17:861-873. [PMID: 30160213 PMCID: PMC7052841 DOI: 10.2174/1570159x16666180830100754] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/06/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022] Open
Abstract
Three inhibitors of type-B monoamine oxidase (MAOB), selegiline, rasagiline, and safinamide, are used for the treatment of Parkinson's disease (PD). All three drugs improve motor signs of PD, and are effective in reducing motor fluctuations in patients undergoing long-term L-DOPA treatment. The effect of MAOB inhibitors on non-motor symptoms is not uniform and may not be class-related. Selegiline and rasagiline are irreversible inhibitors forming a covalent bond within the active site of MAOB. In contrast, safinamide is a reversible MAOB inhibitor, and also inhibits voltage- sensitive sodium channels and glutamate release. Safinamide is the prototype of a new generation of multi-active MAOB inhibitors, which includes the antiepileptic drug, zonisamide. Inhibition of MAOB-mediated dopamine metabolism largely accounts for the antiparkinsonian effect of the three drugs. Dopamine metabolism by MAOB generates reactive oxygen species, which contribute to nigro-striatal degeneration. Among all antiparkinsonian agents, MAOB inhibitors are those with the greatest neuroprotective potential because of inhibition of dopamine metabolism, induction of neurotrophic factors, and, in the case of safinamide, inhibition of glutamate release. The recent development of new experimental animal models that more closely mimic the progressive neurodegeneration associated with PD will allow to test the hypothesis that MAOB inhibitors may slow the progression of PD.
Collapse
Affiliation(s)
| | - Ferdinando Nicoletti
- Address correspondence to this author at the Department of Physiology and Pharmacology, University Sapienza of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy; Tel: 39-3662816464; E-mail:
| |
Collapse
|
11
|
Rydz A, Gryl M, Stadnicka KM. Solvomorphs of tyraminium 5,5-diethylbarbiturate: a rare example of the barbiturate R 33(12) hydrogen-bond motif and a crystal structure with Z' = 4. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2018; 74:1586-1594. [PMID: 30516141 DOI: 10.1107/s205322961801433x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/11/2018] [Indexed: 11/11/2022]
Abstract
In the past two decades, the solvomorphism phenomenon in organic materials has attracted much attention, especially in the pharmaceutical and materials industries. Cocrystallization with solvent molecules can lead to modified physical and chemical properties of materials. We present here two new solvomorphs (pseudopolymorphs) of tyraminium 5,5-diethylbarbiturate [2-(4-hydroxyphenyl)ethanaminium 5,5-diethyl-2,4,6-trioxotetrahydro-2H-pyrimidin-1-ide, C8H12NO+·C8H11N2O3-] with unusual structural features. Pseudopolymorph (I) follows the symmetry of the P21/n space group and has four tyraminium cations, four barbitalate anions and four molecules of chloroform in the asymmetric unit. Pseudopolymorph (II) crystallizes in the space group R-3c with one tyraminium cation, one barbitalate anion and a small amount of disordered solvent (ethanol and water) located in the cavities. Hirshfeld surface analysis and the Non-Covalent Interaction (NCI) index were used to examine and compare the crystal packing features and intermolecular interactions in (I) and (II). Both materials crystallize with large unit cells and contain nontypical barbitalate ions formed through deprotonation of the barbital N3 position. Pseudopolymorph (I) is an example of a crystal structure with a rarely observed value of Z' = 4. Analysis of the hydrogen-bond patterns in (II) showed an unusual arrangement of three barbitalate anions in R33(12) rings, which is the first example of such a hydrogen-bond motif in barbital structures. The mutual arrangement of the ions in the crystal structure of (II) leads to the formation of specific cavities along the c direction.
Collapse
Affiliation(s)
- Agnieszka Rydz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| | - Marlena Gryl
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| | - Katarzyna M Stadnicka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| |
Collapse
|
12
|
Finberg JPM. Inhibitors of MAO-B and COMT: their effects on brain dopamine levels and uses in Parkinson's disease. J Neural Transm (Vienna) 2018; 126:433-448. [PMID: 30386930 DOI: 10.1007/s00702-018-1952-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/29/2018] [Indexed: 12/30/2022]
Abstract
MAO-B and COMT are both enzymes involved in dopamine breakdown and metabolism. Inhibitors of these enzymes are used in the treatment of Parkinson's disease. This review article describes the scientific background to the localization and function of the enzymes, the physiological changes resulting from their inhibition, and the basic and clinical pharmacology of the various inhibitors and their role in treatment of Parkinson's disease.
Collapse
Affiliation(s)
- John P M Finberg
- Neuroscience Group, Rappaport Faculty of Medicine, Haifa, Israel.
| |
Collapse
|
13
|
Les F, Iffiú-Soltész Z, Mercarder J, Carpéné C. Tyramine activates lipid accumulation in rat adipocytes: influences of <em>in vitro</em> and <em>in vivo</em> administration. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.3.339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Zhang H, Tong R, Bai L, Shi J, Ouyang L. Emerging targets and new small molecule therapies in Parkinson’s disease treatment. Bioorg Med Chem 2016; 24:1419-30. [DOI: 10.1016/j.bmc.2016.02.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 01/11/2023]
|
15
|
Levin OS, Babkina OV. A role of the MAO-B inhibitor rasagiline in treatment of Parkinson’s disease. Zh Nevrol Psikhiatr Im S S Korsakova 2016. [DOI: 10.17116/jnevro20161167194-100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
In silico target fishing and pharmacological profiling for the isoquinoline alkaloids of Macleaya cordata (Bo Luo Hui). Chin Med 2015; 10:37. [PMID: 26691584 PMCID: PMC4683977 DOI: 10.1186/s13020-015-0067-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 11/10/2015] [Indexed: 01/01/2023] Open
Abstract
Background Some isoquinoline alkaloids from Macleaya cordata (Willd). R. Br. (Bo Luo Hui) exhibited antibacterial, antiparasitic, antitumor, and analgesic effects. The targets of these isoquinoline alkaloids are undefined. This study aims to investigate the compound–target interaction network and potential pharmacological actions of isoquinoline alkaloids of M. cordata by reverse pharmacophore database screening. Methods The targets of 26 isoquinoline alkaloids identified from M. cordata were predicted by a pharmacophore-based target fishing approach. Discovery Studio 3.5 and two pharmacophore databases (PharmaDB and HypoDB) were employed for the target profiling. A compound–target interaction network of M. cordata was constructed and analyzed by Cytoscape 3.0. Results Thirteen of the 65 predicted targets identified by PharmaDB were confirmed as targets by HypoDB screening. The targets in the interaction network of M. cordata were involved in cancer (31 targets), microorganisms (12 targets), neurodegeneration (10 targets), inflammation and autoimmunity (8 targets), parasitosis (5 targets), injury (4 targets), and pain (3 targets). Dihydrochelerythrine (C6) was found to hit 23 fitting targets. Macrophage migration inhibitory factor (MIF) hits 15 alkaloids (C1–2, C11–16, C19–25) was the most promising target related to cancer. Conclusion Through in silico target fishing, the anticancer, anti-inflammatory, and analgesic effects of M. cordata were the most significant among many possible activities. The possible anticancer effects were mainly contributed by the isoquinoline alkaloids as active components.
Collapse
|
17
|
High intake of dietary tyramine does not deteriorate glucose handling and does not cause adverse cardiovascular effects in mice. J Physiol Biochem 2015; 72:539-53. [DOI: 10.1007/s13105-015-0456-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/26/2015] [Indexed: 01/31/2023]
|
18
|
Abstract
Inhibitors of monoamine oxidase-B (MAO-B) occupy an important place in the treatment of Parkinson's disease. Selegiline was the first MAO-B to be used therapeutically, while rasagiline is a second-generation drug with higher potency and selectivity. Safinamide is an investigational MAO-B inhibitor with non-dopaminergic properties that may provide advantages over its predecessors. As a class, MAO-B inhibitors are safe and well tolerated and provide symptomatic benefit both as monotherapy and in combination with other antiparkinsonian medications from early to late stages of disease. In combination with levodopa, MAO-B inhibitors may improve motor fluctuations and allow for lower total doses of levodopa. Patient characteristics and preferences can be important factors in deciding between agents. As a class, MAO-B inhibitors have shown promise as disease-modifying agents, but the clinical trial evidence to date has not been strong enough to afford them such a label. Future research may help further elucidate their relative merits and clarify their role in altering disease progression.
Collapse
Affiliation(s)
- Daphne Robakis
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | |
Collapse
|
19
|
Abstract
Rasagiline (Azilect(®)) is an oral, second-generation, selective, irreversible monoamine oxidase-B (MAO-B) inhibitor approved in the US for the treatment of Parkinson's disease. In randomized, controlled trials, oral rasagiline 1 mg once daily was superior to placebo in the symptomatic treatment of early Parkinson's disease, both as monotherapy or as an adjunct to dopamine agonists. Comparisons of early-start and delayed-start treatment suggested a disease-modifying effect for rasagiline, but the results were equivocal. Rasagiline 0.5 or 1 mg/day was also superior to placebo as adjunctive therapy to levodopa in Parkinson's disease patients with motor fluctuations. Rasagiline was generally well tolerated in clinical trials, displaying a placebo-like tolerability profile in several studies. Cost-utility studies predicted that rasagiline, either as monotherapy or adjunctive therapy, would be a cost-effective treatment option. Therefore, oral rasagiline is a valuable therapeutic option for use in all stages of Parkinson's disease.
Collapse
|
20
|
Faulkner MA. Safety overview of FDA-approved medications for the treatment of the motor symptoms of Parkinson's disease. Expert Opin Drug Saf 2014; 13:1055-69. [PMID: 24962891 DOI: 10.1517/14740338.2014.931369] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Parkinson's disease (PD) is among the most common of the neurodegenerative disorders. Treatment is primarily focused on correcting neurotransmitter imbalances. Several classes of medication are available for this purpose. AREAS COVERED A Medline search was performed to gather information about the safety of the medications approved for the treatment of the motor symptoms of PD. This was supplemented with additional articles obtained from online sources and information provided by the FDA and the manufacturers. The focus of this review is the side-effect and safety profiles of carbidopa/levodopa, dopamine agonists, selective monoamine oxidase inhibitors, catechol-o-methyltransferase inhibitors, anticholinergics and amantadine. EXPERT OPINION Though serious side-effects may occur, as a group, the medications used for the treatment of PD motor symptoms tend to produce side-effects that are mild to moderate in nature, and that primarily reflect the focus on dopaminergic therapies. Care plans for Parkinson's patients should be approached based on the needs of the individual as disease presentation, lifestyle, level of disability, concurrent disease states and the presence of non-motor symptoms make each case unique. Patients and caregivers must have realistic expectations about the use of PD medications.
Collapse
Affiliation(s)
- Michele A Faulkner
- Creighton University School of Pharmacy and Health Professions and School of Medicine , 2500 California Plaza, Omaha, NE 68178 , USA +1 402 280 3145 ;
| |
Collapse
|
21
|
Dézsi L, Vécsei L. Clinical implications of irregular ADMET properties with levodopa and other antiparkinson's drugs. Expert Opin Drug Metab Toxicol 2014; 10:409-24. [DOI: 10.1517/17425255.2014.878702] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Abstract
OPINION STATEMENT This is an update to an article published in this journal in 2006, which covered the initial treatment of Parkinson's disease (PD). In this update, we review new research into symptomatic treatments, potential disease modifying ("neuroprotective") agents, and evidence-based reviews of current treatment. We discuss the usage of the MAO-B inhibitors, including the controversy surrounding the possible neuroprotective effects of rasagiline. Usage of extended release formulations of pramipexole and ropinirole, as well as the transdermal dopamine agonist rotigotine, are reviewed. Side effects of the dopamine agonists are discussed, including the cardiac side effects of ergot-derived dopamine agonists, and the impulse control disorders associated with the dopamine agonists. The use of zonisamide as an agent for PD tremor is reviewed. We touch on the clinical research into the benefits of exercise in PD, and briefly review some of the current studies for new formulations of levodopa and other medications and treatments with novel mechanisms of action.
Collapse
Affiliation(s)
- Scott Kaplan
- Department of Neurology, Harvard Medical School, Parkinson's Disease and Movement Disorders Center, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02215, USA
| | | |
Collapse
|
23
|
Mínguez-Mínguez S, Solís-García del Pozo J, Jordán J. Rasagiline in Parkinson's disease: A review based on meta-analysis of clinical data. Pharmacol Res 2013; 74:78-86. [DOI: 10.1016/j.phrs.2013.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/24/2013] [Accepted: 05/26/2013] [Indexed: 12/20/2022]
|
24
|
Solís-García del Pozo J, Mínguez-Mínguez S, de Groot PWJ, Jordán J. Rasagiline meta-analysis: a spotlight on clinical safety and adverse events when treating Parkinson's disease. Expert Opin Drug Saf 2013; 12:479-86. [DOI: 10.1517/14740338.2013.790956] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Chen JJ, Wilkinson JR. The Monoamine Oxidase Type B Inhibitor Rasagiline in the Treatment of Parkinson Disease: Is Tyramine a Challenge? J Clin Pharmacol 2013; 52:620-8. [DOI: 10.1177/0091270011406279] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Goren T, Adar L, Sasson N, Weiss YM. Clinical Pharmacology Tyramine Challenge Study to Determine the Selectivity of the Monoamine Oxidase Type B (MAO-B) Inhibitor Rasagiline. J Clin Pharmacol 2013; 50:1420-8. [DOI: 10.1177/0091270010369674] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Deftereos SN, Dodou E, Andronis C, Persidis A. From depression to neurodegeneration and heart failure: re-examining the potential of MAO inhibitors. Expert Rev Clin Pharmacol 2013; 5:413-25. [PMID: 22943121 DOI: 10.1586/ecp.12.29] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Initially introduced in the 1950s for treating depression, monoamine oxidase (MAO) inhibitors were gradually abandoned, mainly owing to their potential for drug-drug and drug-food interactions, the most widely known being with tyramine-containing food (the 'cheese' effect). Since then, more selective MAO-A or MAO-B inhibitors have been developed with substantially reduced risks, and have been approved for the treatment of depression and Parkinson's disease, respectively. Recent research suggests that some of these drugs also have neuroprotective properties, while preclinical evidence expands the spectrum of potential indications to heart failure, renal diseases and multiple sclerosis. In this article, the authors review the relevance of MAO isoforms to disease, and they also outline current research and development efforts in this class of drugs, including newer multipotent compounds.
Collapse
|
28
|
Campbell B, Wilborn C, La Bounty P, Taylor L, Nelson MT, Greenwood M, Ziegenfuss TN, Lopez HL, Hoffman JR, Stout JR, Schmitz S, Collins R, Kalman DS, Antonio J, Kreider RB. International Society of Sports Nutrition position stand: energy drinks. J Int Soc Sports Nutr 2013; 10:1. [PMID: 23281794 PMCID: PMC3538552 DOI: 10.1186/1550-2783-10-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 12/31/2012] [Indexed: 12/18/2022] Open
Abstract
Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature on the safety and efficacy of the use of energy drinks (ED) or energy shots (ES). The ISSN has concluded the following. 1. Although ED and ES contain a number of nutrients that are purported to affect mental and/or physical performance, the primary ergogenic nutrients in most ED and ES appear to be carbohydrate and/or caffeine. 2. The ergogenic value of caffeine on mental and physical performance has been well-established but the potential additive benefits of other nutrients contained in ED and ES remains to be determined. 3. Consuming ED 10-60 minutes before exercise can improve mental focus, alertness, anaerobic performance, and/or endurance performance. 4. Many ED and ES contain numerous ingredients; these products in particular merit further study to demonstrate their safety and potential effects on physical and mental performance. 5. There is some limited evidence that consumption of low-calorie ED during training and/or weight loss trials may provide ergogenic benefit and/or promote a small amount of additional fat loss. However, ingestion of higher calorie ED may promote weight gain if the energy intake from consumption of ED is not carefully considered as part of the total daily energy intake. 6. Athletes should consider the impact of ingesting high glycemic load carbohydrates on metabolic health, blood glucose and insulin levels, as well as the effects of caffeine and other stimulants on motor skill performance. 7. Children and adolescents should only consider use of ED or ES with parental approval after consideration of the amount of carbohydrate, caffeine, and other nutrients contained in the ED or ES and a thorough understanding of the potential side effects. 8. Indiscriminant use of ED or ES, especially if more than one serving per day is consumed, may lead to adverse events and harmful side effects. 9. Diabetics and individuals with pre-existing cardiovascular, metabolic, hepatorenal, and neurologic disease who are taking medications that may be affected by high glycemic load foods, caffeine, and/or other stimulants should avoid use of ED and/or ES unless approved by their physician.
Collapse
Affiliation(s)
- Bill Campbell
- Exercise and Performance Nutrition Laboratory, Dept. of Physical Education and Exercise Science, University of South Florida, 4202 E. Fowler Avenue, PED 214, Tampa, FL, 33620, USA
| | - Colin Wilborn
- Human Performance Laboratory, University of Mary Hardin-Baylor, Belton, TX, 76513, USA
| | - Paul La Bounty
- Department of Health, Human Performance, and Recreation, Baylor University, Box 97313, Waco, TX, 76798, USA
| | - Lem Taylor
- Human Performance Laboratory, University of Mary Hardin-Baylor, Belton, TX, 76513, USA
| | - Mike T Nelson
- Department of Health and Human Performance, University of St.Thomas, St. Paul, MN, 55105, USA
| | - Mike Greenwood
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, Texas, TX, 77843-4243, USA
| | | | - Hector L Lopez
- The Center for Applied Health Sciences, Stow, OH, 44224, USA
| | - Jay R Hoffman
- Institute of Exercise Physiology and Wellness, Department of Sport and Exercise Science, University of Central Florida, Orlando, FL, 32816, USA
| | - Jeffrey R Stout
- Institute of Exercise Physiology and Wellness, Department of Sport and Exercise Science, University of Central Florida, Orlando, FL, 32816, USA
| | - Stephen Schmitz
- Medical Surveillance and Risk Management, Shire HGT, 300 Shire Way, Lexington, MA, 02421, USA
| | | | - Doug S Kalman
- Miami Research Associates, Endocrinology & Nutrition Department, 6141 Sunset Drive - Suite 301, Miami, FL, 33143, USA
| | - Jose Antonio
- Farquhar College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, Texas, TX, 77843-4243, USA
| |
Collapse
|
29
|
|
30
|
Chen JJ. Pharmacologic safety concerns in Parkinson's disease: facts and insights. Int J Neurosci 2012; 121 Suppl 2:45-52. [PMID: 22035029 DOI: 10.3109/00207454.2011.620193] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Knowledge and insight of pharmacologic safety issues and drug interactions are important for medical management of Parkinson's disease (PD). This review will discuss several topics, including apomorphine safety and interactions, impulsivity and excessive daytime somnolence associated with dopamine agonists (DAs), tolcapone hepatotoxicity, and monoamine oxidase type-B (MAO-B) inhibitor drug interactions. Initiation of apomorphine requires antiemetic prophylaxis to minimize nausea and orthostatic hypotension. Centrally acting antidopaminergic antiemetics will worsen parkinsonism and block the therapeutic effects of apomorphine and should be avoided. Additionally, serotonin 5-HT(3) receptor antagonist antiemetics should be avoided on the basis of limited clinical data suggesting lack of efficacy for apomorphine-induced nausea. Dopamine-agonist-induced impulsivity and daytime somnolence are not uncommon. When severe, these effects can be disabling and unsafe. Tolcapone-induced hepatotoxicity has been significantly minimized with routine monitoring of liver enzymes, especially during the initial 6 months of therapy. Early detection of abnormal results will allow tolcapone discontinuation before progression to fulminant hepatotoxicity. In patients treated with selective MAO-B inhibitors, the risk of serotonin toxicity (ST) due to a concomitant serotonergic agent (e.g., antidepressants, dextromethorphan, serotonergic analgesics) or hypertensive crisis due to dietary tyramine or sympathomimetic amines appears to be minimal and is based on isolated case reports and overgeneralizations from nonselective MAO inhibitor pharmacology. Concerns about ST or hypertensive crisis should not preclude or restrict clinicians from using MAO-B inhibitors in patients with PD.
Collapse
Affiliation(s)
- Jack J Chen
- Schools of Medicine and Pharmacy, Loma Linda University, Loma Linda, CA 92350, USA.
| |
Collapse
|
31
|
Abstract
It has long been recognized that monoamine oxidase (MAO) inhibitors have a role in the management of Parkinson's disease (PD). The MAO-B inhibitor rasagiline has neuroprotective effects in animal models, mediated partly by its antiapoptotic activity. Rasagiline has been shown to be effective as monotherapy for early PD and as an adjunct to dopaminergic therapy. Clinical trials have also shown putative disease-modifying effects, though rasagiline's potential to alter the long-term course of PD remains controversial. Given the demonstrated benefits of rasagiline, along with its safety and tolerability profile, it has an important role to play in PD therapy.
Collapse
|
32
|
Abstract
OPINION STATEMENT Many important advances for the treatment of Parkinson's disease (PD) have been made over the past decade, and quality of life has improved for most patients. Nonetheless, motor fluctuations in the form of wearing off with the re-emergence of parkinsonian symptoms and hyperkinetic movements (dyskinesias) often arise as a complication of long-term dopaminergic therapy and can be disabling. Because treatment of motor fluctuations is difficult, clinicians should attempt to prevent them by using low doses of dopaminergic drugs in early PD, targeting functionally relevant symptoms. Instead of levodopa, dopamine agonists, amantadine, and rasagiline can be used with the aim of delaying the onset of motor fluctuations. Once motor fluctuations arise, off time can initially be addressed with more frequent dosing of levodopa. Later, adjunctive therapy with a dopamine agonist, COMT-inhibitor, or MAO-B inhibitor becomes necessary. For treatment of dyskinesias, reduction of the levodopa dose should be the first step. If this is not tolerated because of increased off time, then adjunctive therapy with levodopa-sparing agents should be attempted. The addition of amantadine (the only currently available antidyskinetic drug) is another useful strategy but is often only a temporary solution. Once medical attempts at treating motor fluctuations fail, deep brain stimulation (DBS) can be considered. Careful patient selection and skilled placement of DBS electrodes are important determinants of the surgical outcome.
Collapse
Affiliation(s)
- Vanessa K Hinson
- Medical University of South Carolina, 326 Calhoun Street, Suite 308, Charleston, SC, 29425, USA,
| |
Collapse
|
33
|
Perez-Lloret S, Rascol O. Safety of rasagiline for the treatment of Parkinson's disease. Expert Opin Drug Saf 2011; 10:633-43. [DOI: 10.1517/14740338.2011.573784] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Riederer P, Laux G. MAO-inhibitors in Parkinson's Disease. Exp Neurobiol 2011; 20:1-17. [PMID: 22110357 PMCID: PMC3213739 DOI: 10.5607/en.2011.20.1.1] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 01/17/2011] [Indexed: 01/27/2023] Open
Abstract
Monoamine oxidase inhibitors (MAO-I) belong to the earliest drugs tried in Parkinson's disease (PD). They have been used with or without levodopa (L-DOPA). Non-selective MAO-I due to their side-effect/adverse reaction profile, like tranylcypromine have limited use in the treatment of depression in PD, while selective, reversible MAO-A inhibitors are recommended due to their easier clinical handling. For the treatment of akinesia and motor fluctuations selective irreversible MAO-B inhibitors selegiline and rasagiline are recommended. They are safe and well tolerated at the recommended daily doses. Their main differences are related to (1) metabolism, (2) interaction with CYP-enzymes and (3) quantitative properties at the molecular biological/genetic level. Rasagiline is more potent in clinical practise and has a hypothesis driven more favourable side effect/adverse reaction profile due to its metabolism to aminoindan. Both selegiline and rasagiline have a neuroprotective and neurorestaurative potential. A head-to head clinical trial would be of utmost interest from both the clinical outcome and a hypothesis-driven point of view. Selegiline is available as tablet and melting tablet for PD and as transdermal selegiline for depression, while rasagiline is marketed as tablet for PD. In general, the clinical use of MAO-I nowadays is underestimated. There should be more efforts to evaluate their clinical potency as antidepressants and antidementive drugs in addition to the final proof of their disease-modifying potential. In line with this are recent innovative developments of MAO-I plus inhibition of acetylcholine esterase for Alzheimer's disease as well as combined MAO-I and iron chelation for PD.
Collapse
Affiliation(s)
- Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatic and Psychotherapy, University of Wuerzburg, 97080 Wuerzburg, Germany
| | | |
Collapse
|
35
|
Robottom BJ. Efficacy, safety, and patient preference of monoamine oxidase B inhibitors in the treatment of Parkinson's disease. Patient Prefer Adherence 2011; 5:57-64. [PMID: 21423589 PMCID: PMC3058602 DOI: 10.2147/ppa.s11182] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and the most treatable. Treatment of PD is symptomatic and generally focuses on the replacement or augmentation of levodopa. A number of options are available for treatment, both in monotherapy of early PD and to treat complications of advanced PD. This review focuses on rasagiline and selegiline, two medications that belong to a class of antiparkinsonian drugs called monoamine oxidase B (MAO-B) inhibitors. Topics covered in the review include mechanism of action, efficacy in early and advanced PD, effects on disability, the controversy regarding disease modification, safety, and patient preference for MAO-B inhibitors.
Collapse
Affiliation(s)
- Bradley J Robottom
- Correspondence: Bradley J Robottom, Assistant Professor, Department of Neurology, University of Maryland School of Medicine, 110 S. Paca Street, Rm 3-S-128, Baltimore, MD 21201, USA, Tel +1 410 328 8586, Fax +1 410 328 0167, Email
| |
Collapse
|
36
|
Finberg JPM, Gillman K. Selective inhibitors of monoamine oxidase type B and the "cheese effect". INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 100:169-90. [PMID: 21971008 DOI: 10.1016/b978-0-12-386467-3.00009-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Potentiation of the cardiovascular and other effects of dietary tyramine by monoamine oxidase (MAO) inhibitors (cheese effect) has been a major limitation to clinical use of these drugs. The discovery that MAO exists in two distinct isoforms, MAO-A and MAO-B, together with the development of selective inhibitors of each isoform, enabled the understanding that selective inhibition of MAO-A, or inhibition of both isoforms, will cause cheese effect, but selective inhibition of MAO-B can be elicited without dangerous pressor reaction. This development has permitted the introduction of selective MAO-B inhibitors to clinical medicine for treatment of Parkinson's disease. This review describes the basic mechanisms involved in cheese effect, as well as providing information on tyramine levels in a variety of foodstuff, and surveys clinical information from tyramine pressor testing with the selective MAO-B inhibitors, selegiline and rasagiline.
Collapse
Affiliation(s)
- John P M Finberg
- Department of Molecular Pharmacology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | |
Collapse
|
37
|
Neuroprotective profile of the multitarget drug rasagiline in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 100:127-49. [DOI: 10.1016/b978-0-12-386467-3.00007-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Rasagiline: A novel anti-Parkinsonian monoamine oxidase-B inhibitor with neuroprotective activity. Prog Neurobiol 2010; 92:330-44. [DOI: 10.1016/j.pneurobio.2010.06.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 06/10/2010] [Accepted: 06/14/2010] [Indexed: 11/17/2022]
|
39
|
Jia Z, Zhu Q. 'Click' assembly of selective inhibitors for MAO-A. Bioorg Med Chem Lett 2010; 20:6222-5. [PMID: 20843688 DOI: 10.1016/j.bmcl.2010.08.104] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 10/19/2022]
Abstract
In this Letter, an efficient strategy for the fast construction of 108 compounds library was developed using click chemistry. The fingerprint of inhibitory activity toward MAO-A/B against this library was obtained, and four hit compounds were identified as selective inhibitors toward MAO-A. Docking study was carried out to demonstrate the binding mode between a9 and MAO-A/B, and the result reveals that a9 localized in the 'aromatic cage' and oriented to establish π-π stacking interactions with Tyr407, Tyr444 and FAD in MAO-A rather than in MAO-B.
Collapse
Affiliation(s)
- Zhao Jia
- Institute of Bioengineering, Zhejiang University of Technology (chaohui campus), Hangzhou 310014, China
| | | |
Collapse
|
40
|
Leegwater-Kim J, Bortan E. The role of rasagiline in the treatment of Parkinson's disease. Clin Interv Aging 2010; 5:149-56. [PMID: 20517484 PMCID: PMC2877525 DOI: 10.2147/cia.s4145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Indexed: 01/07/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, affecting 1% to 2% of people older than 60 years. Treatment of PD consists of symptomatic therapies while neuroprotective strategies have remained elusive. Rasagiline is a novel, potent, and irreversible monoamine oxidase type B (MAO-B) inhibitor which has been approved for treatment of PD. Rasagiline inhibits MAO-B more potently than selegiline and has the advantage of once-daily dosing. In several large, randomized, placebo-controlled trials, rasagiline has demonstrated efficacy as monotherapy in early PD and as adjunctive therapy in advanced PD. In addition, rasagiline has been shown to have neuroprotective effects in in vitro and in vivo studies. The recently completed delayed-start ADAGIO (Attenuation of Disease Progression with Azilect Given Once-daily) trial suggests a potential disease-modifying effect for rasagiline 1 mg/day, though the clinical import of this finding has yet to be established.
Collapse
Affiliation(s)
- Julie Leegwater-Kim
- Department of Neurology, Tufts University School of Medicine, Lahey Clinic, Burlington, MA 01805, USA.
| | | |
Collapse
|
41
|
Isaacson SH. Selective MAO-B inhibitors have low potential for the tyramine effect. Mov Disord 2010; 25:123-4. [PMID: 19006188 DOI: 10.1002/mds.22334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
42
|
Hilli J, Korhonen T, Laine K. Lack of clinically significant interactions between concomitantly administered rasagiline and escitalopram. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1526-32. [PMID: 19733607 DOI: 10.1016/j.pnpbp.2009.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/04/2009] [Accepted: 08/27/2009] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To evaluate the potential of pharmacodynamic and pharmacokinetic interactions of a concomitantly administered monoamine oxidase (MAO) type B inhibitor rasagiline and a selective serotonin reuptake inhibitor (SSRI) escitalopram. METHODS Twelve healthy male volunteers received a 10-day regimen of rasagiline 1mg daily, followed by concomitant rasagiline 1mg and escitalopram 10mg daily for 7 days. RESULTS We found that the drug combination was generally well tolerated, and there were no signs of central nervous system hyperexcitation or changes in the subjects' vital signs. The reported adverse effects were mainly mild or moderate, and typical for SSRIs. The MAO-A-dependent catecholamine metabolite DHPG levels did not change significantly during the study suggesting that rasagiline's MAO-B selectivity was preserved. The plasma monoamine concentrations indicated no subclinical signs of interaction. As expected, the whole blood serotonin was significantly reduced by escitalopram but unaffected by rasagiline. Rasagiline AUC was increased by 42% (p<0.0001) and the weight-adjusted apparent oral clearance was reduced by 35% (p=0.0009) after 7 days' concomitant escitalopram treatment. Escitalopram reduced the ratio of the AUC values of the main metabolite 1-aminoindan and rasagiline by about 23% (p=0.0079). There were no significant changes in the elimination half-life, t(max) and C(max) of rasagiline. CONCLUSIONS These results suggest good tolerability of concomitant administration of rasagiline and escitalopram. However, other medications, diseases and aging may change the individual drug response and tolerability of concomitant rasagiline and escitalopram, e.g. in Parkinsonian patients, and thus careful monitoring is recommended when combining rasagiline and escitalopram.
Collapse
Affiliation(s)
- Johanna Hilli
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland.
| | | | | |
Collapse
|
43
|
Abstract
The cardinal characteristics of Parkinson disease (PD) include resting tremor, rigidity, and bradykinesia. Patients may also develop autonomic dysfunction, cognitive changes, psychiatric symptoms, sensory complaints, and sleep disturbances. The treatment of motor and non-motor symptoms of Parkinson disease is addressed in this article.
Collapse
Affiliation(s)
- Mark Stacy
- Division of Neurology, Department of Medicine, Duke University Medical Center, Durham, NC 27705, USA.
| |
Collapse
|
44
|
Malaty IA, Fernandez HH. Role of rasagiline in treating Parkinson's disease: Effect on disease progression. Ther Clin Risk Manag 2009; 5:413-9. [PMID: 19753135 PMCID: PMC2695242 DOI: 10.2147/tcrm.s4321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Rasagiline is a second generation, selective, irreversible monoamine oxidase type B (MAO-B) inhibitor. It has demonstrated efficacy in monotherapy for early Parkinson’s disease (PD) patients in one large randomized, placebo-controlled trial (TVP-1012 in Early Monotherapy for Parkinson’s Disease Outpatients), and has shown ability to reduce off time in more advanced PD patients with motor fluctuations in two large placebo-controlled trials (Parkinson’s Rasagiline: Efficacy and Safety in the Treatment of “Off”, and Lasting Effect in Adjunct Therapy With Rasagiline Given Once Daily). Preclinical data abound to suggest potential for neuroprotection by this compound against a variety of neurotoxic insults in cell cultures and in animals. The lack of amphetamine metabolites provides an advantage over the first generation MAO-B inhibitor selegiline. One large trial has investigated the potential for disease modification in PD patients (Attenuation of Disease progression with Azilect Given Once-daily) and preliminary results maintain some possible advantage to earlier initiation of the 1 mg/day dose. The clinical significance of the difference detected remains a consideration.
Collapse
Affiliation(s)
- Irene A Malaty
- University of Florida Movement Disorders Center, Gainesville, FL, USA
| | | |
Collapse
|
45
|
Schneider MG, Swearingen CJ, Shulman LM, Ye J, Baumgarten M, Tilley BC. Minority enrollment in Parkinson's disease clinical trials. Parkinsonism Relat Disord 2008; 15:258-62. [PMID: 18693062 DOI: 10.1016/j.parkreldis.2008.06.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 05/24/2008] [Accepted: 06/24/2008] [Indexed: 11/18/2022]
Abstract
Under-representation of minorities in clinical trials limits access to information relevant to all segments of the population. We assessed the enrollment of minority subjects with Parkinson's disease (PD) into clinical trials. We searched PubMed for published studies of PD trials conducted in the US over the past 20 years and found that only 41 reported racial/ethnic participation (17%). In those trials reporting race/ethnicity, 8% of subjects were non-white, compared to 20% of the non-white US population over age 60. Results of this study identified the need for better reporting of racial composition in clinical trials and for the enrollment of more minority participants in research studies.
Collapse
Affiliation(s)
- Myra G Schneider
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
46
|
White WB, Salzman P, Schwid SR. Transtelephonic home blood pressure to assess the monoamine oxidase-B inhibitor rasagiline in Parkinson disease. Hypertension 2008; 52:587-93. [PMID: 18678789 DOI: 10.1161/hypertensionaha.108.115873] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Monoamine oxidase inhibitors are associated with dietary tyramine interactions that can induce hypertensive crises. Rasagiline mesylate is a novel irreversible selective monoamine oxidase type B inhibitor for Parkinson disease that may have a low risk of interaction with dietary tyramine because of its selectivity. To study interactions of rasagiline with diets unrestricted in tyramine-containing foods, we incorporated transtelephonic, self-monitoring of the blood pressure (BP) into a randomized, placebo-controlled trial of rasagiline 0.5 and 1.0 mg daily in 414 levodopa-treated Parkinson patients with motor fluctuations. The proportion of patients with a systolic BP increase of >30 mm Hg was the primary BP end point. In 13 968 self-measured readings at baseline, the proportion of systolic BP values that increased by >30 mm Hg after a meal ranged from 9.5% to 12.9% in the 3 treatment groups. In 25 733 BPs obtained postrandomization, the proportion of values with a >30-mm Hg systolic postprandial increase was 15% in the placebo group, 15% in the rasagiline 0.5-mg group, and 11% in the rasagiline 1-mg group after 3 weeks of double-blind therapy and 13%, 14%, and 12%, respectively, after 26 weeks of treatment (P value was not significant for all of the comparisons among treatment groups). A postprandial increase in systolic BP to >180 mm Hg at any time after randomization was seen in 3.3%, 2.6%, and 2.9% of the placebo, 0.5-mg, and 1.0-mg rasagiline groups, respectively. These data demonstrate that rasagiline did not induce postprandial hypertension in patients with Parkinson disease who were on an unrestricted diet.
Collapse
Affiliation(s)
- William B White
- Division of Hypertension and Clinical Pharmacology, Pat and Jim Calhoun Cardiology Center and Clinical Trials Unit, University of Connecticut, Farmington, Connecticut 06030-3940, USA.
| | | | | | | |
Collapse
|
47
|
Bainbridge JL, Lee Page R, Ruscin JM. Elucidating the Mechanism of Action and Potential Interactions of MAO-B Inhibitors. Neurol Clin 2008; 26:S85-96, vi. [DOI: 10.1016/j.ncl.2008.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Silver DE. Early, Nondisabling Parkinson's Disease: Weighing the Options for Initial Therapy. Neurol Clin 2008; 26:S1-13, v. [DOI: 10.1016/j.ncl.2008.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Abstract
Symptomatic medical therapies for Parkinson's disease (PD) have been disease modifying and have led to improvement in daily function, quality of life, and survival. For 40 years, these therapies have been primarily dopaminergic, and currently include the dopamine (DA) precursor levodopa (LD), DA agonists, catechol-O-methyltransferase (COMT) inhibitors, and monoamine oxidase (MAO) inhibitors. The roles of all these classes of agents have evolved, with significant changes occurring since the early 2000s. This article reviews the current literature for each of these classes of drugs, with a focus on efficacy and place in the therapeutic scheme. Levodopa is no longer considered to be toxic and, thus, its early use is not only appropriate but recommended. Ergot agonists are no longer in use, and new agents administered in patch form or subcutaneous injections have been approved. The COMT inhibitor tolcapone, with its significant efficacy, has been reintroduced, and two new MAO inhibitors have been approved. Selected safety issues are discussed, including the incidence of melanoma in relation to LD; pathological gambling and DA agonists; hepatic toxicity of tolcapone; and the tyramine or so-called cheese reaction with MAO B inhibitors. The article closes with a discussion of future directions and new drugs under development.
Collapse
Affiliation(s)
- Stewart A Factor
- Department of Neurology, Emory University School of Medicine, 1841 Clifton Road NE, Atlanta, Georgia 30329, USA.
| |
Collapse
|
50
|
Dashtipour K, Chen JJ, Lew MF. Rasagiline for the management of Parkinson’s disease. ACTA ACUST UNITED AC 2008. [DOI: 10.2217/14750708.5.2.203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|