1
|
Deep brain stimulation in animal models of dystonia. Neurobiol Dis 2022; 175:105912. [DOI: 10.1016/j.nbd.2022.105912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
|
2
|
Marceglia S, Guidetti M, Harmsen IE, Loh A, Meoni S, Foffani G, Lozano AM, Volkmann J, Moro E, Priori A. Deep brain stimulation: is it time to change gears by closing the loop? J Neural Eng 2021; 18. [PMID: 34678794 DOI: 10.1088/1741-2552/ac3267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/22/2021] [Indexed: 11/12/2022]
Abstract
Objective.Adaptive deep brain stimulation (aDBS) is a form of invasive stimulation that was conceived to overcome the technical limitations of traditional DBS, which delivers continuous stimulation of the target structure without considering patients' symptoms or status in real-time. Instead, aDBS delivers on-demand, contingency-based stimulation. So far, aDBS has been tested in several neurological conditions, and will be soon extensively studied to translate it into clinical practice. However, an exhaustive description of technical aspects is still missing.Approach.in this topical review, we summarize the knowledge about the current (and future) aDBS approach and control algorithms to deliver the stimulation, as reference for a deeper undestending of aDBS model.Main results.We discuss the conceptual and functional model of aDBS, which is based on the sensing module (that assesses the feedback variable), the control module (which interpretes the variable and elaborates the new stimulation parameters), and the stimulation module (that controls the delivery of stimulation), considering both the historical perspective and the state-of-the-art of available biomarkers.Significance.aDBS modulates neuronal circuits based on clinically relevant biofeedback signals in real-time. First developed in the mid-2000s, many groups have worked on improving closed-loop DBS technology. The field is now at a point in conducting large-scale randomized clinical trials to translate aDBS into clinical practice. As we move towards implanting brain-computer interfaces in patients, it will be important to understand the technical aspects of aDBS.
Collapse
Affiliation(s)
- Sara Marceglia
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Matteo Guidetti
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy.,Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Irene E Harmsen
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Sara Meoni
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy.,Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France.,Grenoble Institute of Neurosciences, INSERM U1216, University Grenoble Alpes, Grenoble, France
| | - Guglielmo Foffani
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jens Volkmann
- Department of Neurology, University of Wurzburg, Wurzburg, Germany
| | - Elena Moro
- Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France.,Grenoble Institute of Neurosciences, INSERM U1216, University Grenoble Alpes, Grenoble, France
| | - Alberto Priori
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy.,ASST Santi Paolo e Carlo, 20142 Milan, Italy
| |
Collapse
|
3
|
Mulroy E, Vijiaratnam N, De Roquemaurel A, Bhatia KP, Zrinzo L, Foltynie T, Limousin P. A practical guide to troubleshooting pallidal deep brain stimulation issues in patients with dystonia. Parkinsonism Relat Disord 2021; 87:142-154. [PMID: 34074583 DOI: 10.1016/j.parkreldis.2021.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/18/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022]
Abstract
High frequency deep brain stimulation (DBS) of the internal portion of the globus pallidus has, in the last two decades, become a mainstream therapy for the management of medically-refractory dystonia syndromes. Such increasing uptake places an onus on movement disorder physicians to become familiar with this treatment modality, in particular optimal patient selection for the procedure and how to troubleshoot problems relating to sub-optimal efficacy and therapy-related side effects. Deep brain stimulation for dystonic conditions presents some unique challenges. For example, the frequent lack of immediate change in clinical status following stimulation alterations means that programming often relies on personal experience and local practice rather than real-time indicators of efficacy. Further, dystonia is a highly heterogeneous disorder, making the development of unifying guidelines and programming algorithms for DBS in this population difficult. Consequently, physicians may feel less confident in managing DBS for dystonia as compared to other indications e.g. Parkinson's disease. In this review, we integrate our years of personal experience of the programming of DBS systems for dystonia with a critical appraisal of the literature to produce a practical guide for troubleshooting common issues encountered in patients with dystonia treated with DBS, in the hope of improving the care for these patients.
Collapse
Affiliation(s)
- Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
| | - Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alexis De Roquemaurel
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| |
Collapse
|
4
|
Sun F, Zhang X, Dong S, Zhang Y, Li J, Wang Y, Zhu J. Effectiveness of Low-Frequency Pallidal Deep Brain Stimulation at 65 Hz in Tourette Syndrome. Neuromodulation 2021; 25:286-295. [PMID: 34002454 DOI: 10.1111/ner.13456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/26/2021] [Accepted: 04/19/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Pallidal deep brain stimulation (DBS) for refractory Tourette syndrome (TS) is often applied using a high frequency. The effectiveness of low-frequency long-term stimulation is unknown. We aimed to evaluate the clinical efficacy of low-frequency DBS applied to the globus pallidus pars internus (GPi) at 65 Hz for the treatment of TS, with long-term follow-up, to provide data for the optimization of stimulation parameters. MATERIALS AND METHODS A total of six patients with refractory TS were implanted with electrodes in the GPi and were assigned to receive low-frequency (65 Hz) DBS programming. Assessments were performed pre-DBS and at 3, 12, and a median of 34 (range 26-48) months post-DBS. The primary outcome was tic severity, as assessed by the Yale Global Tic Severity Scale (YGTSS), and the secondary outcomes were comorbid behavioral disorders, mood, functioning, and quality of life. RESULTS We noted significant differences in the YGTSS scores between the baseline and the post-DBS follow-ups (p = 0.01). At the final follow up, four of six (66.6%) patients had a greater than 50% reduction in the YGTSS score, whereas the remaining two patients showed a mild worsening of tic severity. The secondary outcome measures also showed remarkable improvements in associated behavioral disorders, mood, functioning, and quality of life. Stimulation-induced adverse effects were not reported, although a device-related complication (an uncomfortable feeling in the neck) occurred in 1 patient. CONCLUSIONS The results of this study indicated that low-frequency DBS represents an effective and practical treatment for refractory TS with comparable efficacy to high-frequency DBS.
Collapse
Affiliation(s)
- Fengqiao Sun
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaohua Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sheng Dong
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital Medical Center, Tsinghua University, Beijing, China
| | - Yuqing Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiping Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yunpeng Wang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jin Zhu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Paap M, Perl S, Lüttig A, Plocksties F, Niemann C, Timmermann D, Bahls C, van Rienen U, Franz D, Zwar M, Rohde M, Köhling R, Richter A. Deep brain stimulation by optimized stimulators in a phenotypic model of dystonia: Effects of different frequencies. Neurobiol Dis 2020; 147:105163. [PMID: 33166698 DOI: 10.1016/j.nbd.2020.105163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/02/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Deep brain stimulation (DBS) of the globus pallidus internus (GPi, entopeduncular nucleus, EPN, in rodents) has become important for the treatment of generalized dystonia, a severe and often intractable movement disorder. It is unclear if lower frequencies of GPi-DBS or stimulations of the subthalamic nucleus (STN) are of advantage. In the present study, the main objective was to examined the effects of bilateral EPN-DBS at different frequencies (130 Hz, 40 Hz, 15 Hz) on the severity of dystonia in the dtsz mutant hamster. In addition, STN stimulations were done at a frequency, proven to be effective by the present EPN-DBS in dystonic hamsters. In order to obtain precise bilateral electrical stimuli with magnitude of 50 μA, a pulse width of 60 μs and defined frequencies, it was necessary to develop a new optimized stimulator prior to the experiments. Since the individual highest severity of dystonic episodes is known to be reached within three hours after induction in dtsz hamsters, the duration of DBS was 180 min. During DBS with 130 Hz the severity of dystonia was significantly lower within the third hour than without DBS in the same animals (p < 0.05). DBS with 40 Hz tended to exert antidystonic effects after three hours, while 15 Hz stimulations of the EPN and 130 Hz stimulations of the STN failed to show any effects on the severity. DBS of the EPN at 130 Hz was most effective against generalized dystonia in the dtsz mutant. The response to EPN-DBS confirms that the dtsz mutant is suitable to further investigate the effects of long-term DBS on severity of dystonia and neuronal network activities, important to give insights into the mechanisms of DBS.
Collapse
Affiliation(s)
- Maria Paap
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Germany
| | - Stefanie Perl
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Germany
| | - Anika Lüttig
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Germany
| | - Franz Plocksties
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, Germany
| | - Christoph Niemann
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, Germany
| | - Dirk Timmermann
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, Germany
| | - Christian Bahls
- Institute of General Electrical Engineering, Faculty of Computer Sci. and Electrical Engineering, University of Rostock, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, Faculty of Computer Sci. and Electrical Engineering, University of Rostock, Germany
| | - Denise Franz
- Oscar Langendorff Institute of Physiology, University Rostock, Germany
| | - Monique Zwar
- Oscar Langendorff Institute of Physiology, University Rostock, Germany
| | - Marco Rohde
- Oscar Langendorff Institute of Physiology, University Rostock, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University Rostock, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Germany.
| |
Collapse
|
6
|
Krause P, Völzmann S, Ewert S, Kupsch A, Schneider GH, Kühn AA. Long-term effects of bilateral pallidal deep brain stimulation in dystonia: a follow-up between 8 and 16 years. J Neurol 2020; 267:1622-1631. [PMID: 32055996 PMCID: PMC8592956 DOI: 10.1007/s00415-020-09745-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 11/29/2022]
Abstract
Objective Observational study to evaluate the long-term motor and non-motor effects of deep brain stimulation (DBS) of the globus pallidus internus (GPi) on medically refractory dystonia. Background Dystonia is a chronic disease affecting mainly young patients with a regular life expectancy and lifelong need for therapy. Pallidal DBS is an established treatment for severe isolated dystonia but long-term data are sparse. Methods We considered 36 consecutive patients with isolated generalized (n = 14) and cervical/segmental (n = 22) dystonia operated at Charité-University Hospital between 2000 and 2007 in a retrospective analysis for long-term outcome of pallidal DBS. In 19 of these patients, we could analyze dystonic symptoms and disability rated by the Burke–Fahn–Marsden Dystonia Rating scale (BFMDRS) at baseline, short-term (ST-FU, range 3–36 months) and long-term follow-up (LT-FU, range 93–197 months). Quality of life and mood were evaluated using the SF36 and Beck Depression Index (BDI) questionnaires. Results Patients reached an improvement in motor symptoms of 63.8 ± 5.7% (mean ± SE) at ST-FU and 67.9 ± 6.1% at LT-FU. Moreover, a significant and stable reduction in disability was shown following DBS (54.2 ± 9.4% at ST-FU and 53.8 ± 9.2% at LT-FU). BDI and SF36 had improved by 40% and 23%, respectively, at LT-FU (n = 14). Stimulation-induced adverse events included swallowing difficulties, dysarthria, and bradykinesia. Pulse generator (n = 3) and electrodes (n = 5) were revised in seven patients due to infection. Conclusions Pallidal DBS is a safe and efficacious long-term treatment for dystonia with sustained effects on motor impairment and disability, accompanied by a robust improvement in mood and quality of life. Electronic supplementary material The online version of this article (10.1007/s00415-020-09745-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P Krause
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité, University Medicine Berlin, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - S Völzmann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité, University Medicine Berlin, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - S Ewert
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité, University Medicine Berlin, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - A Kupsch
- Department of Neurology and Stereotactic Neurosurgery, University Medicine of Magdeburg, Magdeburg, Germany
| | - G H Schneider
- Department of Neurosurgery, Charité, University Medicine Berlin, Campus Mitte, Berlin, Germany
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité, University Medicine Berlin, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
7
|
Sanger TD. Deep brain stimulation for cerebral palsy: where are we now? Dev Med Child Neurol 2020; 62:28-33. [PMID: 31211420 DOI: 10.1111/dmcn.14295] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2019] [Indexed: 12/12/2022]
Abstract
Cerebral palsy (CP) is a complex disorder and children frequently have multiple impairments. Dystonia is a particularly frustrating impairment that interferes with rehabilitation and function and is difficult to treat. Of the available treatments, deep brain stimulation (DBS) has emerged as an option with the potential for large effect size in a subgroup of children. While brain stimulation has been used in CP for more than 40 years, modern devices and targeting methods are improving both the safety and efficacy of the procedure. Successful use of DBS depends on appropriate selection of patients, identification of effective neuroanatomical targets in each patient, careful neurosurgical procedure, and detailed follow-up evaluation and programming. The use of functional neurosurgery for neuromodulation in CP remains a technology in its infancy, but improving experience and knowledge are likely to make this one of the safest and most effective interventions for children with moderate-to-severe motor disorders. This review summarizes the current procedures for patient and target selection, and surgical implantation of DBS electrodes for CP. The history of DBS and future directions when used in secondary dystonia are also examined. WHAT THIS PAPER ADDS: Selection of candidates for deep brain stimulation (DBS) requires understanding of dystonia in cerebral palsy . DBS could become a first-line treatment option in some children.
Collapse
Affiliation(s)
- Terence D Sanger
- Department of Biomedical Engineering, Neurology, Biokinesiology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Koeglsperger T, Palleis C, Hell F, Mehrkens JH, Bötzel K. Deep Brain Stimulation Programming for Movement Disorders: Current Concepts and Evidence-Based Strategies. Front Neurol 2019; 10:410. [PMID: 31231293 PMCID: PMC6558426 DOI: 10.3389/fneur.2019.00410] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
Deep brain stimulation (DBS) has become the treatment of choice for advanced stages of Parkinson's disease, medically intractable essential tremor, and complicated segmental and generalized dystonia. In addition to accurate electrode placement in the target area, effective programming of DBS devices is considered the most important factor for the individual outcome after DBS. Programming of the implanted pulse generator (IPG) is the only modifiable factor once DBS leads have been implanted and it becomes even more relevant in cases in which the electrodes are located at the border of the intended target structure and when side effects become challenging. At present, adjusting stimulation parameters depends to a large extent on personal experience. Based on a comprehensive literature search, we here summarize previous studies that examined the significance of distinct stimulation strategies for ameliorating disease signs and symptoms. We assess the effect of adjusting the stimulus amplitude (A), frequency (f), and pulse width (pw) on clinical symptoms and examine more recent techniques for modulating neuronal elements by electrical stimulation, such as interleaving (Medtronic®) or directional current steering (Boston Scientific®, Abbott®). We thus provide an evidence-based strategy for achieving the best clinical effect with different disorders and avoiding adverse effects in DBS of the subthalamic nucleus (STN), the ventro-intermedius nucleus (VIM), and the globus pallidus internus (GPi).
Collapse
Affiliation(s)
- Thomas Koeglsperger
- Department of Neurology, Ludwig Maximilians University, Munich, Germany.,Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Carla Palleis
- Department of Neurology, Ludwig Maximilians University, Munich, Germany.,Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Franz Hell
- Department of Neurology, Ludwig Maximilians University, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Jan H Mehrkens
- Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany
| | - Kai Bötzel
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
9
|
Eisinger RS, Cernera S, Gittis A, Gunduz A, Okun MS. A review of basal ganglia circuits and physiology: Application to deep brain stimulation. Parkinsonism Relat Disord 2019; 59:9-20. [PMID: 30658883 DOI: 10.1016/j.parkreldis.2019.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Drawing on the seminal work of DeLong, Albin, and Young, we have now entered an era of basal ganglia neuromodulation. Understanding, re-evaluating, and leveraging the lessons learned from neuromodulation will be crucial to facilitate an increased and improved application of neuromodulation in human disease. METHODS We will focus on deep brain stimulation (DBS) - the most common form of basal ganglia neuromodulation - however, similar principles can apply to other neuromodulation modalities. We start with a brief review of DBS for Parkinson's disease, essential tremor, dystonia, and Tourette syndrome. We then review hallmark studies on basal ganglia circuits and electrophysiology resulting from decades of experience in neuromodulation. The organization and content of this paper follow Dr. Okun's Lecture from the 2018 Parkinsonism and Related Disorders World Congress. RESULTS Information gained from neuromodulation has led to an expansion of the basal ganglia rate model, an enhanced understanding of nuclei dynamics, an emerging focus on pathological oscillations, a revision of the tripartite division of the basal ganglia, and a redirected focus toward individualized symptom-specific stimulation. Though there have been many limitations of the basal ganglia "box model," the construct provided the necessary foundation to advance the field. We now understand that information in the basal ganglia is encoded through complex neural responses that can be reliably measured and used to infer disease states for clinical translation. CONCLUSIONS Our deepened understanding of basal ganglia physiology will drive new neuromodulation strategies such as adaptive DBS or cell-specific neuromodulation through the use of optogenetics.
Collapse
Affiliation(s)
- Robert S Eisinger
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Stephanie Cernera
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| | - Aryn Gittis
- Biological Sciences and Center for Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Aysegul Gunduz
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Department of Neurology, Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Neurology, Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
The impact of deep brain stimulation on health related quality of life and disease-specific disability in Meige Syndrome (MS). Clin Neurol Neurosurg 2018; 171:53-57. [DOI: 10.1016/j.clineuro.2018.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/06/2018] [Accepted: 05/10/2018] [Indexed: 12/21/2022]
|
11
|
Alterman RL, Stone S. Deep Brain Stimulation for Dystonia. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Sakas DE, Leonardos A, Boviatsis E, Gatzonis S, Panourias I, Stathis P, Stavrinou LC. Constant-Current Deep Brain Stimulation of the Globus Pallidus Internus in the Treatment of Primary Dystonia by a Novel 8-Contact (Octrode) Lead. World Neurosurg 2017; 103:45-56. [DOI: 10.1016/j.wneu.2017.03.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/19/2017] [Accepted: 03/20/2017] [Indexed: 12/31/2022]
|
13
|
Sarva H, Miravite J, Swan MC, Deik A, Raymond D, Severt WL, Kopell BH. A Case of Myoclonus-Dystonia Responding to Low-frequency Pallidal Stimulation. Tremor Other Hyperkinet Mov (N Y) 2017; 7:460. [PMID: 28503362 PMCID: PMC5425800 DOI: 10.7916/d82z1bs4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/17/2017] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND High-frequency pallidal stimulation has been shown to improve various types of dystonia, including myoclonus-dystonia. CASE REPORT We report a case of epsilon sarcoglycan mutation-negative myoclonus-dystonia with response to low-frequency bilateral pallidal stimulation. DISCUSSION Low-frequency pallidal stimulation provides an effective means of treating various dystonias, regardless of genetic status, as in our case, as it provides increased programming options with fewer adverse effects.
Collapse
Affiliation(s)
- Harini Sarva
- Parkinson’s Disease and Movement Disorders Institute, Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Joan Miravite
- Department of Neurology, Division of Movement Disorders, Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel Medical Center, New York, NY, USA
| | - Matthew C. Swan
- Department of Neurology, Division of Movement Disorders, Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel Medical Center, New York, NY, USA
| | - Andres Deik
- Parkinson Disease and Movement Disorders Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Deborah Raymond
- Department of Neurology, Division of Movement Disorders, Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel Medical Center, New York, NY, USA
| | - William Lawrence Severt
- Department of Neurology, Division of Movement Disorders, Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel Medical Center, New York, NY, USA
| | - Brian H. Kopell
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Medical Center, New York, NY, USA
| |
Collapse
|
14
|
Establishing a Standard of Care for Deep Brain Stimulation Centers in Canada. Can J Neurol Sci 2016; 44:132-138. [PMID: 27873569 DOI: 10.1017/cjn.2016.409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractDuring the “DBS Canada Day” symposium held in Toronto July 4-5, 2014, the scientific committee invited experts to share their knowledge regarding deep brain stimulation (DBS) management of movement disorders in three domains: (1) the programming algorithms, (2) the necessary team to run a neurosurgery program, and (3) the appropriate scales to better define in a more comprehensive fashion the effect of the brain surgery. Each presentation was followed by an open discussion, and this article reports on the conclusions of this meeting on these three questions. Concerning programming, the role of the pulse width and the switching off of the stimulation at night for thalamic stimulation for the control of tremor have been discussed. The algorithms proposed in the literature for programming in Parkinson’s disease (PD) need validation. In dystonia, the use of monopolar vs bipolar parameters, the use of low vs high frequencies and the use of smaller versus larger pulse widths all need to be examined properly. Concerning the necessary team to run a neurosurgical program, recommendations will follow the suggestions for standardized outcome measures. Regarding the outcome measures for DBS in PD, investigations need to focus on the non-motor aspects of PD. Identifying which nonmotor symptoms respond to DBS would allow a better screening before and satisfaction postoperatively. There is an important need for more data to determine the optimal programming protocol and the standard measures that should be performed routinely by all centers.
Collapse
|
15
|
Electrophysiological interpretations of the clinical response to stimulation parameters of pallidal deep brain stimulation for cervical dystonia. Acta Neurochir (Wien) 2016; 158:2029-38. [PMID: 27562682 DOI: 10.1007/s00701-016-2942-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/17/2016] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) at the posterolateral ventral portion of the globus pallidus internus (GPi) has been regarded as a good therapeutic modality. Because the theoretical principle behind the stimulation parameters is yet to be determined, this study aimed to interpret analyses of the stimulation parameters used in our department based on an electrophysiological review. METHODS Nineteen patients with medically refractory idiopathic cervical dystonia who underwent GPi DBS were enrolled. The baseline and follow-up parameters were analyzed according to their dependence on time after DBS. The pattern of changes in the stimulation parameters over time, the differences across the four active contacts, and the relationship between the stimulation parameters and clinical benefits were evaluated. RESULTS Mean age and disease duration were 50.9 years and 54.7 months, respectively. Mean follow-up duration was 22.6 months. The amplitude and frequency exhibited significant increasing temporal patterns, i.e., a mean amplitude and frequency of 3.1 V and 132.2 Hz at the initial setting and 4.0 V and 142.6 Hz at the last follow-up, respectively. The better clinical response group (clinical improvement rate of 65-100 %) used a narrower pulse width (mean value of 78.4 μs) than the worse clinical response group (clinical improvement rate of 5-60 %, mean of value of 88.6 μs). Active contact at the GPe was used more often in the worse clinical response group than in the better response group. CONCLUSIONS Based on electrophysiological considerations, these patterns of stimulation parameters could be interpreted. This interpretation was based on a theoretical understanding of the mechanisms of action of DBS, i.e., that the abnormal neural signal is substituted by an induced neural signal, which is generated by therapeutic DBS.
Collapse
|
16
|
Baizabal-Carvallo JF, Alonso-Juarez M. Low-frequency deep brain stimulation for movement disorders. Parkinsonism Relat Disord 2016; 31:14-22. [DOI: 10.1016/j.parkreldis.2016.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/21/2016] [Accepted: 07/28/2016] [Indexed: 12/24/2022]
|
17
|
Picillo M, Lozano AM, Kou N, Munhoz RP, Fasano A. Programming Deep Brain Stimulation for Tremor and Dystonia: The Toronto Western Hospital Algorithms. Brain Stimul 2016; 9:438-452. [DOI: 10.1016/j.brs.2016.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/02/2016] [Accepted: 02/03/2016] [Indexed: 10/22/2022] Open
|
18
|
Zibetti M, Lozano AM, Picillo M, Munhoz RP, Fasano A. Low-Frequency Stimulation of Globus Pallidus Internus for Axial Motor Symptoms of Parkinson's Disease. Mov Disord Clin Pract 2015; 2:445-446. [PMID: 30363531 DOI: 10.1002/mdc3.12215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/24/2015] [Accepted: 05/28/2015] [Indexed: 11/11/2022] Open
Affiliation(s)
| | - Andres M Lozano
- Division of Neurosurgery Toronto Western Hospital-UHN University of Toronto Toronto Ontario Canada
| | - Marina Picillo
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease Division of Neurology Toronto Western Hospital-UHN University of Toronto Toronto Ontario Canada.,Department of Medicine and Surgery Center for Neurodegenerative diseases (CEMAND) University of Salerno Salerno Italy
| | - Renato P Munhoz
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease Division of Neurology Toronto Western Hospital-UHN University of Toronto Toronto Ontario Canada
| | - Alfonso Fasano
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease Division of Neurology Toronto Western Hospital-UHN University of Toronto Toronto Ontario Canada
| |
Collapse
|
19
|
Dong S, Zhang X, Li J, Li Y. The benefits of low-frequency pallidal deep brain stimulation in a patient with Tourette syndrome. Parkinsonism Relat Disord 2014; 20:1438-9. [DOI: 10.1016/j.parkreldis.2014.09.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/10/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
|
20
|
Cheung T, Noecker AM, Alterman RL, McIntyre CC, Tagliati M. Defining a therapeutic target for pallidal deep brain stimulation for dystonia. Ann Neurol 2014; 76:22-30. [PMID: 24852850 DOI: 10.1002/ana.24187] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To create a data-driven computational model that identifies brain regions most frequently influenced by successful deep brain stimulation (DBS) of the globus pallidus (GP) for advanced, medication-resistant, generalized dystonia. METHODS We studied a retrospective cohort of 21 DYT1 primary dystonia patients treated for at least 1 year with bilateral pallidal DBS. We first created individual volume of tissue activation (VTA) models utilizing neuroimaging and postoperative stimulation and clinical data. These models were then combined into a standardized probabilistic dystonia stimulation atlas (DSA). Finally, we constructed a candidate target volume from electrodes demonstrating at least 75% improvement in contralateral symptoms, utilizing voxels stimulated by least 75% of these electrodes. RESULTS Pallidal DBS resulted in a median contralateral hemibody improvement of 90% (mean = 83%, standard deviation [SD] = 20) after 1 year of treatment. Individual VTA models of the 42 active electrodes included in the study demonstrated a mean stimulation volume of 501mm ([SD] = 284). The resulting DSA showed that areas most frequently stimulated were located squarely in the middle of the posterior GP, with a common target volume measuring 153mm(3) . INTERPRETATION Our results provide a map of the region of influence of therapeutic DBS for dystonia and represent a potential target to refine current methods of surgical planning and stimulation parameters selection. Based on their role in alleviating symptoms, these regions may also provide anatomical and physiological information relevant to disease models of dystonia. Further experimental and clinical studies will be needed to validate their importance.
Collapse
Affiliation(s)
- Tyler Cheung
- Cedars Sinai Medical Center, Department of Neurology, Los Angeles, CA
| | | | | | | | | |
Collapse
|
21
|
Ostrem JL, Markun LC, Glass GA, Racine CA, Volz MM, Heath SL, de Hemptinne C, Starr PA. Effect of frequency on subthalamic nucleus deep brain stimulation in primary dystonia. Parkinsonism Relat Disord 2014; 20:432-8. [DOI: 10.1016/j.parkreldis.2013.12.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/25/2013] [Accepted: 12/23/2013] [Indexed: 11/15/2022]
|
22
|
Tierney TS, Lozano AM. Surgical treatment for secondary dystonia. Mov Disord 2012; 27:1598-605. [PMID: 23037556 DOI: 10.1002/mds.25204] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 08/15/2012] [Accepted: 08/22/2012] [Indexed: 12/16/2022] Open
Abstract
Surgical therapy for the secondary dystonias is generally perceived to be less effective than for primary disease. However, a number of case reports and small open series have recently appeared describing quite favorable outcomes following surgery for some nonprimary dystonias. We discuss surgical treatment options for this group of diverse conditions, including tardive dystonia, dystonic cerebral palsy, and certain heredodegenerative diseases in which deep brain stimulation and ablative lesions of the posteroventral pallidum have been shown to be effective. Other types of secondary dystonia respond less well to pallidal surgery, particularly when anatomical lesions of the basal ganglia are prominent on preoperative imaging. For these conditions, central baclofen delivery and botulinum toxin denervation may be considered. With optimal medical and surgical care, some patients with secondary dystonia have achieved reductions in disability and pain that approach those documented for primary dystonia.
Collapse
Affiliation(s)
- Travis S Tierney
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
23
|
Lumsden DE, Kaminska M, Tustin K, Gimeno H, Baker L, Ashkan K, Selway R, Lin JP. Battery life following pallidal deep brain stimulation (DBS) in children and young people with severe primary and secondary dystonia. Childs Nerv Syst 2012; 28:1091-7. [PMID: 22427261 DOI: 10.1007/s00381-012-1728-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND The finite life of non-rechargeable batteries powering implantable pulse generators (IPG) necessitates their periodic replacement. Children receiving deep brain stimulation (DBS) may require frequent battery changes over their treatment lifetime. OBJECTIVES We aimed to determine the battery life of IPGs used in pallidal DBS for the treatment of dystonia in children and young people. METHODS We make use of a review of case notes of all children and young people undergoing DBS surgery at our institution from June 2005 to May 2010. RESULTS A total of 54 children and young people underwent surgery on at least one occasion, with a total of 76 IPGs implanted. Replacement IPGs due to battery failure were required in 15 out of 54 (27.8%). The average time to battery failure was 24.5 ± 2.9 months (95% confidence interval), with a range of 13-39 months. Battery life was significantly longer in primary compared to subsequent IPGs. No difference in longevity was seen between different IPG devices. CONCLUSIONS IPG battery life may be short in children and young people receiving treatment for dystonia. These findings highlight the potential benefits of the recently introduced rechargeable neurostimulators.
Collapse
Affiliation(s)
- Daniel E Lumsden
- Complex Motor Disorder Service, Evelina Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, Lambeth Palace Road, London SE1 7EH, UK
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Tai CH, Wu RM, Liu HM, Tsai CW, Tseng SH. Meige syndrome relieved by bilateral pallidal stimulation with cycling mode: case report. Neurosurgery 2012; 69:E1333-7. [PMID: 21712740 DOI: 10.1227/neu.0b013e31822a9ad2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND IMPORTANCE Deep brain stimulation (DBS) of the bilateral globus pallidus internus (GPi) has been used effectively to treat dystonia. We report a patient with severe Meige syndrome who received bilateral GPi DBS with good improvement in symptoms during the first 24-month stimulation therapy. To decrease energy consumption and to prolong battery life, the stimulation parameters of the replaced programmable pulse generator were adjusted to the cyclic mode and the stimulator was turned off during nighttime sleep. The patient achieved similar good treatment effect with extended battery life in the following years. CLINICAL PRESENTATION A 66-year-old woman with a 3-year history of severe cranial-cervical dystonia received stereotaxic surgery for bilateral GPi DBS therapy. The Burke-Fahn-Marsden dystonia score improved from 32 to 7.5. The effect lasted up to 24 months after therapy when the battery ran out of life. After careful evaluation, we adjusted the stimulation parameters of the second implantable pulse generator to the cyclic stimulation mode and programmed the stimulator to turn off automatically during nighttime sleep. The patient showed persistent good effect 36 months after starting use of the second implantable pulse generator. CONCLUSION To treat dystonic symptoms effectively, stimulation parameters with higher energy consumption are usually required. For reducing the discomfort of repeated battery replacement within a short time and decreasing energy consumption in implantable pulse generator, cyclic mode stimulation could be considered in dystonic patients receiving bilateral GPi DBS.
Collapse
Affiliation(s)
- Chun-Hwei Tai
- Department of Neurology, University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
25
|
Thompson A, Morishita T, Okun MS. DBS and electrical neuro-network modulation to treat neurological disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012. [PMID: 23206686 DOI: 10.1016/b978-0-12-404706-8.00014-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The use of neuromodulatory techniques in the treatment of neurological disorders is expanding and now includes devices targeting the motor cortex, basal ganglia, spinal cord, peripheral nervous system, and autonomic nervous system. In this chapter, we review and discuss the current and past literature as well as review indications for each of these devices in the ongoing management of many common neurological diseases including chronic pain, Parkinson's disease, tremor, dystonia, and epilepsy. We also discuss and update mechanisms of deep brain stimulation and electrical neuro-network modulation.
Collapse
Affiliation(s)
- Amanda Thompson
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, Florida, USA
| | | | | |
Collapse
|
26
|
Walter U, Kirsch M, Wittstock M, Müller JU, Benecke R, Wolters A. Transcranial sonographic localization of deep brain stimulation electrodes is safe, reliable and predicts clinical outcome. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:1382-1391. [PMID: 21683505 DOI: 10.1016/j.ultrasmedbio.2011.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/28/2011] [Accepted: 05/14/2011] [Indexed: 05/30/2023]
Abstract
In patients with deep brain stimulation (DBS), poor postoperative outcome or unexpected clinical change require brain imaging to check the lead location. Here, we studied safety, reliability and prognostic value of transcranial sonography (TCS) for DBS lead localization applying predefined TCS criteria. After measuring thermal effects of TCS and imaging artefact sizes of DBS lead using a skull phantom, we prospectively enrolled 34 patients with DBS of globus pallidus internus, ventro-intermediate thalamic or subthalamic nucleus. TCS had no influence on lead temperature, electrical parameters of DBS device or clinical state of patients. TCS measures of lead coordinates agreed with MRI measures in anterior-posterior and medial-lateral axis. Lead dislocation requiring reinsertion was reliably detected. Only patients with optimal lead position on TCS had favorable clinical 12-month outcome (>50% improvement), whereas unfavorable outcome (<25% improvement) was associated with suboptimal lead position. TCS may therefore become a first-choice modality to monitor lead location.
Collapse
Affiliation(s)
- Uwe Walter
- Department of Neurology, University of Rostock, Rostock, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
The realization that medications used to treat movement disorders and psychiatric conditions of basal ganglia origin have significant shortcomings, as well as advances in the understanding of the functional organization of the brain, has led to a renaissance in functional neurosurgery, and particularly the use of deep brain stimulation (DBS). Movement disorders are now routinely being treated with DBS of 'motor' portions of the basal ganglia output nuclei, specifically the subthalamic nucleus and the internal pallidal segment. These procedures are highly effective and generally safe. Use of DBS is also being explored in the treatment of neuropsychiatric disorders, with targeting of the 'limbic' basal ganglia-thalamocortical circuitry. The results of these procedures are also encouraging, but many unanswered questions remain in this emerging field. This review summarizes the scientific rationale and practical aspects of using DBS for neurologic and neuropsychiatric disorders.
Collapse
|
28
|
Albanese A, Asmus F, Bhatia KP, Elia AE, Elibol B, Filippini G, Gasser T, Krauss JK, Nardocci N, Newton A, Valls-Solé J. EFNS guidelines on diagnosis and treatment of primary dystonias. Eur J Neurol 2011; 18:5-18. [PMID: 20482602 DOI: 10.1111/j.1468-1331.2010.03042.x] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES to provide a revised version of earlier guidelines published in 2006. BACKGROUND primary dystonias are chronic and often disabling conditions with a widespread spectrum mainly in young people. DIAGNOSIS primary dystonias are classified as pure dystonia, dystonia plus or paroxysmal dystonia syndromes. Assessment should be performed using a validated rating scale for dystonia. Genetic testing may be performed after establishing the clinical diagnosis. DYT1 testing is recommended for patients with primary dystonia with limb onset before age 30, and in those with an affected relative with early-onset dystonia. DYT6 testing is recommended in early-onset or familial cases with cranio-cervical dystonia or after exclusion of DYT1. Individuals with early-onset myoclonus should be tested for mutations in the DYT11 gene. If direct sequencing of the DYT11 gene is negative, additional gene dosage is required to improve the proportion of mutations detected. A levodopa trial is warranted in every patient with early-onset primary dystonia without an alternative diagnosis. In patients with idiopathic dystonia, neurophysiological tests can help with describing the pathophysiological mechanisms underlying the disorder. TREATMENT botulinum toxin (BoNT) type A is the first-line treatment for primary cranial (excluding oromandibular) or cervical dystonia; it is also effective on writing dystonia. BoNT/B is not inferior to BoNT/A in cervical dystonia. Pallidal deep brain stimulation (DBS) is considered a good option, particularly for primary generalized or cervical dystonia, after medication or BoNT have failed. DBS is less effective in secondary dystonia. This treatment requires a specialized expertise and a multidisciplinary team.
Collapse
Affiliation(s)
- A Albanese
- Istituto Neurologico Carlo Besta, Milan, Italy Università Cattolica del Sacro Cuore, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Medications, psychotherapy, and other treatments are effective for many patients with psychiatric disorders. However, with currently available interventions, a substantial number of patients experience incomplete resolution of symptoms, and relapse rates are high. In the search for better treatments, increasing interest has focused on focal neuromodulation. This focus has been driven by improved neuroanatomical models of mood, thought, and behavior regulation, as well as by more advanced strategies for directly and focally altering neural activity. Deep brain stimulation (DBS) is one of the most invasive focal neuromodulation techniques available; data have supported its safety and efficacy in a number of movement disorders. Investigators have produced preliminary data on the safety and efficacy of DBS for several psychiatric disorders, as well. In this review, we describe the development and justification for testing DBS for various psychiatric disorders, carefully consider the available clinical data, and briefly discuss potential mechanisms of action.
Collapse
Affiliation(s)
- Paul E. Holtzheimer
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Helen S. Mayberg
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
30
|
Gubellini P, Salin P, Kerkerian-Le Goff L, Baunez C. Deep brain stimulation in neurological diseases and experimental models: From molecule to complex behavior. Prog Neurobiol 2009; 89:79-123. [DOI: 10.1016/j.pneurobio.2009.06.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 04/28/2009] [Accepted: 06/18/2009] [Indexed: 11/30/2022]
|
31
|
Abstract
Deep brain stimulation (DBS) has been used to treat various neurological and psychiatric disorders. Over the years, the most suitable surgical candidates and targets for some of these conditions have been characterized and the benefits of DBS well demonstrated in double-blinded randomized trials. This review will discuss some of the areas of current investigation and potential new applications of DBS.
Collapse
Affiliation(s)
- Nasir Raza Awan
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada
| | | | | |
Collapse
|
32
|
|
33
|
Alterman RL, Tagliati M. Deep Brain Stimulation for Torsion Dystonia. Neuromodulation 2009. [DOI: 10.1016/b978-0-12-374248-3.00046-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Rezai AR, Machado AG, Deogaonkar M, Azmi H, Kubu C, Boulis NM. Surgery for movement disorders. Neurosurgery 2008; 62 Suppl 2:809-38; discussion 838-9. [PMID: 18596424 DOI: 10.1227/01.neu.0000316285.52865.53] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Movement disorders, such as Parkinson's disease, tremor, and dystonia, are among the most common neurological conditions and affect millions of patients. Although medications are the mainstay of therapy for movement disorders, neurosurgery has played an important role in their management for the past 50 years. Surgery is now a viable and safe option for patients with medically intractable Parkinson's disease, essential tremor, and dystonia. In this article, we provide a review of the history, neurocircuitry, indication, technical aspects, outcomes, complications, and emerging neurosurgical approaches for the treatment of movement disorders.
Collapse
Affiliation(s)
- Ali R Rezai
- Center for Neurological Restoration, and Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio 44122, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Johnson MD, Miocinovic S, McIntyre CC, Vitek JL. Mechanisms and targets of deep brain stimulation in movement disorders. Neurotherapeutics 2008; 5:294-308. [PMID: 18394571 PMCID: PMC2517242 DOI: 10.1016/j.nurt.2008.01.010] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Chronic electrical stimulation of the brain, known as deep brain stimulation (DBS), has become a preferred surgical treatment for medication-refractory movement disorders. Despite its remarkable clinical success, the therapeutic mechanisms of DBS are still not completely understood, limiting opportunities to improve treatment efficacy and simplify selection of stimulation parameters. This review addresses three questions essential to understanding the mechanisms of DBS. 1) How does DBS affect neuronal tissue in the vicinity of the active electrode or electrodes? 2) How do these changes translate into therapeutic benefit on motor symptoms? 3) How do these effects depend on the particular site of stimulation? Early hypotheses proposed that stimulation inhibited neuronal activity at the site of stimulation, mimicking the outcome of ablative surgeries. Recent studies have challenged that view, suggesting that although somatic activity near the DBS electrode may exhibit substantial inhibition or complex modulation patterns, the output from the stimulated nucleus follows the DBS pulse train by direct axonal excitation. The intrinsic activity is thus replaced by high-frequency activity that is time-locked to the stimulus and more regular in pattern. These changes in firing pattern are thought to prevent transmission of pathologic bursting and oscillatory activity, resulting in the reduction of disease symptoms through compensatory processing of sensorimotor information. Although promising, this theory does not entirely explain why DBS improves motor symptoms at different latencies. Understanding these processes on a physiological level will be critically important if we are to reach the full potential of this powerful tool.
Collapse
Affiliation(s)
- Matthew D. Johnson
- grid.239578.20000000106754725Department of Biomedical Engineering, Cleveland Clinic Foundation, 44195 Cleveland, Ohio
| | - Svjetlana Miocinovic
- grid.67105.350000000121643847School of Medicine, Case Western Reserve University, 44106 Cleveland, Ohio
| | - Cameron C. McIntyre
- grid.239578.20000000106754725Department of Biomedical Engineering, Cleveland Clinic Foundation, 44195 Cleveland, Ohio
| | - Jerrold L. Vitek
- grid.239578.20000000106754725Department of Neurosciences, Cleveland Clinic Foundation, 9500 Euclid Ave, NC30, 44195 Cleveland, OH
| |
Collapse
|
36
|
Abstract
It has been understood, for some time, that modulation of deep brain nuclei within the basal ganglia and thalamus can have a therapeutic effect in patients with movement disorders. Because of its reversibility and adjustability, deep brain stimulation (DBS) has largely come to replace traditional ablation procedures. The clinical effects of DBS vary, depending both on the target being stimulated and on the parameters of stimulation. Both aspects are currently the subject of substantial research and discovery. The most common targets for DBS treatment include the subthalamic nucleus for the treatment of advanced Parkinson's disease, the ventral intermediate nucleus of the thalamus for the treatment of medically refractory essential tremor, and the globus pallidus interna for the treatment of both cervical and generalized dystonias and Parkinson's disease. We review the current indications, targets, outcomes, and general procedure of DBS for essential tremor, Parkinson's disease, and dystonia.
Collapse
Affiliation(s)
- Hong Yu
- grid.152326.10000000122647217Department of Neurological Surgery, Vanderbilt University, MCN T-4224, 37232 Nashville, TN
| | - Joseph S. Neimat
- grid.152326.10000000122647217Department of Neurological Surgery, Vanderbilt University, MCN T-4224, 37232 Nashville, TN
| |
Collapse
|
37
|
Birdno MJ, Grill WM. Mechanisms of deep brain stimulation in movement disorders as revealed by changes in stimulus frequency. Neurotherapeutics 2008; 5:14-25. [PMID: 18164480 PMCID: PMC2200868 DOI: 10.1016/j.nurt.2007.10.067] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Deep brain stimulation (DBS) is an established treatment for symptoms in movement disorders and is under investigation for symptom management in persons with psychiatric disorders and epilepsy. Nevertheless, there remains disagreement regarding the physiological mechanisms responsible for the actions of DBS, and this lack of understanding impedes both the design of DBS systems for treating novel diseases and the effective tuning of current DBS systems. Currently available data indicate that effective DBS overrides pathological bursts, low frequency oscillations, synchronization, and disrupted firing patterns present in movement disorders, and replaces them with more regularized firing. Although it is likely that the specific mechanism(s) by which DBS exerts its effects varies between diseases and target nuclei, the overriding of pathological activity appears to be ubiquitous. This review provides an overview of changes in motor symptoms with changes in DBS frequency and highlights parallels between the changes in motor symptoms and the changes in cellular activity that appear to underlie the motor symptoms.
Collapse
Affiliation(s)
- Merrill J. Birdno
- grid.26009.3d0000000419367961Department of Biomedical Engineering, Duke University, Hudson Hall, Room 136, Box 90281, 27708-0281 Durham, NC
| | - Warren M. Grill
- grid.26009.3d0000000419367961Department of Biomedical Engineering, Duke University, Hudson Hall, Room 136, Box 90281, 27708-0281 Durham, NC
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Various movement disorders are now treated with stereotactic procedures, particularly deep brain stimulation. We review the neurosurgical treatment of dystonias and tics, focusing mainly on the surgical aspects and outcome of deep brain stimulation. RECENT FINDINGS Pallidal stimulation is nowadays the mainstay surgical treatment for patients with dystonia, particularly generalized dystonia. Various well designed recent clinical trials support the efficacy of the procedure. Improvements of 40-80% have been reported in primary generalized, segmental and cervical dystonia. For secondary dystonia, a similar outcome has been described in patients with tardive dystonia and pantothenate kinase-associated neurodegeneration. In patients with Tourette's syndrome, the results of the first trials with thalamic and pallidal deep brain stimulation have been very promising. Improvements of 70-90% in the frequency of tics have been reported with surgery in both targets. SUMMARY Deep brain stimulation has become an established therapy for dystonia and is currently being used to treat Tourette's syndrome. With accumulation of experience, clinical features that are more responsive to surgery and the best surgical candidates will be revealed. This will likely improve even further the outcome of surgery for the treatment of these disorders.
Collapse
Affiliation(s)
- Clement Hamani
- Division of Neurosurgery, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
| | | |
Collapse
|