1
|
Lu J, Zhou C, Pu J, Tian J, Yin X, Lv D, Guan X, Guo T, Zhang M, Zhang B, Yan Y, Zhao G. Brain microstructural changes in essential tremor patients and correlations with clinical characteristics: a diffusion kurtosis imaging study. J Neurol 2023; 270:2106-2116. [PMID: 36609498 DOI: 10.1007/s00415-023-11557-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Essential tremor (ET) is the second most common movement disorder; however, the pathophysiological mechanism of ET is unclear. We aimed to investigate the microstructural degeneration of gray matter (GM) and white matter (WM) and their correlations with cognition and tremor in patients with ET. METHODS The participants were 63 patients with ET and 63 matched healthy controls (HCs) who underwent 3D-T1 weighted and diffusion kurtosis images (DKI). Microstructural degeneration was measured using high-level diffusion parameters derived from DKI. A voxel-wise analysis of the means of the GM-based spatial statistics and tract-based spatial statistics were conducted to assess differences in diffusion parameters between the ET and HC groups. The volume differences between the two groups were also assessed, and tremor severity and multi-domain cognitive performance were evaluated. Finally, the relationship between microstructural degeneration and clinical characteristics were assessed. RESULTS The ET group had significantly lower mean kurtosis of the temporal, parietal, and occipital lobes and the cerebellum and lower radial kurtosis in several tracts. These microstructural changes in GM and WM were correlated with tremor and cognitive scores. However, no significant difference in volume was found between the groups. CONCLUSION Our findings suggest that ET entails extensive GM and WM microstructural alterations, which support the neurodegenerative hypothesis of ET. Our study contributes to a better understanding of the mechanisms underlying tremor and cognitive impairment in ET.
Collapse
Affiliation(s)
- Jinyu Lu
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jun Tian
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xinzhen Yin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Dayao Lv
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Yaping Yan
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Guohua Zhao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
2
|
Mavroudis I, Kazis D, Petridis F, Chatzikonstantinou S, Karantali E, Njau S, Costa V, Ciobica A, Trus C, Balmus I, Baloyannis S. Morphological and morphometric changes in the Purkinje cells of patients with essential tremor. Exp Ther Med 2021; 23:167. [PMID: 35069848 PMCID: PMC8753961 DOI: 10.3892/etm.2021.11090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/30/2021] [Indexed: 11/09/2022] Open
Abstract
Essential tremor (ET) is a progressive neurological syndrome characterised by involuntary tremors of the hands or arms, head, jaw and voice. The pathophysiology of ET is not clearly understood yet. However, previous studies have reported several changes in the brain of patients with ET. One of the brain areas extensively investigated is the cerebellum. In the present study, a morphometric analysis of Purkinje cells in patients with ET and ET-plus was performed, and subsequently compared with normal controls using the Golgi silver staining method and 3D neuronal reconstruction. Substantial morphological changes were uncovered in the Purkinje cells of patients with ET compared with normal controls, including a decreased dendritic length and field density, an overall loss of terminal branches and a decreased density of dendritic spines.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neurology, Leeds Teaching Hospitals, NHS Trust, Leeds, LS1 3EX, United Kingdom
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 54636, Greece
| | - Foivos Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 54636, Greece
| | | | - Eleni Karantali
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 54636, Greece
| | - Samuel Njau
- Department of Forensic Medicine and Toxicology, Aristotle University of Thessaloniki, Thessaloniki 54636, Greece
| | - Vasiliki Costa
- Laboratory of Neuropathology and Electron Microscopy, Aristotle University of Thessaloniki, Thessaloniki 54636, Greece
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, Iasi 700506, Romania
| | - Constantin Trus
- Department of Morphological and Functional Sciences, Faculty of Medicine, Dunarea de Jos University, Galati 800008, Romania
| | - Ioana Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iași, Iași 700057, Romania
| | - Stavros Baloyannis
- Laboratory of Neuropathology and Electron Microscopy, Aristotle University of Thessaloniki, Thessaloniki 54636, Greece
| |
Collapse
|
3
|
Holtbernd F, Shah NJ. Imaging the Pathophysiology of Essential Tremor-A Systematic Review. Front Neurol 2021; 12:680254. [PMID: 34220687 PMCID: PMC8244929 DOI: 10.3389/fneur.2021.680254] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022] Open
Abstract
Background: The pathophysiology underlying essential tremor (ET) still is poorly understood. Recent research suggests a pivotal role of the cerebellum in tremor genesis, and an ongoing controversy remains as to whether ET constitutes a neurodegenerative disorder. In addition, mounting evidence indicates that alterations in the gamma-aminobutyric acid neurotransmitter system are involved in ET pathophysiology. Here, we systematically review structural, functional, and metabolic neuroimaging studies and discuss current concepts of ET pathophysiology from an imaging perspective. Methods: We conducted a PubMed and Scopus search from 1966 up to December 2020, entering essential tremor in combination with any of the following search terms and their corresponding abbreviations: positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and gamma-aminobutyric acid (GABA). Results: Altered functional connectivity in the cerebellum and cerebello-thalamico-cortical circuitry is a prevalent finding in functional imaging studies. Reports from structural imaging studies are less consistent, and there is no clear evidence for cerebellar neurodegeneration. However, diffusion tensor imaging robustly points toward microstructural cerebellar changes. Radiotracer imaging suggests that the dopaminergic axis is largely preserved in ET. Similarly, measurements of nigral iron content and neuromelanin are unremarkable in most studies; this is in contrast to Parkinson's disease (PD). PET and MRS studies provide limited evidence for cerebellar and thalamic GABAergic dysfunction. Conclusions: There is robust evidence indicating that the cerebellum plays a key role within a multiple oscillator tremor network which underlies tremor genesis. However, whether cerebellar dysfunction relies on a neurodegenerative process remains unclear. Dopaminergic and iron imaging do not suggest a substantial overlap of ET with PD pathophysiology. There is limited evidence for alterations of the GABAergic neurotransmitter system in ET. The clinical, demographical, and genetic heterogeneity of ET translates into neuroimaging and likely explains the various inconsistencies reported.
Collapse
Affiliation(s)
- Florian Holtbernd
- Institute of Neuroscience and Medicine (INM-4/INM-11), Forschungszentrum Juelich GmbH, Juelich, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Juelich GmbH, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany
- Department of Neurology, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine (INM-4/INM-11), Forschungszentrum Juelich GmbH, Juelich, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Juelich GmbH, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany
- Department of Neurology, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Louis ED, Faust PL. Essential tremor: the most common form of cerebellar degeneration? CEREBELLUM & ATAXIAS 2020; 7:12. [PMID: 32922824 PMCID: PMC7427947 DOI: 10.1186/s40673-020-00121-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
Background The degenerative cerebellar ataxias comprise a large and heterogeneous group of neurological diseases whose hallmark clinical feature is ataxia, and which are accompanied, to variable degrees, by other features that are attributable to cerebellar dysfunction. Essential tremor (ET) is an exceptionally common neurological disease whose primary motor feature is action tremor, although patients often manifest intention tremor, mild gait ataxia and several other features of cerebellar dysfunction. Main Body In this paper, we review the abundant evidence derived from clinical, neuroimaging and postmortem studies, linking ET to cerebellar dysfunction. Furthermore, we review the combination of clinical, natural history and postmortem features suggesting that ET is neurodegenerative. We then compare the prevalence of ET (400 – 900 cases per 100,000) to that of the other cerebellar degenerations (ranging from <0.5 – 9 cases per 100,000, and in composite likely to be on the order of 20 cases per 100,000) and conclude that ET is 20 to 45 times more prevalent than all other forms of cerebellar degeneration combined. Conclusion Given the data we present, it is logical to conclude that ET is, by far, the most common form of cerebellar degeneration.
Collapse
Affiliation(s)
- Elan D Louis
- Department of Neurology and Therapeutics, University of Texas Southwestern, Dallas, TX USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY USA
| |
Collapse
|
5
|
Mavroudis I, Petridis F, Kazis D. Neuroimaging and neuropathological findings in essential tremor. Acta Neurol Scand 2019; 139:491-496. [PMID: 30977113 DOI: 10.1111/ane.13101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/14/2019] [Accepted: 04/05/2019] [Indexed: 12/21/2022]
Abstract
Essential tremor is a chronic neurological syndrome of heterogenous clinical phenotypes and multiple etiologies. Numerous studies have been done in order to investigate the pathological, neuroimaging, physiological, and clinical features of essential tremor; however, a clear pathophysiological mechanism has not been identified. One of the brain structures has been extensively investigated at the macroscopic and the microscopic level in the cerebellum. In the present study, we aim to discuss the main neuroimaging and neuropathological changes of the cerebellum in essential tremor.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neurology Leeds Teaching Hospitals Leeds UK
- Third Department of Neurology Aristotle University of Thessaloniki Thessaloniki Greece
| | - Foivos Petridis
- Third Department of Neurology Aristotle University of Thessaloniki Thessaloniki Greece
| | - Dimitrios Kazis
- Third Department of Neurology Aristotle University of Thessaloniki Thessaloniki Greece
| |
Collapse
|
6
|
Juttukonda MR, Franco G, Englot DJ, Lin YC, Petersen KJ, Trujillo P, Hedera P, Landman BA, Kang H, Donahue MJ, Konrad PE, Dawant BM, Claassen DO. White matter differences between essential tremor and Parkinson disease. Neurology 2018; 92:e30-e39. [PMID: 30504432 DOI: 10.1212/wnl.0000000000006694] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/05/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess white matter integrity in patients with essential tremor (ET) and Parkinson disease (PD) with moderate to severe motor impairment. METHODS Sedated participants with ET (n = 57) or PD (n = 99) underwent diffusion tensor imaging (DTI) and fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity values were computed. White matter tracts were defined using 3 well-described atlases. To determine candidate white matter regions that differ between ET and PD groups, a bootstrapping analysis was applied using the least absolute shrinkage and selection operator. Linear regression was applied to assess magnitude and direction of differences in DTI metrics between ET and PD populations in the candidate regions. RESULTS Fractional anisotropy values that differentiate ET from PD localize primarily to thalamic and visual-related pathways, while diffusivity differences localized to the cerebellar peduncles. Patients with ET exhibited lower fractional anisotropy values than patients with PD in the lateral geniculate body (p < 0.01), sagittal stratum (p = 0.01), forceps major (p = 0.02), pontine crossing tract (p = 0.03), and retrolenticular internal capsule (p = 0.04). Patients with ET exhibited greater radial diffusivity values than patients with PD in the superior cerebellar peduncle (p < 0.01), middle cerebellar peduncle (p = 0.05), and inferior cerebellar peduncle (p = 0.05). CONCLUSIONS Regionally, distinctive white matter microstructural values in patients with ET localize to the cerebellar peduncles and thalamo-cortical visual pathways. These findings complement recent functional imaging studies in ET but also extend our understanding of putative physiologic features that account for distinctions between ET and PD.
Collapse
Affiliation(s)
- Meher R Juttukonda
- From the Departments of Radiology and Radiological Sciences (M.R.J., M.J.D.), Neurological Surgery (D.J.E., P.E.K.), Biostatistics (Y.-C.L., H.K.), Neurology (P.T., P.H., M.J.D.), and Psychiatry (M.J.D.), Vanderbilt University Medical Center, Nashville, TN; Department of Pathophysiology and Transplantation (G.F.) University of Milan, Italy; and Chemical and Physical Biology Program (K.J.P.) and Departments of Electrical Engineering (B.A.L., B.M.D.), Computer Engineering (B.A.L., B.M.D.), Computer Science and Biomedical Engineering (B.A.L., B.M.D.), and Neurology (D.O.C.), Vanderbilt University, Nashville, TN
| | - Giulia Franco
- From the Departments of Radiology and Radiological Sciences (M.R.J., M.J.D.), Neurological Surgery (D.J.E., P.E.K.), Biostatistics (Y.-C.L., H.K.), Neurology (P.T., P.H., M.J.D.), and Psychiatry (M.J.D.), Vanderbilt University Medical Center, Nashville, TN; Department of Pathophysiology and Transplantation (G.F.) University of Milan, Italy; and Chemical and Physical Biology Program (K.J.P.) and Departments of Electrical Engineering (B.A.L., B.M.D.), Computer Engineering (B.A.L., B.M.D.), Computer Science and Biomedical Engineering (B.A.L., B.M.D.), and Neurology (D.O.C.), Vanderbilt University, Nashville, TN
| | - Dario J Englot
- From the Departments of Radiology and Radiological Sciences (M.R.J., M.J.D.), Neurological Surgery (D.J.E., P.E.K.), Biostatistics (Y.-C.L., H.K.), Neurology (P.T., P.H., M.J.D.), and Psychiatry (M.J.D.), Vanderbilt University Medical Center, Nashville, TN; Department of Pathophysiology and Transplantation (G.F.) University of Milan, Italy; and Chemical and Physical Biology Program (K.J.P.) and Departments of Electrical Engineering (B.A.L., B.M.D.), Computer Engineering (B.A.L., B.M.D.), Computer Science and Biomedical Engineering (B.A.L., B.M.D.), and Neurology (D.O.C.), Vanderbilt University, Nashville, TN
| | - Ya-Chen Lin
- From the Departments of Radiology and Radiological Sciences (M.R.J., M.J.D.), Neurological Surgery (D.J.E., P.E.K.), Biostatistics (Y.-C.L., H.K.), Neurology (P.T., P.H., M.J.D.), and Psychiatry (M.J.D.), Vanderbilt University Medical Center, Nashville, TN; Department of Pathophysiology and Transplantation (G.F.) University of Milan, Italy; and Chemical and Physical Biology Program (K.J.P.) and Departments of Electrical Engineering (B.A.L., B.M.D.), Computer Engineering (B.A.L., B.M.D.), Computer Science and Biomedical Engineering (B.A.L., B.M.D.), and Neurology (D.O.C.), Vanderbilt University, Nashville, TN
| | - Kalen J Petersen
- From the Departments of Radiology and Radiological Sciences (M.R.J., M.J.D.), Neurological Surgery (D.J.E., P.E.K.), Biostatistics (Y.-C.L., H.K.), Neurology (P.T., P.H., M.J.D.), and Psychiatry (M.J.D.), Vanderbilt University Medical Center, Nashville, TN; Department of Pathophysiology and Transplantation (G.F.) University of Milan, Italy; and Chemical and Physical Biology Program (K.J.P.) and Departments of Electrical Engineering (B.A.L., B.M.D.), Computer Engineering (B.A.L., B.M.D.), Computer Science and Biomedical Engineering (B.A.L., B.M.D.), and Neurology (D.O.C.), Vanderbilt University, Nashville, TN
| | - Paula Trujillo
- From the Departments of Radiology and Radiological Sciences (M.R.J., M.J.D.), Neurological Surgery (D.J.E., P.E.K.), Biostatistics (Y.-C.L., H.K.), Neurology (P.T., P.H., M.J.D.), and Psychiatry (M.J.D.), Vanderbilt University Medical Center, Nashville, TN; Department of Pathophysiology and Transplantation (G.F.) University of Milan, Italy; and Chemical and Physical Biology Program (K.J.P.) and Departments of Electrical Engineering (B.A.L., B.M.D.), Computer Engineering (B.A.L., B.M.D.), Computer Science and Biomedical Engineering (B.A.L., B.M.D.), and Neurology (D.O.C.), Vanderbilt University, Nashville, TN
| | - Peter Hedera
- From the Departments of Radiology and Radiological Sciences (M.R.J., M.J.D.), Neurological Surgery (D.J.E., P.E.K.), Biostatistics (Y.-C.L., H.K.), Neurology (P.T., P.H., M.J.D.), and Psychiatry (M.J.D.), Vanderbilt University Medical Center, Nashville, TN; Department of Pathophysiology and Transplantation (G.F.) University of Milan, Italy; and Chemical and Physical Biology Program (K.J.P.) and Departments of Electrical Engineering (B.A.L., B.M.D.), Computer Engineering (B.A.L., B.M.D.), Computer Science and Biomedical Engineering (B.A.L., B.M.D.), and Neurology (D.O.C.), Vanderbilt University, Nashville, TN
| | - Bennett A Landman
- From the Departments of Radiology and Radiological Sciences (M.R.J., M.J.D.), Neurological Surgery (D.J.E., P.E.K.), Biostatistics (Y.-C.L., H.K.), Neurology (P.T., P.H., M.J.D.), and Psychiatry (M.J.D.), Vanderbilt University Medical Center, Nashville, TN; Department of Pathophysiology and Transplantation (G.F.) University of Milan, Italy; and Chemical and Physical Biology Program (K.J.P.) and Departments of Electrical Engineering (B.A.L., B.M.D.), Computer Engineering (B.A.L., B.M.D.), Computer Science and Biomedical Engineering (B.A.L., B.M.D.), and Neurology (D.O.C.), Vanderbilt University, Nashville, TN
| | - Hakmook Kang
- From the Departments of Radiology and Radiological Sciences (M.R.J., M.J.D.), Neurological Surgery (D.J.E., P.E.K.), Biostatistics (Y.-C.L., H.K.), Neurology (P.T., P.H., M.J.D.), and Psychiatry (M.J.D.), Vanderbilt University Medical Center, Nashville, TN; Department of Pathophysiology and Transplantation (G.F.) University of Milan, Italy; and Chemical and Physical Biology Program (K.J.P.) and Departments of Electrical Engineering (B.A.L., B.M.D.), Computer Engineering (B.A.L., B.M.D.), Computer Science and Biomedical Engineering (B.A.L., B.M.D.), and Neurology (D.O.C.), Vanderbilt University, Nashville, TN
| | - Manus J Donahue
- From the Departments of Radiology and Radiological Sciences (M.R.J., M.J.D.), Neurological Surgery (D.J.E., P.E.K.), Biostatistics (Y.-C.L., H.K.), Neurology (P.T., P.H., M.J.D.), and Psychiatry (M.J.D.), Vanderbilt University Medical Center, Nashville, TN; Department of Pathophysiology and Transplantation (G.F.) University of Milan, Italy; and Chemical and Physical Biology Program (K.J.P.) and Departments of Electrical Engineering (B.A.L., B.M.D.), Computer Engineering (B.A.L., B.M.D.), Computer Science and Biomedical Engineering (B.A.L., B.M.D.), and Neurology (D.O.C.), Vanderbilt University, Nashville, TN
| | - Peter E Konrad
- From the Departments of Radiology and Radiological Sciences (M.R.J., M.J.D.), Neurological Surgery (D.J.E., P.E.K.), Biostatistics (Y.-C.L., H.K.), Neurology (P.T., P.H., M.J.D.), and Psychiatry (M.J.D.), Vanderbilt University Medical Center, Nashville, TN; Department of Pathophysiology and Transplantation (G.F.) University of Milan, Italy; and Chemical and Physical Biology Program (K.J.P.) and Departments of Electrical Engineering (B.A.L., B.M.D.), Computer Engineering (B.A.L., B.M.D.), Computer Science and Biomedical Engineering (B.A.L., B.M.D.), and Neurology (D.O.C.), Vanderbilt University, Nashville, TN
| | - Benoit M Dawant
- From the Departments of Radiology and Radiological Sciences (M.R.J., M.J.D.), Neurological Surgery (D.J.E., P.E.K.), Biostatistics (Y.-C.L., H.K.), Neurology (P.T., P.H., M.J.D.), and Psychiatry (M.J.D.), Vanderbilt University Medical Center, Nashville, TN; Department of Pathophysiology and Transplantation (G.F.) University of Milan, Italy; and Chemical and Physical Biology Program (K.J.P.) and Departments of Electrical Engineering (B.A.L., B.M.D.), Computer Engineering (B.A.L., B.M.D.), Computer Science and Biomedical Engineering (B.A.L., B.M.D.), and Neurology (D.O.C.), Vanderbilt University, Nashville, TN
| | - Daniel O Claassen
- From the Departments of Radiology and Radiological Sciences (M.R.J., M.J.D.), Neurological Surgery (D.J.E., P.E.K.), Biostatistics (Y.-C.L., H.K.), Neurology (P.T., P.H., M.J.D.), and Psychiatry (M.J.D.), Vanderbilt University Medical Center, Nashville, TN; Department of Pathophysiology and Transplantation (G.F.) University of Milan, Italy; and Chemical and Physical Biology Program (K.J.P.) and Departments of Electrical Engineering (B.A.L., B.M.D.), Computer Engineering (B.A.L., B.M.D.), Computer Science and Biomedical Engineering (B.A.L., B.M.D.), and Neurology (D.O.C.), Vanderbilt University, Nashville, TN.
| |
Collapse
|
7
|
Resting-state fMRI study on drug-naive patients of essential tremor with and without head tremor. Sci Rep 2018; 8:10580. [PMID: 30002390 PMCID: PMC6043592 DOI: 10.1038/s41598-018-28778-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/26/2018] [Indexed: 02/05/2023] Open
Abstract
This study used resting-state functional MRI (r-fMRI) to evaluate intrinsic brain activity in drug-naive patients with essential tremor (ET) with and without head tremor. We enrolled 20 patients with ET with hand and head tremor (h-ET), 27 patients with ET without head tremor (a-ET), and 27 healthy controls (HCs). All participants underwent r-fMRI scans on a 3-T MR system. The amplitude of low-frequency fluctuation (ALFF) of blood oxygen level-dependent signals was used to characterize regional cerebral function. We identified increased ALFF value in the bilateral posterior lobe of cerebellum in the h-ET patients relative to a-ET and HCs and demonstrated that h-ET is related to abnormalities in the cerebello-cortical areas, while the a-ET is related to abnormalities in the thalamo-cortical areas. In addition, we observed the ALFF abnormality in the cerebellum (left cerebellum VIII and right cerebellum VI) correlated with the tremor score in h-ET patients and abnormal ALFF in the left precentral gyrus correlated with the age at onset and disease duration in h-ET patients. These findings may be helpful for facilitating further understanding of the potential mechanisms underlying different subtypes of ET.
Collapse
|
8
|
Wang P, Luo X, Zhong C, Yang L, Guo F, Yu N. Resting state fMRI reveals the altered synchronization of BOLD signals in essential tremor. J Neurol Sci 2018; 392:69-76. [PMID: 30025236 DOI: 10.1016/j.jns.2018.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 06/14/2018] [Accepted: 07/08/2018] [Indexed: 10/28/2022]
Abstract
Essential tremor (ET) is one of the most common movement disorders in humans. Nevertheless, there remain several controversies surrounding ET, such as whether it is a disorder of abnormal neuronal oscillations within the tremor network. In this work, the resting-state fMRI data were collected from 17 ET patients and 17 age- and gender-matched healthy controls. First, using FOur-dimensional (spatiotemporal) Consistency of local neural Activities (FOCA) the abnormal synchronization of fMRI signals in ET patients were investigated. Then, global functional connectivity intensity (gFCI) and density (gFCD) were analyzed in the regions exhibiting significant FOCA differences. Compared with healthy controls, patients with ET showed the increased FOCA values found in the bilateral cuneus, the left lingual gyrus, the left paracentral lobule, the right middle temporal gyrus, the bilateral precentral gyrus, the right postcentral gyrus, the pallidum and putamen. Decreased FOCA values in ET patients were located in the frontal gyrus, the bilateral anterior cingulate and the medial dorsal nucleus of right thalamus. In ET patients, significant changes in gFCI and gFCD were located in the cuneus, the middle temporal gyrus and the middle frontal gyrus. Changes in gFCI were also found in the medial frontal gyrus and thalamus in addition to changes in gFCD in the precentral gyrus. Our results provided further evidence that ET might present with abnormal spontaneous activity in the tremor network, including motor-related cotex, basal ganglia and thalamus, as well as distributed non-motor areas. This work also demonstrated that FOCA and functional connectivity have the potential to provide important insight into the pathophysiological mechanism of ET.
Collapse
Affiliation(s)
- Pu Wang
- Department of Neurology, Chongzhou People's Hospital, Chongzhou, Sichuan, China
| | - Xiangdong Luo
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Chengqing Zhong
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Lili Yang
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Fuqiang Guo
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.
| | - Nengwei Yu
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Louis ED, Lenka A. The Olivary Hypothesis of Essential Tremor: Time to Lay this Model to Rest? Tremor Other Hyperkinet Mov (N Y) 2017; 7:473. [PMID: 28966877 PMCID: PMC5618117 DOI: 10.7916/d8ff40rx] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/09/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Although essential tremor (ET) is the most common tremor disorder, its pathogenesis is not fully understood. The traditional model of ET, proposed in the early 1970s, posited that the inferior olivary nucleus (ION) was the prime generator of tremor in ET and that ET is a disorder of electrophysiological derangement, much like epilepsy. This article comprehensively reviews the origin and basis of this model, its merits and problems, and discusses whether it is time to lay this model to rest. METHODS A PubMed search was performed in March 2017 to identify articles for this review. RESULTS The olivary model gains support from the recognition of neurons with pacemaker property in the ION and the harmaline-induced tremor models (as the ION is the prime target of harmaline). However, the olivary model is problematic, as neurons with pacemaker property are not specific to the ION and the harmaline model does not completely represent the human disease ET. In addition, a large number of neuroimaging studies in ET have not detected structural or functional changes in the ION; rather, abnormalities have been reported in structures related to the cerebello-thalamo-cortical network. Moreover, a post-mortem study of microscopic changes in the ION did not detect any differences between ET cases and controls. DISCUSSION The olivary model largely remains a physiological construct. Numerous observations have cast considerable doubt as to the validity of this model in ET. Given the limitations of the model, we conclude that it is time now to lay this model to rest.
Collapse
Affiliation(s)
- Elan D. Louis
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA
- Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Abhishek Lenka
- Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences, Bangalore, India
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
10
|
Cerasa A, Quattrone A. Linking Essential Tremor to the Cerebellum-Neuroimaging Evidence. THE CEREBELLUM 2017; 15:263-75. [PMID: 26626626 DOI: 10.1007/s12311-015-0739-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Essential tremor (ET) is the most common pathological tremor disorder in the world, and post-mortem evidence has shown that the cerebellum is the most consistent area of pathology in ET. In the last few years, advanced neuroimaging has tried to confirm this evidence. The aim of the present review is to discuss to what extent the evidence provided by this field of study may be generalised. We performed a systematic literature search combining the terms ET with the following keywords: MRI, VBM, MRS, DTI, fMRI, PET and SPECT. We summarised and discussed each study and placed the results in the context of existing knowledge regarding the cerebellar involvement in ET. A total of 51 neuroimaging studies met our search criteria, roughly divided into 19 structural and 32 functional studies. Despite clinical and methodological differences, both functional and structural imaging studies showed similar findings but without defining a clear topography of neurodegeneration. Indeed, the vast majority of studies found functional and structural abnormalities in several parts of the anterior and posterior cerebellar lobules, but it remains to be established to what degree these neural changes contribute to clinical symptoms of ET. Currently, advanced neuroimaging has confirmed the involvement of the cerebellum in pathophysiological processes of ET, although a high variability in results persists. For this reason, the translation of this knowledge into daily clinical practice is again partially limited, although new advanced multivariate neuroimaging approaches (machine-learning) are proving interesting changes of perspective.
Collapse
Affiliation(s)
| | - Aldo Quattrone
- IBFM, National Research Council, Catanzaro, CZ, Italy. .,Institute of Neurology, Department of Medical Sciences, University "Magna Graecia", Catanzaro, Italy.
| |
Collapse
|
11
|
Shin H, Lee DK, Lee JM, Huh YE, Youn J, Louis ED, Cho JW. Atrophy of the Cerebellar Vermis in Essential Tremor: Segmental Volumetric MRI Analysis. THE CEREBELLUM 2016; 15:174-81. [PMID: 26062905 DOI: 10.1007/s12311-015-0682-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Postmortem studies of essential tremor (ET) have demonstrated the presence of degenerative changes in the cerebellum, and imaging studies have examined related structural changes in the brain. However, their results have not been completely consistent and the number of imaging studies has been limited. We aimed to study cerebellar involvement in ET using MRI segmental volumetric analysis. In addition, a unique feature of this study was that we stratified ET patients into subtypes based on the clinical presence of cerebellar signs and compared their MRI findings. Thirty-nine ET patients and 36 normal healthy controls, matched for age and sex, were enrolled. Cerebellar signs in ET patients were assessed using the clinical tremor rating scale and International Cooperative Ataxia Rating Scale. ET patients were divided into two groups: patients with cerebellar signs (cerebellar-ET) and those without (classic-ET). MRI volumetry was performed using CIVET pipeline software. Data on whole and segmented cerebellar volumes were analyzed using SPSS. While there was a trend for whole cerebellar volume to decrease from controls to classic-ET to cerebellar-ET, this trend was not significant. The volume of several contiguous segments of the cerebellar vermis was reduced in ET patients versus controls. Furthermore, these vermis volumes were reduced in the cerebellar-ET group versus the classic-ET group. The volume of several adjacent segments of the cerebellar vermis was reduced in ET. This effect was more evident in ET patients with clinical signs of cerebellar dysfunction. The presence of tissue atrophy suggests that ET might be a neurodegenerative disease.
Collapse
Affiliation(s)
- Hyeeun Shin
- Department of Neurology, Anyang Sam Hospital, Gyeunggi-do, Republic of Korea
| | - Dong-Kyun Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Young-Eun Huh
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Irwon dong 50, Gangnam-gu, Seoul, 135-710, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Jinyoung Youn
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Irwon dong 50, Gangnam-gu, Seoul, 135-710, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, 06520, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Jin Whan Cho
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Irwon dong 50, Gangnam-gu, Seoul, 135-710, Republic of Korea.
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Novellino F, Nicoletti G, Cherubini A, Caligiuri ME, Nisticò R, Salsone M, Morelli M, Arabia G, Cavalli SM, Vaccaro MG, Chiriaco C, Quattrone A. Cerebellar involvement in essential tremor with and without resting tremor: A Diffusion Tensor Imaging study. Parkinsonism Relat Disord 2016; 27:61-6. [DOI: 10.1016/j.parkreldis.2016.03.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/02/2016] [Accepted: 03/28/2016] [Indexed: 11/17/2022]
|
13
|
Chunling W, Zheng X. Review on clinical update of essential tremor. Neurol Sci 2016; 37:495-502. [DOI: 10.1007/s10072-015-2380-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/08/2015] [Indexed: 01/03/2023]
|
14
|
News and controversies regarding essential tremor. Rev Neurol (Paris) 2015; 171:415-25. [DOI: 10.1016/j.neurol.2015.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/01/2015] [Accepted: 02/02/2015] [Indexed: 01/08/2023]
|
15
|
Ha SW, Yang YS, Song IU, Chung YA, Oh JK, Chung SW. Changes in regional brain glucose metabolism measured with F-18-FDG-PET in essential tremor. Acta Radiol 2015; 56:482-6. [PMID: 24782572 DOI: 10.1177/0284185114531414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND There is growing evidence that essential tremor (ET) is a multiple-system disorder. Previous PET studies in ET typically have measured brain oxygen consumption and cerebral blood flow. PURPOSE To compare ET patients with control subjects to investigate any regional change in cerebral glucose metabolism through statistical parametric mapping (SPM) analysis of F-18-fluorodeoxyglucose positron emission tomography (F-18-FDG-PET). MATERIAL AND METHODS We studied 17 patients with ET (17 men; mean age, 67.3 ± 4.8 years) and age-sex matched normal subjects. All subjects underwent FDG-PET imaging, and evaluated severity of tremor symptoms was measured as score on the Fahn-Tolosa-Marin rating scale (FTM). We also evaluated detailed the medical history and neurological examinations in all patients. RESULTS The mean age of tremor onset was 57.6 ± 12.9 years and the mean FTM score was 15.1 ± 4.9. Brain FDG-PET analysis demonstrated hypometabolism in the medial frontal lobe, medial temporal lobe, and the precuneus of parietal lobe. However, there was no significant difference of glucose metabolism in the cerebellum. CONCLUSION We propose that motor symptom of ET are caused by electrophysiological disturbances within cortical-cerebellar networks, rather than degenerative process of cerebellum, because the metabolism of the cerebellum was normal at rest. Furthermore, the abnormal glucose metabolism in the cerebral regions that do not mainly participate in motor function suggest that these regions may play a role as early markers of non-motor manifestations.
Collapse
Affiliation(s)
- Sang-Won Ha
- Department of Neurology, Veterans Healthcare Service Medical Center, Seoul, Republic of Korea
| | - Young Soon Yang
- Department of Neurology, Veterans Healthcare Service Medical Center, Seoul, Republic of Korea
| | - In-Uk Song
- Department of Neurology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Yong-An Chung
- Department of Radiology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Jin-Kyoung Oh
- Department of Radiology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Sung-Woo Chung
- Department of Neurology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| |
Collapse
|
16
|
Bhalsing KS, Kumar KJ, Saini J, Yadav R, Gupta AK, Pal PK. White matter correlates of cognitive impairment in essential tremor. AJNR Am J Neuroradiol 2014; 36:448-53. [PMID: 25339653 DOI: 10.3174/ajnr.a4138] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND PURPOSE Impairment of cognitive functions occurs in essential tremor, though the mechanism is largely unknown. The aim of this study was to find microstructural correlates of cognitive dysfunction seen in essential tremor by using DTI and neuropsychological assessment. MATERIALS AND METHODS Fifty-five patients with essential tremor and 55 matched healthy controls were evaluated. Essential tremor was diagnosed by using the National Institutes of Health criteria. Subjects were assessed by using a structured neuropsychological battery. DTI data were acquired by using 3T MR imaging and were analyzed by using tract-based spatial statistics. Fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity were analyzed. RESULTS Patients were considered cognitively impaired when the test score was 1.5 SDs below or above the mean of healthy controls (depending on the type of test) in ≥3 neuropsychological tests. Patients with cognitive impairment had significantly higher mean diffusivity, radial diffusivity, and axial diffusivity values in the bilateral frontoparietal regions. In patients with cognitive impairment, mean diffusivity, radial diffusivity, and axial diffusivity showed correlations with various neuropsychological test scores. Executive function correlated with DTI measures of the frontal white matter, cingulum, inferior superior longitudinal and uncinate fasciculi, anterior thalamic radiations, and posterior lobe of the cerebellum. Visuospatial function correlated with the right parieto-occipital lobe, whereas visual-verbal memories correlated with the anterior thalamic radiations, inferior longitudinal and uncinate fasciculi, and the posterior lobe of the cerebellum. No significant correlations were found between fractional anisotropy and any of the neuropsychological test scores. CONCLUSIONS The present study demonstrates a correlation between neuropsychological test scores and DTI measures, suggesting a neuroanatomic basis for cognitive impairment seen in patients with essential tremor.
Collapse
Affiliation(s)
- K S Bhalsing
- From the Departments of Neurology (K.S.B., R.Y., P.K.P.)
| | | | - J Saini
- Neuroimaging and Interventional Radiology (J.S., A.K.G.), National Institute of Mental Health and Neurosciences, Karnataka, India
| | - R Yadav
- From the Departments of Neurology (K.S.B., R.Y., P.K.P.)
| | - A K Gupta
- Neuroimaging and Interventional Radiology (J.S., A.K.G.), National Institute of Mental Health and Neurosciences, Karnataka, India
| | - P K Pal
- From the Departments of Neurology (K.S.B., R.Y., P.K.P.)
| |
Collapse
|
17
|
Klaming R, Annese J. Functional anatomy of essential tremor: lessons from neuroimaging. AJNR Am J Neuroradiol 2014; 35:1450-7. [PMID: 23620075 DOI: 10.3174/ajnr.a3586] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The neuropathogenetic processes underlying essential tremor appear to cause subtle morphologic changes in neural networks that include multiple brain structures, primarily the cerebellum, brain stem, frontal lobes, and thalamus. One of the main challenges of neuroimaging in essential tremor is differentiating disease-specific markers from the spectrum of structural changes that occur due to aging. This review discusses recent neuroimaging studies in the light of current knowledge of the neuropsychology and pathology of the disease. We suggest that the application of multiple macroscopic and microscopic neuroimaging modalities, combined with personalized information relative to cognitive and behavioral symptoms, is the prerequisite for a comprehensive classification and correct diagnosis of essential tremor.
Collapse
Affiliation(s)
- R Klaming
- From The Brain Observatory, San Diego, California; and Department of Radiology, University of California, San Diego, San Diego, California
| | - J Annese
- From The Brain Observatory, San Diego, California; and Department of Radiology, University of California, San Diego, San Diego, California.
| |
Collapse
|
18
|
Schmouth JF, Dion PA, Rouleau GA. Genetics of essential tremor: From phenotype to genes, insights from both human and mouse studies. Prog Neurobiol 2014; 119-120:1-19. [DOI: 10.1016/j.pneurobio.2014.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/16/2014] [Accepted: 05/02/2014] [Indexed: 11/30/2022]
|
19
|
Louis ED, Huang CC, Dyke JP, Long Z, Dydak U. Neuroimaging studies of essential tremor: how well do these studies support/refute the neurodegenerative hypothesis? TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2014; 4:235. [PMID: 24918024 PMCID: PMC4038743 DOI: 10.7916/d8df6pb8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 05/05/2014] [Indexed: 02/08/2023]
Abstract
Background Tissue-based research has recently led to a new patho-mechanistic model of essential tremor (ET)—the cerebellar degenerative model. We are not aware of a study that has reviewed the current neuroimaging evidence, focusing on whether the studies support or refute the neurodegenerative hypothesis of ET. This was our aim. Methods References for this review were identified by searches of PubMed (1966 to February 2014). Results Several neuroimaging methods have been used to study ET, most of them based on magnetic resonance imaging (MRI). The methods most specific to address the question of neurodegeneration are MRI-based volumetry, magnetic resonance spectroscopy, and diffusion-weighted imaging. Studies using each of these methods provide support for the presence of cerebellar degeneration in ET, finding reduced cerebellar brain volumes, consistent decreases in cerebellar N-acetylaspartate, and increased mean diffusivity. Other neuroimaging techniques, such as functional MRI and positron emission tomography (PET) are less specific, but still sensitive to potential neurodegeneration. These techniques are used for measuring a variety of brain functions and their impairment. Studies using these modalities also largely support cerebellar neuronal impairment. In particular, changes in 11C-flumazenil binding in PET studies and changes in iron deposition in an MRI study provide evidence along these lines. The composite data point to neuronal impairment and likely neuronal degeneration in ET. Discussion Recent years have seen a marked increase in the number of imaging studies of ET. As a whole, the combined data provide support for the presence of cerebellar neuronal degeneration in this disease.
Collapse
Affiliation(s)
- Elan D Louis
- GH Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, New York, USA ; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA ; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA ; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Chaorui C Huang
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, New York, USA
| | - Jonathan P Dyke
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Zaiyang Long
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA ; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA ; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
20
|
Sharifi S, Nederveen AJ, Booij J, van Rootselaar AF. Neuroimaging essentials in essential tremor: a systematic review. NEUROIMAGE-CLINICAL 2014; 5:217-31. [PMID: 25068111 PMCID: PMC4110352 DOI: 10.1016/j.nicl.2014.05.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 01/04/2023]
Abstract
Background Essential tremor is regarded to be a disease of the central nervous system. Neuroimaging is a rapidly growing field with potential benefits to both diagnostics and research. The exact role of imaging techniques with respect to essential tremor in research and clinical practice is not clear. A systematic review of the different imaging techniques in essential tremor is lacking in the literature. Methods We performed a systematic literature search combining the terms essential tremor and familial tremor with the following keywords: imaging, MRI, VBM, DWI, fMRI, PET and SPECT, both in abbreviated form as well as in full form. We summarize and discuss the quality and the external validity of each study and place the results in the context of existing knowledge regarding the pathophysiology of essential tremor. Results A total of 48 neuroimaging studies met our search criteria, roughly divided into 19 structural and 29 functional and metabolic studies. The quality of the studies varied, especially concerning inclusion criteria. Functional imaging studies indicated cerebellar hyperactivity during rest and during tremor. The studies also pointed to the involvement of the thalamus, the inferior olive and the red nucleus. Structural studies showed less consistent results. Discussion and conclusion Neuroimaging techniques in essential tremor give insight into the pathophysiology of essential tremor indicating the involvement of the cerebellum as the most consistent finding. GABAergic dysfunction might be a major premise in the pathophysiological hypotheses. Inconsistencies between studies can be partly explained by the inclusion of heterogeneous patient groups. Improvement of scientific research requires more stringent inclusion criteria and application of advanced analysis techniques. Also, the use of multimodal neuroimaging techniques is a promising development in movement disorders research. Currently, the role of imaging techniques in essential tremor in daily clinical practice is limited. We conducted a systematic review of neuroimaging studies in essential tremor. Cerebellar involvement is the most consistent finding. GABAergic dysfunction is worthwhile investigating more intensively. We encourage multimodal neuroimaging focussing on brain networks.
Collapse
Affiliation(s)
- Sarvi Sharifi
- Department of Neurology, Academic Medical Center, Amsterdam, The Netherlands ; Brain Imaging Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Brain Imaging Center, Academic Medical Center, Amsterdam, The Netherlands ; Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Jan Booij
- Brain Imaging Center, Academic Medical Center, Amsterdam, The Netherlands ; Department of Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Anne-Fleur van Rootselaar
- Department of Neurology, Academic Medical Center, Amsterdam, The Netherlands ; Brain Imaging Center, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Bhalsing KS, Saini J, Pal PK. Understanding the pathophysiology of essential tremor through advanced neuroimaging: A review. J Neurol Sci 2013; 335:9-13. [DOI: 10.1016/j.jns.2013.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 08/02/2013] [Accepted: 09/03/2013] [Indexed: 11/24/2022]
|
22
|
Hess CW, Ofori E, Akbar U, Okun MS, Vaillancourt DE. The evolving role of diffusion magnetic resonance imaging in movement disorders. Curr Neurol Neurosci Rep 2013; 13:400. [PMID: 24046183 PMCID: PMC3824956 DOI: 10.1007/s11910-013-0400-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significant advances have allowed diffusion magnetic resonance imaging (MRI) to evolve into a powerful tool in the field of movement disorders that can be used to study disease states and connectivity between brain regions. Diffusion MRI is a promising potential biomarker for Parkinson's disease and other forms of parkinsonism, and may allow the distinction of different forms of parkinsonism. Techniques such as tractography have contributed to our current thinking regarding the pathophysiology of dystonia and possible mechanisms of penetrance. Diffusion MRI measures could potentially assist in monitoring disease progression in Huntington's disease, and in uncovering the nature of the processes and structures involved the development of essential tremor. The ability to represent structural connectivity in vivo also makes diffusion MRI an ideal adjunctive tool for the surgical treatment of movement disorders. We review recent studies using diffusion MRI in movement disorders research and present the current state of the science as well as future directions.
Collapse
Affiliation(s)
- Christopher W. Hess
- Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
- University of Florida Center for Movement Disorders & Neurorestoration, Gainesville, FL, USA
- Neurology Service, Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Edward Ofori
- Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
| | - Umer Akbar
- University of Florida Center for Movement Disorders & Neurorestoration, Gainesville, FL, USA
| | - Michael S. Okun
- University of Florida Center for Movement Disorders & Neurorestoration, Gainesville, FL, USA
| | - David E. Vaillancourt
- Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
| |
Collapse
|
23
|
Grimaldi G, Manto M. Is essential tremor a Purkinjopathy? The role of the cerebellar cortex in its pathogenesis. Mov Disord 2013; 28:1759-61. [PMID: 24114851 DOI: 10.1002/mds.25645] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/03/2013] [Accepted: 07/23/2013] [Indexed: 11/08/2022] Open
Abstract
Essential tremor (ET) encompasses a group of progressive neurological diseases in which the primary clinical feature is kinetic tremor of the arms. There is accumulating evidence to suggest that the cerebellum is involved in the pathogenesis of ET; the clinical presentation, neurophysiological data, and functional and metabolic abnormalities revealed by neuroimaging studies all point toward the dysregulation of cerebellar circuits. Recent neuropathological findings at postmortem demonstrate that Purkinje neurons, and some brainstem neurons, play an integral role in the pathogenesis of this common neurological disorder. The assessment of Purkinje cell linear density shows that Purkinje density is abnormal in ET brains. Specific efforts need be devoted to understanding the molecular and cellular events occurring in the Purkinje neurons of the cerebellar cortex, which are emerging as being of particular importance in the pathogenesis of ET in a subgroup of patients.
Collapse
Affiliation(s)
- Giuliana Grimaldi
- Unité d'Etude du Mouvement, Hôpital Erasme-Université Libre de Bruxelles, Bruxelles, Belgium
| | | |
Collapse
|
24
|
Buijink AWG, Caan MWA, Tijssen MAJ, Hoogduin JM, Maurits NM, van Rootselaar AF. Decreased cerebellar fiber density in cortical myoclonic tremor but not in essential tremor. THE CEREBELLUM 2013; 12:199-204. [PMID: 22961557 DOI: 10.1007/s12311-012-0414-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pathophysiology of tremor generation remains uncertain in 'familial cortical myoclonic tremor with epilepsy' (FCMTE) and essential tremor (ET). In both disorders, imaging and pathological studies suggest involvement of the cerebellum and its projection areas. MR diffusion tensor imaging allows estimation of white matter tissue composition, and therefore is well suited to quantify structural changes in vivo. This study aimed to compare cerebellar fiber density between FCMTE and ET patients and healthy controls. Seven FCMTE patients, eight ET patients, and five healthy controls were studied. Cerebellum was annotated based on fractional anisotropy (FA) and mean diffusivity volumes. Mean cerebellar FA values were computed as well as mean cerebellar volume. Group statistics included one-way ANOVAs and post hoc independent t tests. Mean FA of the cerebellar region for FCMTE was 0.242 (SD = 0.012), for ET 0.259 (SD = 0.0115), and for controls 0.262 (SD = 0.0146). There was a significant group effect for FA (F(2) = 4.9, p = 0.02). No difference in mean cerebellar volume was found. Post hoc independent t tests revealed significantly decreased mean FA in FCMTE patients compared to controls (t[10] = 2.5, p = 0.03) and ET patients (t[13] = 2.9, p = 0.01), while there was no difference in mean FA between ET patients and controls (t[11] < 1.0). This study indicates for the first time microstructural damage of the cerebellar white matter in FCMTE in vivo. These results ascertain a role of the cerebellum in 'cortical tremor'.
Collapse
Affiliation(s)
- Arthur W G Buijink
- Department of Neurology and Clinical Neurophysiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
Nicoletti G, Rizzo G, Barbagallo G, Tonon C, Condino F, Manners D, Messina D, Testa C, Arabia G, Gambardella A, Lodi R, Quattrone A. Diffusivity of cerebellar hemispheres enables discrimination of cerebellar or parkinsonian multiple system atrophy from progressive supranuclear palsy-Richardson syndrome and Parkinson disease. Radiology 2013; 267:843-50. [PMID: 23329659 DOI: 10.1148/radiol.12120364] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE To explore the usefulness of histogram analysis of mean diffusivity (MD) derived from diffusion-weighted imaging of large infratentorial structures to distinguish parkinsonian syndromes. MATERIALS AND METHODS Local research ethics committee approval and informed consent were obtained. Ten patients with Parkinson disease (PD), nine with the parkinsonian variant of multiple system atrophy (MSA-P), seven with the cerebellar variant of MSA (MSA-C), 17 with progressive supranuclear palsy-Richardson syndrome (PSP-RS), and 10 healthy subjects were recruited. Histograms of MD values were generated for all pixels in the whole infratentorial compartment and separately for the whole brainstem, vermis, and cerebellar hemispheres. To assess the differences in MD values among groups, the Kruskal-Wallis test was used, followed by the Mann-Whitney U test for pairwise comparisons. All P values resulting from pairwise comparisons were corrected with the Bonferroni method. RESULTS MSA-P and MSA-C groups had higher median MD values (P < .01) in the brainstem and cerebellum when compared with other groups; this finding was in line with the known consistent neurodegenerative damage in posterior cranial fossa structures in these diseases. Median MD values from cerebellar hemispheres were used to discriminate patients with MSA-C and those with MSA-P from patients with PD and those with PSP-RS (P < .01; sensitivity, specificity, and positive predictive value equaled 100%). Furthermore, patients with PSP-RS had significantly higher MD values in the vermis than did healthy subjects (P < .05) and patients with PD (P < .001). CONCLUSION These findings support the clinical usefulness of diffusion imaging in the differential diagnosis of parkinsonism, suggesting that the minimally operator-dependent histogram analysis of the infratentorial structures and particularly of the whole cerebellar hemispheres can be used to distinguish patients with MSA-P and those with MSA-C from patients with PSP-RS and those with PD.
Collapse
Affiliation(s)
- Giuseppe Nicoletti
- Institute of Neurologic Sciences, National Research Council, Piano Lago di Mangone, Cosenza, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Passamonti L, Cerasa A, Quattrone A. Neuroimaging of Essential Tremor: What is the Evidence for Cerebellar Involvement? TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2012; 2. [PMID: 23439960 PMCID: PMC3572634 DOI: 10.7916/d8f76b8g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 01/26/2012] [Indexed: 12/13/2022]
Abstract
Background Clinical observations and electrophysiological studies have provided initial evidence for the involvement of the cerebellum in essential tremor (ET), the most frequent hyperkinetic disorder. Recently, this hypothesis has been reinvigorated by post-mortem studies that demonstrated a number of pathological changes in the cerebellum of ET patients compared with age-matched healthy controls. Advanced neuroimaging techniques have also made it possible to detect in vivo which cerebellar abnormalities are present in ET patients and to reveal the core mechanisms implicated in the development of motor and cognitive symptoms in ET. Objective We discuss the neuroimaging research investigating the brain structure and function of ET patients relative to healthy controls. In particular, we review 1) structural neuroimaging experiments assessing the density/volume of cortical/subcortical regions and the integrity of the white-matter fibers connecting them; 2) functional studies exploring brain responses during motor/cognitive tasks and the function of specific neurotransmitters/metabolites within cortical–cerebellar circuits. Methods A search in PubMed was conducted to identify the relevant literature. Discussion Current neuroimaging research provides converging evidence for the role of the cerebellum in the pathophysiology of ET, although some inconsistencies exist, particularly in structural studies. These discrepancies may depend on the high clinical heterogeneity of ET and on differences among the experimental methods used across studies. Further investigations are needed to disentangle the relationships between specific ET phenotypes and the underlying patterns of neural abnormalities.
Collapse
Affiliation(s)
- Luca Passamonti
- Unità di Ricerca Neuroimmagini, Istituto di Scienze Neurologiche, Consiglio Nazionale delle Ricerche, Catanzaro, Italy
| | | | | |
Collapse
|
27
|
Bermejo-Pareja F, Puertas-Martín V. Cognitive features of essential tremor: a review of the clinical aspects and possible mechanistic underpinnings. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2012; 2. [PMID: 23440004 PMCID: PMC3572680 DOI: 10.7916/d89w0d7w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 05/08/2012] [Indexed: 01/10/2023]
Abstract
The classical concept of essential tremor (ET) as a monosymptomatic tremorogenic disorder has been questioned in the last decade as new evidence has been described. Clinical, neuroimaging, and pathological studies have described a probable structural basis (mainly in cerebellum) and evidence that ET is associated with subtle clinical cerebellar deficits and several non-motor clinical manifestations, such as cognitive and mood disorders. We performed literature searches in Medline, ISI Web of Knowledge, and PsycInfo databases. The aim of this review is to describe cognitive deficits associated with ET. First, we present a brief history of ET cognitive disorders presented. Second, we describe several clinical cross-sectional series demonstrating that ET is associated with mild cognitive deficits of attention, executive functions, several types of memory (working memory, immediate, short term, delayed, and possibly others) and, mood disorders (depression). Recent neuroimaging studies favor a cerebellar basis for these cognitive deficits. Population-based surveys confirm that mild cognitive dysfunction is not limited to severe ET cases, the entire ET group, including mild and undiagnosed cases, can be affected. Cohort studies indicated that ET cognitive deficits could be progressive and that ET patients had an increased risk of dementia. The mood and cognitive deficits in ET are in agreement with cognitive affective cerebellar syndrome described in patients with cerebellar disorders. New evidence, mainly from functional (neuroimaging) and prospective clinical studies would further bolster recent descriptions of ET clinical manifestations.
Collapse
Affiliation(s)
- Félix Bermejo-Pareja
- Head of the Neurology Department, University Hospital "12 de Octubre", Madrid, Spain ; Biomedical Research Network on Neurodegenerative Disorders (CIBERNED), Carlos III National Research Institute, Madrid, Spain ; Department of Biomedical Sciences (ANECA), Complutense University of Madrid, Spain
| | | |
Collapse
|
28
|
Essential tremor is a neurodegenerative disease. J Neural Transm (Vienna) 2012; 119:1383-7; discussion 1373. [DOI: 10.1007/s00702-012-0878-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 07/25/2012] [Indexed: 10/28/2022]
|
29
|
Essential tremor: is it a neurodegenerative disease? No. J Neural Transm (Vienna) 2012; 119:1375-81; discussion 1373. [DOI: 10.1007/s00702-012-0875-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 07/25/2012] [Indexed: 12/23/2022]
|
30
|
|
31
|
Saini J, Bagepally BS, Bhatt MD, Chandran V, Bharath RD, Prasad C, Yadav R, Pal PK. Diffusion tensor imaging: tract based spatial statistics study in essential tremor. Parkinsonism Relat Disord 2012; 18:477-82. [PMID: 22297126 DOI: 10.1016/j.parkreldis.2012.01.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 01/02/2012] [Accepted: 01/08/2012] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Essential tremor (ET) is a common movement disorder with motor and non-motor symptoms. We aimed to investigate the neurodegenerative changes in the brain white matter of patients with ET using Diffusion Tensor Imaging (DTI). METHODS Clinical and MRI data from 20 patients (5 women and 15 men; age-38.2 ± 16.5 yrs) with ET and 17 controls (3 women and 14 men; age-40.7 ± 16.5 yrs) were collected prospectively. The DTI data were analyzed using tract based spatial statistics (TBSS) software for tract wise analysis. Further region of interest (ROI) analysis was carried out in the genu of corpus callosum, anterior limb of internal capsule (ALIC), corticospinal tract (CS), and cerebellar peduncles. Effect of tremor severity, disease duration and age of onset on DTI metrics was also studied. RESULTS Patients with ET in comparison to controls showed significant (P(corrected) < 0.05) increase of mean diffusivity and radial diffusivity in right frontoparietal white matter. Axial diffusivity increase was seen in bilateral cerebral hemispheres, thalamus, brainstem and cerebellar hemisphere white matter. No significant change in fractional anisotropy of the white matter was seen. ROI analysis also revealed abnormalities in the ALIC and cerebellar peduncles. There was no correlation between the severity of white matter changes and clinical tremor severity score as well as disease duration. CONCLUSIONS This study provides in vivo evidence for axonal disintegration of the cerebral and cerebellar white matter fibres in patients with ET.
Collapse
Affiliation(s)
- Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore-560029, Karnataka, India
| | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Rizzo G, Tonon C, Valentino ML, Manners D, Fortuna F, Gellera C, Pini A, Ghezzo A, Baruzzi A, Testa C, Malucelli E, Barbiroli B, Carelli V, Lodi R. Brain diffusion-weighted imaging in Friedreich's ataxia. Mov Disord 2011; 26:705-12. [PMID: 21370259 DOI: 10.1002/mds.23518] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/22/2010] [Accepted: 10/18/2010] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Friedreich ataxia (FRDA) is the commonest form of autosomal recessive ataxia. This study aimed to define the extent of the brain damage in FRDA patients and to identify in vivo markers of neurodegeneration, using diffusion-weighted imaging (DWI). METHODS We studied 27 FRDA patients and 21 healthy volunteers using a 1.5 T scanner. Axial DW images were obtained and mean diffusivity (MD) maps were generated. Region of interests (ROIs) included medulla, pons, inferior, middle and superior cerebellar peduncles (ICP, SCP, MCP), dentate nucleus, cerebellar white matter, thalamus, caudate, putamen, pallidus, pyramidal tracts at level of posterior limb of internal capsule (PLIC), optic radiations (OR), and corpus callosum. Histograms of MD were generated for all pixels in the whole cerebral hemispheres and infratentorial compartment. Disease severity was assessed by the International Cooperative Ataxia Rating Scale (ICARS). RESULTS FRDA patients had significantly higher MD values than controls in medulla (P < 0.001), ICP (P < 0.001), MCP (P < 0.01), SCP (P < 0.001), OR (P < 0.001), and at the level of the infratentorial structures such as brainstem (P < 0.01), cerebellar hemispheres (P < 0.01), and especially in the cerebellar vermis (P < 0.001). MD values were strongly correlated with disease duration and ICARS score. DISCUSSION Our results showed that DWI is a suitable non-invasive technique to quantify the extent of neurodegeneration in FRDA, that appears more extended than previously reported, showing a microstructural involvement of structures such as OR and MCP.
Collapse
Affiliation(s)
- Giovanni Rizzo
- MR Spectroscopy Unit, Department of Internal Medicine, Aging and Nephrology, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Jia L, Jia-Lin S, Qin D, Qing L, Yan Z. A diffusion tensor imaging study in essential tremor. J Neuroimaging 2010; 21:370-4. [PMID: 21091815 DOI: 10.1111/j.1552-6569.2010.00535.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Essential tremor (ET) is suggested to be a neural degenerative disease. The authors investigated the fractional anisotropy (FA) and apparent diffusion coefficient (ADC) value in basal ganglia, thalamus, red nucleus, and substantia nigra in ET patients using diffusion tensor image (DTI). METHODS DTI examination was carried out in patients with ET and controls. FA and ADC values were obtained from various brain structures, including caudate, putamen+pallidum, thalamus, red nucleus, and substantia nigra. RESULTS The ADC value of the red nuclei in patients with ET was higher compared with controls (.90 vs .77; P= .000). However, no significant differences were demonstrated for FA, or ADC values of other structures. CONCLUSIONS The increased ADC value in the red nucleus indicates that there is neuronal damage or loss present, suggesting that ET may be a neurodegenerative disease.
Collapse
Affiliation(s)
- Liu Jia
- Department of Radiology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | | | | | | | | |
Collapse
|
35
|
Brussino A, Graziano C, Giobbe D, Ferrone M, Dragone E, Arduino C, Lodi R, Tonon C, Gabellini A, Rinaldi R, Miccoli S, Grosso E, Bellati MC, Orsi L, Migone N, Brusco A. Spinocerebellar ataxia type 12 identified in two Italian families may mimic sporadic ataxia. Mov Disord 2010; 25:1269-73. [PMID: 20629122 DOI: 10.1002/mds.22835] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
SCA12 is an autosomal dominant cerebellar ataxia characterized by onset in the fourth decade of life with action tremor of arms and head, mild ataxia, dysmetria, and hyperreflexia. The disease is caused by an expansion of >or=51 CAGs in the 5' region of the brain- specific phosphatase 2 regulatory subunit B-beta isoform (PPP2R2B) gene. SCA12 is very rare, except for a single ethnic group in India. We screened 159 Italian ataxic patients for SCA12 and identified two families that segregated an expanded allele of 57 to 58 CAGs, sharing a common haplotype. The age at onset, phenotype, and variability of symptoms were compatible with known cases. In one family, the disease was apparently sporadic due to possible incomplete penetrance and/or late age at onset. Our data indicate that SCA12 is also present in Italian patients, and its genetic testing should be applied to both sporadic and familial ataxias.
Collapse
Affiliation(s)
- Alessandro Brussino
- Department of Genetics, Biology and Biochemistry, University of Torino, and S.C.D.U. Medical Genetics, A.O.U. San Giovanni Battista, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Klein JC, Lorenz B, Kang JS, Baudrexel S, Seifried C, van de Loo S, Steinmetz H, Deichmann R, Hilker R. Diffusion tensor imaging of white matter involvement in essential tremor. Hum Brain Mapp 2010; 32:896-904. [PMID: 20572209 DOI: 10.1002/hbm.21077] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 03/18/2010] [Accepted: 03/19/2010] [Indexed: 11/09/2022] Open
Abstract
This study set out to determine whether there is white matter involvement in essential tremor (ET), the most common movement disorder. We collected diffusion MRI and analysed differences in fractional anisotropy (FA) and mean diffusivity (MD) between ET patients and control subjects as markers of white matter integrity. We used both classical ROI-based statistics and whole-brain analysis techniques, including voxel-wise analysis with SPM5 and tract-based spatial statistics (TBSS). Using region of interest (ROI) analysis, we found increased MD bilaterally in the inferior cerebellar peduncles (ICP) and reduced FA in the right-sided ICP of ET patients. Whole-brain analyses with TBSS detected increased MD distributed in both motor and nonmotor white matter fibers of ET patients predominantly in the left parietal white matter, while there were no significant FA differences in these areas between ET patients and controls. Voxel-wise analysis with SPM detected significant increase of MD congruent with the highest probability of difference as detected by TBSS. VBM analysis of T1 images did not detect significant differences in either gray or white matter density between our study groups. In summary, we found evidence for changes in white matter MRI properties in ET. The circumscript pathology of the ICP corroborates the pathogenetic concept of the cerebellum and its projections as key structures for tremor generation in ET. Moreover, increased diffusivity in white matter structures of both hemispheres suggests widespread alterations of fiber integrity in motor and nonmotor networks in ET patients. The underlying cause of the DTI changes observed remains to be elucidated.
Collapse
Affiliation(s)
- Johannes C Klein
- Department of Neurology, Goethe-University, Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Pacini D, Di Marco L, Leone A, Tonon C, Pettinato C, Fonti C, Manners DN, Di Bartolomeo R. Cerebral functions and metabolism after antegrade selective cerebral perfusion in aortic arch surgery. Eur J Cardiothorac Surg 2010; 37:1322-31. [DOI: 10.1016/j.ejcts.2009.12.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/12/2009] [Accepted: 12/21/2009] [Indexed: 11/16/2022] Open
|
38
|
Abstract
The role for neuroimaging in the management of patients with tremor is gradually increasing, particularly with respect to stereotactic neurosurgery and deep brain stimulation where less than 2-mm tolerance is required for accurate electrode placement. The routine use of single photon emission CT technology to image the nigrostriatal dopaminergic system is proving helpful in distinguishing essential and dystonic tremors from neurodegenerative forms of parkinsonism and in improving our understanding of the pathophysiology of rarer tremors.
Collapse
|
39
|
Deuschl G, Elble R. Essential tremor - Neurodegenerative or nondegenerative disease towards a working definition of ET. Mov Disord 2009; 24:2033-41. [PMID: 19750493 DOI: 10.1002/mds.22755] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Günther Deuschl
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany.
| | | |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Tremor continuously attracts the attention of clinicians and basic researchers in search of pathophysiological, molecular and genetic mechanisms of the oscillatory activity. RECENT FINDINGS A widespread dynamic network of cortical and subcortical oscillators taking part in tremor generation intermittently has been postulated. Essential tremor is accompanied by functional deficits but may also occur along with subtle cerebellar changes. According to recent epidemiological studies there may be a link of essential tremor with Parkinson's disease. Many of the epidemiologic studies suffer from small cohorts, small effects or the lack of a definite test for essential tremor leaving the diagnosis a pure clinical one. A very recent large genome-wide association study has revealed that the LINGO1 gene is associated with an increased risk for essential tremor. Topiramate is becoming the best-established second line treatment for essential tremor. Targets for deep brain stimulation in the grey matter below the ventral intermediate nucleus of the thalamus seem to be most effective. SUMMARY New concepts of the central origin of tremors stimulate the search for new therapeutic targets for tremor suppression outside the basal ganglia and thalamus (e.g. cortex). The role of structural neurodegenerative changes in essential tremor remains an open question. Further studies on specific subgroups of patients are necessary.
Collapse
|
41
|
Grimaldi D, Tonon C, Cevoli S, Pierangeli G, Malucelli E, Rizzo G, Soriani S, Montagna P, Barbiroli B, Lodi R, Cortelli P. Clinical and neuroimaging evidence of interictal cerebellar dysfunction in FHM2. Cephalalgia 2009; 30:552-9. [DOI: 10.1111/j.1468-2982.2009.01979.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We used multimodal magnetic resonance (MR) techniques [brain diffusion-weighted magnetic resonance imaging, diffusion-weighted imaging (DWI), proton MR spectroscopy (MRS), 1H-MRS; and skeletal muscle phosphorous MRS, 31P-MRS] to investigate interictal brain microstructural changes and tissue energy metabolism in four women with genetically determined familial hemiplegic migraine type 2 (FHM2), belonging to two unrelated families, compared with 10 healthy women. Brain DWI revealed a significant increase of the apparent diffusion coefficient median values in the vermis and cerebellar hemispheres of FHM2 patients, preceding in two subjects the onset of interictal cerebellar deficits. 31P-MRS revealed defective energy metabolism in skeletal muscle of FHM2 patients, while brain 1H-MRS showed a mild pathological increase in lactate in the lateral ventricles of one patient and a mild reduction of cortical N-acetyl-aspartate to creatine ratio in another one. Our MRS results showed that a multisystem energy metabolism defect in FHM2 is associated with microstructural cerebellar changes detected by DWI, even before the onset of cerebellar symptoms.
Collapse
Affiliation(s)
- D Grimaldi
- Department of Neurological Sciences, University of Bologna, Bologna, Italy
| | - C Tonon
- MR Spectroscopy Unit, Department of Internal Medicine, Ageing and Nephrology, University of Bologna, Bologna, Italy
| | - S Cevoli
- Department of Neurological Sciences, University of Bologna, Bologna, Italy
| | - G Pierangeli
- Department of Neurological Sciences, University of Bologna, Bologna, Italy
| | - E Malucelli
- MR Spectroscopy Unit, Department of Internal Medicine, Ageing and Nephrology, University of Bologna, Bologna, Italy
| | - G Rizzo
- Department of Neurological Sciences, University of Bologna, Bologna, Italy
| | - S Soriani
- Department of Clinical and Experimental Medicine–Paediatrics, University of Ferrara, Ferrara, Italy
| | - P Montagna
- Department of Neurological Sciences, University of Bologna, Bologna, Italy
| | - B Barbiroli
- MR Spectroscopy Unit, Department of Internal Medicine, Ageing and Nephrology, University of Bologna, Bologna, Italy
| | - R Lodi
- MR Spectroscopy Unit, Department of Internal Medicine, Ageing and Nephrology, University of Bologna, Bologna, Italy
| | - P Cortelli
- Department of Neurological Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
42
|
Rizzo G, Martinelli P, Manners D, Scaglione C, Tonon C, Cortelli P, Malucelli E, Capellari S, Testa C, Parchi P, Montagna P, Barbiroli B, Lodi R. Diffusion-weighted brain imaging study of patients with clinical diagnosis of corticobasal degeneration, progressive supranuclear palsy and Parkinson's disease. Brain 2008; 131:2690-700. [PMID: 18819991 DOI: 10.1093/brain/awn195] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP) are two neurodegenerative disorders within the category of tauopathies, which must be considered in differential diagnosis of Parkinson's disease. Although specific clinical and neuroradiological features help to guide the clinician to a likely diagnosis of Parkinson's disease, CBD or PSP, differential diagnosis remains difficult. The aim of our study was to analyse apparent diffusion coefficient (ADC(ave)) maps from patients with clinical diagnosis of CBD (corticobasal syndrome, CBS), classical phenotype of PSP (Richardson's syndrome, RS) and Parkinson's disease (PD) in order to identify objective markers to discriminate between these groups. Thirteen Parkinson's disease patients, 10 RS patients, 7 CBS patients and 9 healthy volunteers were recruited and studied in a 1.5 T MR scanner. Axial diffusion-weighted images were obtained and the ADC(ave) map was generated. Regions of interest (ROIs) included mesencephalon, corpus callosum and left and right superior cerebellar peduncle (SCP), thalamus, caudate, putamen, pallidus, posterior limb of internal capsule, frontal and parietal white matter. Histograms of ADC(ave) were generated for all voxels in left and right cerebral hemispheres and in left and right deep grey matter regions separately, and the 50th percentile values (medians) were determined. The ratio of the smaller to the larger median value (symmetry ratio) was calculated for left and right hemispheres and for left and right deep grey matter regions (1 = perfect symmetry). Putaminal ADC(ave) values in CBS and RS were significantly greater than those in Parkinson's disease and healthy volunteers, but could not distinguish CBS from RS patients. In CBS patients, the values of the medians of cerebral hemispheres histograms were significantly higher than those in RS, Parkinson's disease and healthy volunteers, while the hemispheric symmetry ratio in CBS (0.968, range 0.952-0.976) was markedly reduced compared with RS (0.993, range 0.992-0.994), Parkinson's disease (0.991, range 0.988-0.993) and healthy controls (0.990, range 0.988-0.993). The hemispheric symmetry ratio differentiated CBS patients from RS and Parkinson's disease patients with a sensitivity and specificity of 100%. In RS patients, the ADC(ave) values of the SCPs were significantly greater than those in Parkinson's disease and healthy volunteers. Our findings confirm that putaminal ADC(ave) values evaluation provides a good discrimination between Parkinson's disease and atypical parkinsonisms, including RS and CBS. Furthermore, diffusion-weighted imaging, by detecting the brain microstructural correlates of the typical asymmetric signs and symptoms in CBS and the SCP involvement in RS, was shown to aid characterization and differentiation of atypical parkinsonism.
Collapse
Affiliation(s)
- Giovanni Rizzo
- MR Spectroscopy Unit, Department of Internal Medicine, Ageing and Nephrology, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Executive dysfunction and neuropsychiatric symptoms predict lower health status in essential tremor. Cogn Behav Neurol 2008; 21:28-33. [PMID: 18327020 DOI: 10.1097/wnn.0b013e3181684414] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To evaluate the hypothesis that increased neuropsychiatric distress and cognitive impairment are associated with lower perceived health status in essential tremor (ET). BACKGROUND Many patients with ET experience nonmotor complications, including lower perceived health status and poor health-related quality of life, which are associated with tremor severity, age, and personality factors. No studies, however, have examined the potential contribution of neuropsychiatric symptoms and cognitive deficits to health status in ET. METHOD Forty-five patients with ET underwent comprehensive neurologic and neuropsychologic evaluations, including self-report measures of physical and psychosocial health status (ie, the Sickness Impact Profile) and neuropsychiatric distress (ie, the Profile of Mood States). RESULTS A series of hierarchical multiple regressions showed that after considering the effects of ET disease severity, lower vigor, and deficits in executive functions were independently predictive of poorer physical health status, whereas increased symptoms of depression were uniquely associated with lower psychosocial health status. CONCLUSIONS Findings indicate that reduced vigor (ie, apathy), executive deficits, and depression are important predictors of poorer perceived health status in ET. Given the prevalence of such nonmotor symptoms, these data highlight the potential value of considering neuropsychiatric and neurocognitive assessments in the management of patients with ET.
Collapse
|
44
|
Shin DH, Han BS, Kim HS, Lee PH. Diffusion tensor imaging in patients with essential tremor. AJNR Am J Neuroradiol 2008; 29:151-3. [PMID: 17921227 DOI: 10.3174/ajnr.a0744] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The traditional paradigm has regarded essential tremor (ET) as a benign disorder. However, recent clinical, neuroimaging, and neuropathologic studies suggest that ET may be a progressive neurologic disorder. Based on clinicopathologic findings that cerebellum and its outflow are the key structures in ET and degeneration of gray matter in cerebellum is followed by consequent wallerian degeneration of white matter (WM) fibers, the aim of the present study was to investigate changes in anisotropy in patients with ET. MATERIALS AND METHODS Fractional anisotropy (FA) images were generated from DTI data acquired at 1.5T in 10 patients with ET compared with 8 control subjects by using statistical parametric mapping to make voxel-by-voxel comparisons. RESULTS Compared with the control subjects, the patients with ET exhibited significantly reduced FA (P(uncorrected) < .005) in the anterolateral portion of the right pons and decreased FA in the bilateral cerebellum, left retrorubral area of the midbrain, and bilateral deep WM, including the orbitofrontal, lateral frontal, parietal, and temporal WM. CONCLUSION This study demonstrates that structural changes in the WM are extensive in patients with ET, supporting the findings of previous functional neuroimaging and pathologic studies.
Collapse
Affiliation(s)
- D H Shin
- Department of Neurology, Ajou University College of Medicine, Suwon, South Korea
| | | | | | | |
Collapse
|