1
|
West TO, Steidel K, Flessner T, Calvano A, Kucukahmetler D, Stam MJ, Spedden ME, Wahl B, Jousmäki V, Eraifej J, Oswal A, Saifee TA, Barnes G, Farmer SF, Pedrosa DJ, Cagnan H. Essential tremor disrupts rhythmic brain networks during naturalistic movement. Neurobiol Dis 2025; 207:106858. [PMID: 40015653 DOI: 10.1016/j.nbd.2025.106858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025] Open
Abstract
Essential Tremor (ET) is a very common neurological disorder characterised by involuntary rhythmic movements attributable to pathological synchronization within corticothalamic circuits. Previous work has focused on tremor in isolation, overlooking broader disturbances to motor control during naturalistic movements such as reaching. We hypothesised that ET disrupts the sequential engagement of large-scale rhythmic brain networks, leading to both tremor and deficits in motor planning and execution. To test this, we performed whole-head neuroimaging during an upper-limb reaching task using high-density electroencephalography in ET patients and healthy controls, alongside optically pumped magnetoencephalography in a smaller cohort. Key motor regions-including the supplementary motor area, premotor cortex, posterior parietal cortex, and motor cerebellum-were synchronized to tremor rhythms. Patients exhibited a 15 % increase in low beta (14-21 Hz) desynchronization over the supplementary motor area during movement, which strongly correlated with tremor severity (R2 = 0.85). A novel dimensionality reduction technique revealed four distinct networks accounting for 97 % of the variance in motor-related brain-wide oscillations, with ET altering their sequential engagement. Consistent with our hypothesis, the frontoparietal beta network- normally involved in motor planning-exhibited additional desynchronization during movement execution in ET patients. This altered engagement correlated with slower movement velocities, suggesting an adaptation towards feedback-driven motor control. These findings reveal fundamental disruptions in distributed motor control networks in ET and identify novel biomarkers as targets for next-generation brain stimulation therapies.
Collapse
Affiliation(s)
- Timothy O West
- Department of Bioengineering, Sir Michael Uren Hub, Imperial College London, London W12 0BZ, UK; Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK.
| | - Kenan Steidel
- Department of Neurology, Philipps-University Marburg, 35041 Marburg, Germany
| | - Tjalda Flessner
- Department of Neurology, Philipps-University Marburg, 35041 Marburg, Germany
| | - Alexander Calvano
- Department of Neurology, Philipps-University Marburg, 35041 Marburg, Germany
| | - Deniz Kucukahmetler
- Department of Bioengineering, Sir Michael Uren Hub, Imperial College London, London W12 0BZ, UK
| | - Mariëlle J Stam
- Department of Neurology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Meaghan E Spedden
- Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Benedikt Wahl
- Faculty of Electrical Engineering and Information Technology, RWTH Aachen University, 52062 Aachen, Germany
| | | | - John Eraifej
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Ashwini Oswal
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Tabish A Saifee
- Department of Neurology, National Hospital for Neurology & Neurosurgery, Queen Square, London WC1N 3BG, UK; Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Gareth Barnes
- Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Simon F Farmer
- Department of Neurology, National Hospital for Neurology & Neurosurgery, Queen Square, London WC1N 3BG, UK; Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - David J Pedrosa
- Department of Neurology, Philipps-University Marburg, 35041 Marburg, Germany; Centre of Mind, Brain and Behaviour, Philipps-University Marburg, 35041 Marburg, Germany
| | - Hayriye Cagnan
- Department of Bioengineering, Sir Michael Uren Hub, Imperial College London, London W12 0BZ, UK; Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| |
Collapse
|
2
|
Pan MK. Targeting the fundamentals for tremors: the frequency and amplitude coding in essential tremor. J Biomed Sci 2025; 32:18. [PMID: 39924504 PMCID: PMC11809078 DOI: 10.1186/s12929-024-01112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/12/2024] [Indexed: 02/11/2025] Open
Abstract
Essential tremor (ET) is one of the most common movement disorders with heterogeneous pathogenesis involving both genetic and environmental factors, which often results in variable therapeutic outcomes. Despite the diverse etiology, ET is defined by a core symptom of action tremor, an involuntary rhythmic movement that can be mathematically characterized by two parameters: tremor frequency and tremor amplitude. Recent advances in neural dynamics and clinical electrophysiology have provided valuable insights to explain how tremor frequency and amplitude are generated within the central nervous system. This review summarizes both animal and clinical evidence, encompassing the kinematic features of tremors, circuitry dynamics, and the neuronal coding mechanisms for the two parameters. Neural population coding within the olivocerebellum is implicated in determining tremor frequency, while the cerebellar circuitry synchrony and cerebellar-thalamo-cortical interactions play key roles in regulating tremor amplitude. Novel therapeutic strategies aimed at tuning tremor frequency and amplitude are also discussed. These neural dynamic approaches target the conserved mechanisms across ET patients with varying etiologies, offering the potential to develop universally effective therapies for ET.
Collapse
Affiliation(s)
- Ming-Kai Pan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, No. 1, Sec. 1, Ren-Ai Road, Taipei, 100, Taiwan.
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, Taiwan.
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Volnov S, Baagil H, Winz O, Kaiser HJ, Meles SK, Schulz JB, Reetz K, Mottaghy FM, Holtbernd F. Identification of a metabolic brain network characterizing essential tremor. Sci Rep 2025; 15:2138. [PMID: 39820101 PMCID: PMC11739557 DOI: 10.1038/s41598-024-82069-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/02/2024] [Indexed: 01/19/2025] Open
Abstract
The neuronal correlate of tremor genesis and cognitive function in essential tremor (ET) and its modulation by deep brain stimulation (DBS) are poorly understood. To explore the underlying metabolic topography of motor and cognitive symptoms, sixteen ET patients (age 63.6 ± 49.1 years) and 18 healthy controls (HC) (61.1 ± 6.3 years) underwent tremor and cognitive assessments and18F-fluorodeoxyglucose PET of the brain. Multivariate spatial covariance analysis was applied for identifying ET related metabolic brain networks. For network validation and to explore DBS effects, 8 additional ET patients (68.1 ± 8.2 years) treated with DBS were assessed in both the ON and OFF state, respectively. The ET related metabolic spatial covariance pattern (ETRP) was characterized by relatively increased metabolism in the cerebellum, brainstem, and temporo-occipital cortices, accompanied by relative metabolic decreases mainly in fronto-temporal and motor cortices. Network expression showed inverse correlations with tremor severity and disease duration and positive correlations with cognitive dysfunction. DBS substantially alleviated tremor, but had only marginal effects on cognitive performance. There were no significant DBS effects on ETRP expression at the group level, but all but one subject showed higher scores in the ON state. Our findings suggest ET is characterized by an abnormal brain network associated with disease phenotype.
Collapse
Affiliation(s)
- Solange Volnov
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Hamzah Baagil
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Oliver Winz
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Hans-Juergen Kaiser
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Sanne Katherina Meles
- Department of Neurology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Joerg Bernhard Schulz
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Juelich GmbH, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany
| | - Kathrin Reetz
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Juelich GmbH, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany
| | - Felix Manuel Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Juelich GmbH, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Florian Holtbernd
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Juelich GmbH, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany.
- Institute of Neuroscience and Medicine (INM-4/INM-11), Forschungszentrum Juelich GmbH, Juelich, Germany.
| |
Collapse
|
4
|
Silva N, Green M, Roque D, Krishna V. The Use of Focused Ultrasound Ablation for Movement Disorders. Magn Reson Imaging Clin N Am 2024; 32:651-659. [PMID: 39322354 DOI: 10.1016/j.mric.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Focused ultrasound ablation achieves selective thermal lesioning of the thalamic and basal ganglia targets using real-time MR imaging guidance. It is US Food and Drug Administration-approved to treat essential tremor and Parkinson's disease tremor, fluctuations, and dyskinesias. Patients often seek focused ultrasound treatment because symptom relief is immediate, and hardware implantation is not required. This review summarizes the current and potential future application of focused ultrasound ablation to treat movement disorders. We also discuss the ongoing research optimizing the technique of focused ultrasound ablation to improve long-term efficacy and minimize the risk of side effects.
Collapse
Affiliation(s)
- Nicole Silva
- Department of Neurosurgery, University of North Carolina, 170 Manning Drive, Suite #2149, Chapel Hill, NC 27499, USA. https://twitter.com/NicoleAASilva
| | | | - Daniel Roque
- UNC Movement Disorders Neuromodulation Program, Movement Disorders, Department of Neurology, University of North Carolina, 170 Manning Drive, Campus Box 7025, Chapel Hill, NC 27599, USA
| | - Vibhor Krishna
- Department of Neurosurgery, University of North Carolina, 170 Manning Drive, Suite #2149, Chapel Hill, NC 27499, USA.
| |
Collapse
|
5
|
Prasad S, Rajan A, Ingalhalikar M, Bharath RD, Saini J, Pal PK. Probabilistic Tractography-Based Tremor Network Connectivity in Tremor Dominant Parkinson's Disease and Essential Tremor plus. Brain Connect 2024; 14:340-350. [PMID: 38874981 DOI: 10.1089/brain.2023.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
Background: The basal ganglia-thalamocortical (BGTC) and cerebello-thalamocortical (CTC) networks are implicated in tremor genesis; however, exact contributions across disorders have not been studied. Objective: Evaluate the structural connectivity of BGTC and CTC in tremor-dominant Parkinson's disease (TDPD) and essential tremor plus (ETP) with the aid of probabilistic tractography and graph theory analysis. Methods: Structural connectomes of the BGTC and CTC were generated by probabilistic tractography for TDPD (n = 25), ETP (ET with rest tremor, n = 25), and healthy control (HC, n = 22). The Brain Connectivity Toolbox was used for computing standard topological graph measures of segregation, integration, and centrality. Tremor severity was ascertained using the Fahn-Tolosa-Marin tremor rating scale (FTMRS). Results: There was no difference in total FTMRS scores. Compared with HC, TDPD had a lower global efficiency and characteristic path length. Abnormality in segregation, integration, and centrality of bilateral putamen, globus pallidus externa (GPe), and GP interna (GPi), with reduction of centrality of right caudate and cerebellar lobule 8, was observed. ETP showed reduction in segregation and integration of right GPe and GPi, ventrolateral posterior nucleus, and centrality of right putamen, compared with HC. Differences between TDPD and ETP were a reduction of strength of the right putamen, and lower clustering coefficient, local efficiency, and strength of the left GPi in TDPD. Conclusions: Contrary to expectations, TDPD and ETP may not be significantly different with regard to tremor pathogenesis, with definite overlaps. There may be fundamental similarities in network disruption across different tremor disorders with the same tremor activation patterns, along with disease-specific changes.
Collapse
Affiliation(s)
- Shweta Prasad
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Archith Rajan
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Madhura Ingalhalikar
- Symbiosis Center for Medical Image Analysis and Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| |
Collapse
|
6
|
Prasad S, Saini J, Bharath RD, Pal PK. Differential patterns of functional connectivity in tremor dominant Parkinson's disease and essential tremor plus. J Neural Transm (Vienna) 2024; 131:781-789. [PMID: 38430265 DOI: 10.1007/s00702-024-02761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Tremor dominant Parkinson's disease (TDPD) and essential tremor plus (ETP) syndrome are commonly encountered tremor dominant neurological disorders. Although the basal ganglia thalamocortical (BGTC) and cerebello thalamocortical (CTC) networks are implicated in tremorogenesis, the extent of functional connectivity alterations across disorders is uncertain. This study aims to evaluate functional connectivity of the BGTC and CTC in TDPD and ETP. Resting state functional MRI was acquired for 25 patients with TDPD, ETP and 22 healthy controls (HC). Following pre-processing and denoising, seed-to-voxel based connectivity was carried out at FDR < 0.05 using ROIs belonging to the BGTC and CTC. Fahn-Tolosa-Marin tremor rating scale (FTMRS) was correlated with the average connectivity values at FDR < 0.05. Compared to HC, TDPD showed decreased connectivity between cerebellum and pre, post central gyrus. While, ETP showed decreased connectivity between pallidum and occipital cortex, precuneus, cuneus compared to HC. In comparison to ETP, TDPD showed increased connectivity between precentral gyrus, pallidum, SNc with the default mode network (DMN), and decreased connectivity between cerebellum with superior, middle frontal gyrus was observed. Tremor severity positively correlated with connectivity between SNc and DMN in TDPD, and negatively correlated with pallidal connectivity in ETP. Pattern of BGTC, CTC involvement is differential i.e., higher connectivity of the BGTC nodes in TDPD, and higher connectivity of cerebellar nodes in ETP. The interesting observation of pallidal involvement in ETP suggests the role of BGTC in the pathogenesis of ETP, and indicated similarities in concepts of tremor genesis in TDPD and ETP.
Collapse
Affiliation(s)
- Shweta Prasad
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bengaluru, Karnataka, 560029, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bengaluru, Karnataka, 560029, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bengaluru, Karnataka, 560029, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bengaluru, Karnataka, 560029, India.
| |
Collapse
|
7
|
El-Adawy AFI, Reda MABMG, Ahmed AM, Rashad MH, Zaki MA, Mohamed MET, Hassan MAS, Abdulsalam MF, Hassan AM, Mohamed AF, Fayed AGI, Meshref M, Mansour FM, Sarhan AE, Elsheshiny AH, Abed E. Efficacy of Cerebellar Transcranial Magnetic Stimulation in Treating Essential Tremor: A Randomized, Sham-Controlled Trial. J Clin Neurol 2024; 20:378-384. [PMID: 38951972 PMCID: PMC11220355 DOI: 10.3988/jcn.2023.0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND AND PURPOSE Repetitive transcranial magnetic stimulation (rTMS) of the cerebellar hemisphere represents a new option in treating essential tremor (ET) patients. We aimed to determine the efficacy of cerebellar rTMS in treating ET using different protocols regarding the number of sessions, exposure duration, and follow-up duration. METHODS A randomized sham-controlled trial was conducted, in which 45 recruit patients were randomly allocated to 2 groups. The first (active group) comprised 23 patients who were exposed to 12 sessions of active rTMS with 900 pulses of 1-Hz rTMS at 90% of the resting motor threshold daily on each side of the cerebellar hemispheres over 4 weeks. The second group (sham group) comprised 22 patients who were exposed to 12 sessions of sham rTMS. Both groups were reassessed at baseline and after 1 day, 1 month, 2 months, and 3 months using the Fahn-Tolosa-Marin tremor-rating scale (FTM). RESULTS Demographic characteristics did no differ between the two groups. There were significant reductions both in FTM subscores A and B and in the FTM total score in the active-rTMS group during the period of assessment and after 3 months (p=0.031 and 0.011, respectively). However, subscore C did not change significantly from baseline when assessed at 2 and 3 months (p=0.073 and 0.236, respectively). Furthermore, the global assessment score was significantly higher in the active-rTMS group (p>0.001). CONCLUSIONS Low-frequency rTMS over the cerebellar cortex for 1 month showed relative safety and long-lasting efficacy in patients with ET. Further large-sample clinical trials are needed that include different sites of stimulation and longer follow-ups.
Collapse
Affiliation(s)
| | | | - Ali Mahmoud Ahmed
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Department of Neurology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK.
| | | | - Mohamed Ahmed Zaki
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | | | | | - Abdelmonem M Hassan
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ahmed Fathy Mohamed
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Mostafa Meshref
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Ahmed E Sarhan
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Elsayed Abed
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
8
|
Schoeberl F, Dowsett J, Pradhan C, Grabova D, Köhler A, Taylor P, Zwergal A. TMS of the left primary motor cortex improves tremor intensity and postural control in primary orthostatic tremor. J Neurol 2024; 271:2938-2947. [PMID: 38625401 PMCID: PMC11136716 DOI: 10.1007/s00415-024-12376-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
A ponto-cerebello-thalamo-cortical network is the pathophysiological correlate of primary orthostatic tremor. Affected patients often do not respond satisfactorily to pharmacological treatment. Consequently, the objective of the current study was to examine the effects of a non-invasive neuromodulation by theta burst repetitive transcranial magnetic stimulation (rTMS) of the left primary motor cortex (M1) and dorsal medial frontal cortex (dMFC) on tremor frequency, intensity, sway path and subjective postural stability in primary orthostatic tremor. In a cross-over design, eight patients (mean age 70.2 ± 5.4 years, 4 female) with a primary orthostatic tremor received either rTMS of the left M1 leg area or the dMFC at the first study session, followed by the other condition (dMFC or M1 respectively) at the second study session 30 days later. Tremor frequency and intensity were quantified by surface electromyography of lower leg muscles and total sway path by posturography (foam rubber with eyes open) before and after each rTMS session. Patients subjectively rated postural stability on the posturography platform following each rTMS treatment. We found that tremor frequency did not change significantly with M1- or dMFC-stimulation. However, tremor intensity was lower after M1- but not dMFC-stimulation (p = 0.033/ p = 0.339). The sway path decreased markedly after M1-stimulation (p = 0.0005) and dMFC-stimulation (p = 0.023) compared to baseline. Accordingly, patients indicated a better subjective feeling of postural stability both with M1-rTMS (p = 0.007) and dMFC-rTMS (p = 0.01). In conclusion, non-invasive neuromodulation particularly of the M1 area can improve postural control and tremor intensity in primary orthostatic tremor by interference with the tremor network.
Collapse
Affiliation(s)
- Florian Schoeberl
- Department of Neurology and German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, Munich, Germany
| | - James Dowsett
- Division of Psychology, University of Stirling, Stirling, UK
| | - Cauchy Pradhan
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, Munich, Germany
| | - Denis Grabova
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, Munich, Germany
| | - Angelina Köhler
- Department of Neurology and German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, Munich, Germany
| | - Paul Taylor
- Faculty of Philosophy, Philosophy of Science and the Study of Religion, LMU Munich, Munich, Germany
| | - Andreas Zwergal
- Department of Neurology and German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany.
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
9
|
Handforth A, Singh RP, Kosoyan HP, Kadam PA. A Role for GABA A Receptor β3 Subunits in Mediating Harmaline Tremor Suppression by Alcohol: Implications for Essential Tremor Therapy. Tremor Other Hyperkinet Mov (N Y) 2024; 14:20. [PMID: 38681506 PMCID: PMC11049614 DOI: 10.5334/tohm.834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/31/2024] [Indexed: 05/01/2024] Open
Abstract
Background Essential tremor patients may find that low alcohol amounts suppress tremor. A candidate mechanism is modulation of α6β3δ extra-synaptic GABAA receptors, that in vitro respond to non-intoxicating alcohol levels. We previously found that low-dose alcohol reduces harmaline tremor in wild-type mice, but not in littermates lacking δ or α6 subunits. Here we addressed whether low-dose alcohol requires the β3 subunit for tremor suppression. Methods We tested whether low-dose alcohol suppresses tremor in cre-negative mice with intact β3 exon 3 flanked by loxP, and in littermates in which this region was excised by cre expressed under the α6 subunit promotor. Tremor in the harmaline model was measured as a percentage of motion power in the tremor bandwidth divided by overall motion power. Results Alcohol, 0.500 and 0.575 g/kg, reduced harmaline tremor compared to vehicle-treated controls in floxed β3 cre- mice, but had no effect on tremor in floxed β3 cre+ littermates that have β3 knocked out. This was not due to potential interference of α6 expression by the insertion of the cre gene into the α6 gene since non-floxed β3 cre+ and cre- littermates exhibited similar tremor suppression by alcohol. Discussion As α6β3δ GABAA receptors are sensitive to low-dose alcohol, and cerebellar granule cells express β3 and are the predominant brain site for α6 and δ expression together, our overall findings suggest alcohol acts to suppress tremor by modulating α6β3δ GABAA receptors on these cells. Novel drugs that target this receptor may potentially be effective and well-tolerated for essential tremor. Highlights We previously found with the harmaline essential tremor model that GABAA receptors containing α6 and δ subunits mediate tremor suppression by alcohol. We now show that β3 subunits in α6-expressing cells, likely cerebellar granule cells, are also required, indicating that alcohol suppresses tremor by modulating α6β3δ extra-synaptic GABAA receptors.
Collapse
Affiliation(s)
- Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Ram P. Singh
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Hovsep P. Kosoyan
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Pournima A. Kadam
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
10
|
Andersen LM, Dalal SS. Detection of Threshold-Level Stimuli Modulated by Temporal Predictions of the Cerebellum. eNeuro 2024; 11:ENEURO.0070-24.2024. [PMID: 38575352 PMCID: PMC11064121 DOI: 10.1523/eneuro.0070-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
The cerebellum has the reputation of being a primitive part of the brain that mostly is involved in motor coordination and motor control. Older lesion studies and more recent electrophysiological studies have, however, indicated that it is involved in temporal perception and temporal expectation building. An outstanding question is whether this temporal expectation building cerebellar activity has functional relevance. In this study, we collected magnetoencephalographic data from 30 healthy participants performing a detection task on at-threshold stimulation that was presented at the end of a sequence of temporally regular or irregular above-threshold stimulation. We found that behavioral detection rates depended on the degree of irregularity in the sequence preceding it. We also found cerebellar responses evoked by above-threshold and at-threshold stimulation. The evoked responses to at-threshold stimulation differed significantly, depending on whether it was preceded by a regular or an irregular sequence. Finally, we found that detection performance across participants correlated significantly with the differences in cerebellar evoked responses to the at-threshold stimulation, demonstrating the functional relevance of cerebellar activity in sensory expectation building. We furthermore found evidence of thalamic involvement, as indicated by responses in the beta band (14-30 Hz) and by significant modulations of cerebello-thalamic connectivity by the regularity of the sequence and the kind of stimulation terminating the sequence. These results provide evidence that the temporal expectation building mechanism of the cerebellum, what we and others have called an internal clock, shows functional relevance by regulating behavior and performance in sensory action that requires acting and integrating evidence over precise timescales.
Collapse
Affiliation(s)
- Lau M Andersen
- Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus C 8000, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus C 8000, Denmark
- Department for Linguistics, Cognitive Science and Semiotics, Aarhus University, Aarhus C 8000, Denmark
| | - Sarang S Dalal
- Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus C 8000, Denmark
| |
Collapse
|
11
|
Bagarinao E, Maesawa S, Kato S, Mutoh M, Ito Y, Ishizaki T, Tanei T, Tsuboi T, Suzuki M, Watanabe H, Hoshiyama M, Isoda H, Katsuno M, Sobue G, Saito R. Cerebellar and thalamic connector hubs facilitate the involvement of visual and cognitive networks in essential tremor. Parkinsonism Relat Disord 2024; 121:106034. [PMID: 38382401 DOI: 10.1016/j.parkreldis.2024.106034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
INTRODUCTION Connector hubs are specialized brain regions that connect multiple brain networks and therefore have the potential to affect the functions of multiple systems. This study aims to examine the involvement of connector hub regions in essential tremor. METHODS We examined whole-brain functional connectivity alterations across multiple brain networks in 27 patients with essential tremor and 27 age- and sex-matched healthy controls to identify affected hub regions using a network metric called functional connectivity overlap ratio estimated from resting-state functional MRI. We also evaluated the relationships of affected hubs with cognitive and tremor scores in all patients and with motor function improvement scores in 15 patients who underwent postoperative follow-up evaluations after focused ultrasound thalamotomy. RESULTS We have identified affected connector hubs in the cerebellum and thalamus. Specifically, the dentate nucleus in the cerebellum and the dorsomedial thalamus exhibited more extensive connections with the sensorimotor network in patients. Moreover, the connections of the thalamic pulvinar with the visual network were also significantly widespread in the patient group. The connections of these connector hub regions with cognitive networks were negatively associated (FDR q < 0.05) with cognitive, tremor, and motor function improvement scores. CONCLUSION In patients with essential tremor, connector hub regions within the cerebellum and thalamus exhibited widespread functional connections with sensorimotor and visual networks, leading to alternative pathways outside the classical tremor axis. Their connections with cognitive networks also affect patients' cognitive function.
Collapse
Affiliation(s)
- Epifanio Bagarinao
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan.
| | - Satoshi Maesawa
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan; Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Sachiko Kato
- Focused Ultrasound Therapy Center, Nagoya Kyoritsu Hospital, Nagoya, Aichi, Japan
| | - Manabu Mutoh
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshiki Ito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tomotaka Ishizaki
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takafumi Tanei
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takashi Tsuboi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masashi Suzuki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hirohisa Watanabe
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan; Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Minoru Hoshiyama
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan
| | - Haruo Isoda
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan
| | - Masahisa Katsuno
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan; Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan; Aichi Medical University, Nagakute, Aichi, Japan
| | - Ryuta Saito
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan; Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
12
|
Steina A, Sure S, Butz M, Vesper J, Schnitzler A, Hirschmann J. Mapping Subcortico-Cortical Coupling-A Comparison of Thalamic and Subthalamic Oscillations. Mov Disord 2024; 39:684-693. [PMID: 38380765 DOI: 10.1002/mds.29730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/29/2023] [Accepted: 01/08/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND The ventral intermediate nucleus of the thalamus (VIM) is an effective target for deep brain stimulation in tremor patients. Despite its therapeutic importance, its oscillatory coupling to cortical areas has rarely been investigated in humans. OBJECTIVES The objective of this study was to identify the cortical areas coupled to the VIM in patients with essential tremor. METHODS We combined resting-state magnetoencephalography with local field potential recordings from the VIM of 19 essential tremor patients. Whole-brain maps of VIM-cortex coherence in several frequency bands were constructed using beamforming and compared with corresponding maps of subthalamic nucleus (STN) coherence based on data from 19 patients with Parkinson's disease. In addition, we computed spectral Granger causality. RESULTS The topographies of VIM-cortex and STN-cortex coherence were very similar overall but differed quantitatively. Both nuclei were coupled to the ipsilateral sensorimotor cortex in the high-beta band; to the sensorimotor cortex, brainstem, and cerebellum in the low-beta band; and to the temporal cortex, brainstem, and cerebellum in the alpha band. High-beta coherence to sensorimotor cortex was stronger for the STN (P = 0.014), whereas low-beta coherence to the brainstem was stronger for the VIM (P = 0.017). Although the STN was driven by cortical activity in the high-beta band, the VIM led the sensorimotor cortex in the alpha band. CONCLUSIONS Thalamo-cortical coupling is spatially and spectrally organized. The overall similar topographies of VIM-cortex and STN-cortex coherence suggest that functional connections are not necessarily unique to one subcortical structure but might reflect larger frequency-specific networks involving VIM and STN to a different degree. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alexandra Steina
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Sarah Sure
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Markus Butz
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jan Vesper
- Department of Functional Neurosurgery and Stereotaxy, Neurosurgical Clinic, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jan Hirschmann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
13
|
Martinez-Nunez AE, Sarmento FP, Chandra V, Hess CW, Hilliard JD, Okun MS, Wong JK. Management of essential tremor deep brain stimulation-induced side effects. Front Hum Neurosci 2024; 18:1353150. [PMID: 38454907 PMCID: PMC10918853 DOI: 10.3389/fnhum.2024.1353150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024] Open
Abstract
Deep brain stimulation (DBS) is an effective surgical therapy for carefully selected patients with medication refractory essential tremor (ET). The most popular anatomical targets for ET DBS are the ventral intermedius nucleus (VIM) of the thalamus, the caudal zona incerta (cZI) and the posterior subthalamic area (PSA). Despite extensive knowledge in DBS programming for tremor suppression, it is not uncommon to experience stimulation induced side effects related to DBS therapy. Dysarthria, dysphagia, ataxia, and gait impairment are common stimulation induced side effects from modulation of brain tissue that surround the target of interest. In this review, we explore current evidence about the etiology of stimulation induced side effects in ET DBS and provide several evidence-based strategies to troubleshoot, reprogram and retain tremor suppression.
Collapse
Affiliation(s)
- Alfonso Enrique Martinez-Nunez
- Norman Fixel Institute for Neurological Diseases, Gainesville, FL, United States
- Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Filipe P. Sarmento
- Norman Fixel Institute for Neurological Diseases, Gainesville, FL, United States
| | - Vyshak Chandra
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Christopher William Hess
- Norman Fixel Institute for Neurological Diseases, Gainesville, FL, United States
- Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Justin David Hilliard
- Norman Fixel Institute for Neurological Diseases, Gainesville, FL, United States
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Michael S. Okun
- Norman Fixel Institute for Neurological Diseases, Gainesville, FL, United States
- Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Joshua K. Wong
- Norman Fixel Institute for Neurological Diseases, Gainesville, FL, United States
- Department of Neurology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
14
|
Welzel J, Güthe M, Keil J, Hermann G, Wolke R, Maetzler W, Becktepe JS. The interplay of sensory feedback, arousal, and action tremor amplitude in essential tremor. Sci Rep 2024; 14:4301. [PMID: 38383687 PMCID: PMC10881477 DOI: 10.1038/s41598-024-54528-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/13/2024] [Indexed: 02/23/2024] Open
Abstract
Essential tremor (ET) amplitude is modulated by visual feedback during target driven movements and in a grip force task. It has not been examined yet whether visual feedback exclusively modulates target force tremor amplitude or if other afferent inputs like auditory sensation has a modulatory effect on tremor amplitude as well. Also, it is unknown whether the enhanced sensory feedback causes an increase of arousal in persons with ET (p-ET). We hypothesized that (1) amplitude of tremor is modulated by variation of auditory feedback in the absence of visual feedback in a force tremor paradigm; (2) increase of tremor amplitude coincides with pupillary size as a measure of arousal. 14 p-ET and 14 matched healthy controls (HC) conducted a computer-based experiment in which they were asked to match a target force on a force sensor using their thumb and index finger. The force-induced movement was fed back to the participant visually, auditory or by a combination of both. Results showed a comparable deviation from the target force (RMSE) during the experiment during all three sensory feedback modalities. The ANOVA revealed an effect of the high vs. low feedback condition on the tremor severity (Power 4-12 Hz) for the visual- and also for the auditory feedback condition in p-ET. Pupillometry showed a significantly increased pupil diameter during the auditory involved high feedback conditions compared to the low feedback conditions in p-ET. Our findings suggest that action tremor in ET is firstly modulated not only by visual feedback but also by auditory feedback in a comparable manner. Therefore, tremor modulation seems to be modality independent. Secondly, high feedback was associated with a significant pupil dilation, possibly mirroring an increased arousal/perceived effort.
Collapse
Affiliation(s)
- Julius Welzel
- University Hospital Schleswig-Holstein, Kiel, Germany
| | - Miriam Güthe
- University Hospital Schleswig-Holstein, Kiel, Germany
| | - Julian Keil
- Department of Psychology, University of Kiel, Kiel, Germany
| | | | - Robin Wolke
- University Hospital Schleswig-Holstein, Kiel, Germany
| | | | | |
Collapse
|
15
|
El-Adawy AFI, Reda MABMG, Ahmed AM, Rashad MH, Zaki MA, Mohamed MET, Hassan MAS, Abdulsalam MF, Hassan AM, Mohamed AF, Fayed AGI, Meshref M, Mansour FM, Sarhan AE, Elsheshiny AH, Abed E. Efficacy of Cerebellar Transcranial Magnetic Stimulation in Treating Essential Tremor: A Randomized, Sham-Controlled Trial. J Clin Neurol 2024; 20. [DOI: https:/doi.org/10.3988/jcn.2023.0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 05/31/2024] Open
Affiliation(s)
| | | | - Ali Mahmoud Ahmed
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Department of Neurology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK
| | | | - Mohamed Ahmed Zaki
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | | | | | - Abdelmonem M Hassan
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ahmed Fathy Mohamed
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Mostafa Meshref
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Ahmed E. Sarhan
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Elsayed Abed
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
16
|
Handforth A, Singh RP, Treven M, Ernst M. Search for Novel Therapies for Essential Tremor Based on Positive Modulation of α6-Containing GABA A Receptors. Tremor Other Hyperkinet Mov (N Y) 2023; 13:39. [PMID: 37900009 PMCID: PMC10607569 DOI: 10.5334/tohm.796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023] Open
Abstract
Background Prior work using GABAA receptor subunit knockouts and the harmaline model has indicated that low-dose alcohol, gaboxadol, and ganaxolone suppress tremor via α6βδ GABAA receptors. This suggests that drugs specifically enhancing the action of α6βδ or α6βγ2 GABAA receptors, both predominantly expressed on cerebellar granule cells, would be effective against tremor. We thus examined three drugs described by in vitro studies as selective α6βδ (ketamine) or α6βγ2 (Compound 6, flumazenil) receptor modulators. Methods In the first step of evaluation, the maximal dose was sought at which 6/6 mice pass straight wire testing, a sensitive test for psychomotor impairment. Only non-impairing doses were used to evaluate for anti-tremor efficacy in the harmaline model, which was assessed in wildtype and α6 subunit knockout littermates. Results Ketamine, in maximally tolerated doses of 2.0 and 3.5 mg/kg had minimal effect on harmaline tremor in both genotypes. Compound 6, at well-tolerated doses of 1-10 mg/kg, effectively suppressed tremor in both genotypes. Flumazenil suppressed tremor in wildtype mice at doses (0.015-0.05 mg/kg) far lower than those causing straight wire impairment, and did not suppress tremor in α6 knockout mice. Discussion Modulators of α6βδ and α6βγ2 GABAA receptors warrant attention for novel therapies as they are anticipated to be effective and well-tolerated. Ketamine likely failed to attain α6βδ-active levels. Compound 6 is an attractive candidate, but further study is needed to clarify its mechanism of action. The flumazenil results provide proof of principle that targeting α6βγ2 receptors represents a worthy strategy for developing essential tremor therapies. Highlights We tested for harmaline tremor suppression drugs previously described as in vitro α6βδ or α6βγ2 GABAA receptor-selective modulators. Well-tolerated flumazenil doses suppressed tremor in α6-wildtype but not α6-knockout mice. Compound 6 and ketamine failed to display this profile, likely from off-target effects. Selective α6 modulators hold promise as tremor therapy.
Collapse
Affiliation(s)
- Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - Ram P. Singh
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - Marco Treven
- Department of Neurology, Medical Neuroscience Cluster, Medical University of Vienna, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Younger E, Ellis EG, Parsons N, Pantano P, Tommasin S, Caeyenberghs K, Benito-León J, Romero JP, Joutsa J, Corp DT. Mapping Essential Tremor to a Common Brain Network Using Functional Connectivity Analysis. Neurology 2023; 101:e1483-e1494. [PMID: 37596042 PMCID: PMC10585696 DOI: 10.1212/wnl.0000000000207701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/09/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The cerebello-thalamo-cortical circuit plays a critical role in essential tremor (ET). However, abnormalities have been reported in multiple brain regions outside this circuit, leading to inconsistent characterization of ET pathophysiology. Here, we test whether these mixed findings in ET localize to a common functional network and whether this network has therapeutic relevance. METHODS We conducted a systematic literature search to identify studies reporting structural or metabolic brain abnormalities in ET. We then used 'coordinate network mapping,' which leverages a normative connectome (n = 1,000) of resting-state fMRI data to identify regions commonly connected to findings across all studies. To assess whether these regions may be relevant for the treatment of ET, we compared our network with a therapeutic network derived from lesions that relieved ET. Finally, we investigated whether the functional connectivity of this ET symptom network is abnormal in an independent cohort of patients with ET as compared with healthy controls. RESULTS Structural and metabolic brain abnormalities in ET were located in heterogeneous regions throughout the brain. However, these coordinates were connected to a common functional brain network, including the cerebellum, thalamus, motor cortex, precuneus, inferior parietal lobe, and insula. The cerebellum was identified as the hub of this network because it was the only brain region that was both functionally connected to the findings of over 90% of studies and significantly different in connectivity compared with a control data set of other movement disorders. This network was strikingly similar to the therapeutic network derived from lesions improving ET, with key regions aligning in the thalamus and cerebellum. Furthermore, positive functional connectivity between the cerebellar network hub and the sensorimotor cortices was significantly reduced in patients with ET compared with healthy controls, and connectivity within this network was correlated with tremor severity and cognitive functioning. DISCUSSION These findings suggest that the cerebellum is the central hub of a network commonly connected to structural and metabolic abnormalities in ET. This network may have therapeutic utility in refining and informing new targets for neuromodulation of ET.
Collapse
Affiliation(s)
- Ellen Younger
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| | - Elizabeth G Ellis
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Nicholas Parsons
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Patrizia Pantano
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Silvia Tommasin
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Karen Caeyenberghs
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Julián Benito-León
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Juan Pablo Romero
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Juho Joutsa
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Daniel T Corp
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
Kumar A, Lin CC, Kuo SH, Pan MK. Physiological Recordings of the Cerebellum in Movement Disorders. CEREBELLUM (LONDON, ENGLAND) 2023; 22:985-1001. [PMID: 36070135 PMCID: PMC10354710 DOI: 10.1007/s12311-022-01473-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
The cerebellum plays an important role in movement disorders, specifically in symptoms of ataxia, tremor, and dystonia. Understanding the physiological signals of the cerebellum contributes to insights into the pathophysiology of these movement disorders and holds promise in advancing therapeutic development. Non-invasive techniques such as electroencephalogram and magnetoencephalogram can record neural signals with high temporal resolution at the millisecond level, which is uniquely suitable to interrogate cerebellar physiology. These techniques have recently been implemented to study cerebellar physiology in healthy subjects as well as individuals with movement disorders. In the present review, we focus on the current understanding of cerebellar physiology using these techniques to study movement disorders.
Collapse
Affiliation(s)
- Ami Kumar
- Department of Neurology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 650 W 168thStreet, Room 305, New York, NY, 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY, USA
| | - Chih-Chun Lin
- Department of Neurology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 650 W 168thStreet, Room 305, New York, NY, 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 650 W 168thStreet, Room 305, New York, NY, 10032, USA.
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY, USA.
| | - Ming-Kai Pan
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, 64041, Taiwan.
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan.
- Department of Medical Research, National Taiwan University Hospital, Taipei, 10002, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, 11529, Taiwan.
| |
Collapse
|
19
|
Bindel L, Mühlberg C, Pfeiffer V, Nitschke M, Müller A, Wegscheider M, Rumpf JJ, Zeuner KE, Becktepe JS, Welzel J, Güthe M, Classen J, Tzvi E. Visuomotor Adaptation Deficits in Patients with Essential Tremor. CEREBELLUM (LONDON, ENGLAND) 2023; 22:925-937. [PMID: 36085397 PMCID: PMC10485096 DOI: 10.1007/s12311-022-01474-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Essential tremor (ET) is a progressive movement disorder whose pathophysiology is not fully understood. Current evidence supports the view that the cerebellum is critically involved in the genesis of the tremor in ET. However, it is still unknown whether cerebellar dysfunction affects not only the control of current movements but also the prediction of future movements through dynamic adaptation toward a changed environment. Here, we tested the capacity of 28 patients with ET to adapt in a visuomotor adaptation task known to depend on intact cerebellar function. We found specific impairments in that task compared to age-matched healthy controls. Adaptation to the visual perturbation was disrupted in ET patients, while de-adaptation, the phase after abrupt removal of the perturbation, developed similarly to control subjects. Baseline tremor-independent motor performance was as well similar to healthy controls, indicating that adaptation deficits in ET patients were not rooted in an inability to perform goal-directed movements. There was no association between clinical severity scores of ET and early visuomotor adaptation abilities. These results provide further evidence that the cerebellum is dysfunctional in ET.
Collapse
Affiliation(s)
- Laura Bindel
- Department of Neurology, Leipzig University, Liebigstraße 20, 04103, Leipzig, Germany
| | - Christoph Mühlberg
- Department of Neurology, Leipzig University, Liebigstraße 20, 04103, Leipzig, Germany
| | - Victoria Pfeiffer
- Department of Neurology, University of Lübeck, 23562, Lübeck, Germany
| | - Matthias Nitschke
- Department of Neurology, University of Lübeck, 23562, Lübeck, Germany
| | - Annekatrin Müller
- Department of Neurology, Leipzig University, Liebigstraße 20, 04103, Leipzig, Germany
| | - Mirko Wegscheider
- Department of Neurology, Leipzig University, Liebigstraße 20, 04103, Leipzig, Germany
| | - Jost-Julian Rumpf
- Department of Neurology, Leipzig University, Liebigstraße 20, 04103, Leipzig, Germany
| | | | - Jos S Becktepe
- Department of Neurology, Kiel University, 24105, Kiel, Germany
| | - Julius Welzel
- Department of Neurology, Kiel University, 24105, Kiel, Germany
| | - Miriam Güthe
- Department of Neurology, Kiel University, 24105, Kiel, Germany
| | - Joseph Classen
- Department of Neurology, Leipzig University, Liebigstraße 20, 04103, Leipzig, Germany
| | - Elinor Tzvi
- Department of Neurology, Leipzig University, Liebigstraße 20, 04103, Leipzig, Germany.
- Syte Institute, 20354, Hamburg, Germany.
| |
Collapse
|
20
|
Handforth A, Kosoyan HP, Kadam PA, Singh RP. Alcohol and Ganaxolone Suppress Tremor via Extra-Synaptic GABA A Receptors in the Harmaline Model of Essential Tremor. Tremor Other Hyperkinet Mov (N Y) 2023; 13:18. [PMID: 37214542 PMCID: PMC10198231 DOI: 10.5334/tohm.760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/06/2023] [Indexed: 05/24/2023] Open
Abstract
Background A long-standing question is why essential tremor often responds to non-intoxicating amounts of alcohol. Blood flow imaging and high-density electroencephalography have indicated that alcohol acts on tremor within the cerebellum. As extra-synaptic δ-subunit-containing GABAA receptors are sensitive to low alcohol levels, we wondered whether these receptors mediate alcohol's anti-tremor effect and, moreover, whether the δ-associated GABAA receptor α6 subunit, found abundantly in the cerebellum, is required. Methods We tested the hypotheses that low-dose alcohol will suppress harmaline-induced tremor in wild-type mice, but not in littermates lacking GABAA receptor δ subunits, nor in littermates lacking α6 subunits. As the neurosteroid ganaxolone also activates extra-synaptic GABAA receptors, we similarly assessed this compound. The harmaline mouse model of essential tremor was utilized to generate tremor, measured as a percentage of motion power in the tremor bandwidth (9-16 Hz) divided by background motion power at 0.25-32 Hz. Results Ethanol, 0.500 and 0.575 g/kg, and ganaxolone, 7 and 10 mg/kg, doses that do not impair performance in a sensitive psychomotor task, reduced harmaline tremor compared to vehicle-treated controls in wild-type mice but failed to suppress tremor in littermates lacking the δ or the α6 GABAA receptor subunit. Discussion As cerebellar granule cells are the predominant brain site intensely expressing GABAA receptors containing both α6 and δ subunits, these findings suggest that this is where alcohol acts to suppress tremor. It is anticipated that medications designed specifically to target α6βδ-containing GABAA receptors may be effective and well-tolerated for treating essential tremor. Highlights How does alcohol temporarily ameliorate essential tremor? This study with a mouse model found that two specific kinds of GABA receptor subunits were needed for alcohol to work. As receptors with both these subunits are found mainly in cerebellum, this work suggests this is where alcohol acts to suppress tremor.
Collapse
Affiliation(s)
- Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - Hovsep P. Kosoyan
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - Pournima A. Kadam
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - Ram P. Singh
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| |
Collapse
|
21
|
Lueckel JM, Upadhyay N, Purrer V, Maurer A, Borger V, Radbruch A, Attenberger U, Wuellner U, Panda R, Boecker H. Whole-brain network transitions within the framework of ignition and transfer entropy following VIM-MRgFUS in essential tremor patients. Brain Stimul 2023; 16:879-888. [PMID: 37230462 DOI: 10.1016/j.brs.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/30/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
Magnetic resonance-guided focused ultrasound (MRgFUS) lesioning of the ventralis intermedius nucleus (VIM) has shown promise in treating drug-refractory essential tremor (ET). It remains unknown whether focal VIM lesions by MRgFUS have broader restorative effects on information flow within the whole-brain network of ET patients. We applied an information-theoretical approach based on intrinsic ignition and the concept of transfer entropy (TE) to assess the spatiotemporal dynamics after VIM-MRgFUS. Eighteen ET patients (mean age 71.44 years) underwent repeated 3T resting-state functional magnetic resonance imaging combined with Clinical Rating Scale for Tremor (CRST) assessments one day before (T0) and one month (T1) and six months (T2) post-MRgFUS, respectively. We observed increased whole brain ignition-driven mean integration (IDMI) at T1 (p < 0.05), along with trend increases at T2. Further, constraining to motor network nodes, we identified significant increases in information-broadcasting (bilateral supplementary motor area (SMA) and left cerebellar lobule III) and information-receiving (right precentral gyrus) at T1. Remarkably, increased information-broadcasting in bilateral SMA was correlated with relative improvement of the CRST in the treated hand. In addition, causal TE-based effective connectivity (EC) at T1 showed an increase from right SMA to left cerebellar lobule crus II and from left cerebellar lobule III to right thalamus. In conclusion, results suggest a change in information transmission capacity in ET after MRgFUS and a shift towards a more integrated functional state with increased levels of global and directional information flow.
Collapse
Affiliation(s)
- Julia M Lueckel
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany.
| | - Neeraj Upadhyay
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Veronika Purrer
- German Center for Neurodegenerative Diseases, Bonn, Germany; Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Angelika Maurer
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Alexander Radbruch
- German Center for Neurodegenerative Diseases, Bonn, Germany; Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Ullrich Wuellner
- German Center for Neurodegenerative Diseases, Bonn, Germany; Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Rajanikant Panda
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
| | - Henning Boecker
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases, Bonn, Germany.
| |
Collapse
|
22
|
Matthews LG, Puryear CB, Correia SS, Srinivasan S, Belfort GM, Pan MK, Kuo SH. T-type calcium channels as therapeutic targets in essential tremor and Parkinson's disease. Ann Clin Transl Neurol 2023; 10:462-483. [PMID: 36738196 PMCID: PMC10109288 DOI: 10.1002/acn3.51735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 02/05/2023] Open
Abstract
Neuronal action potential firing patterns are key components of healthy brain function. Importantly, restoring dysregulated neuronal firing patterns has the potential to be a promising strategy in the development of novel therapeutics for disorders of the central nervous system. Here, we review the pathophysiology of essential tremor and Parkinson's disease, the two most common movement disorders, with a focus on mechanisms underlying the genesis of abnormal firing patterns in the implicated neural circuits. Aberrant burst firing of neurons in the cerebello-thalamo-cortical and basal ganglia-thalamo-cortical circuits contribute to the clinical symptoms of essential tremor and Parkinson's disease, respectively, and T-type calcium channels play a key role in regulating this activity in both the disorders. Accordingly, modulating T-type calcium channel activity has received attention as a potentially promising therapeutic approach to normalize abnormal burst firing in these diseases. In this review, we explore the evidence supporting the theory that T-type calcium channel blockers can ameliorate the pathophysiologic mechanisms underlying essential tremor and Parkinson's disease, furthering the case for clinical investigation of these compounds. We conclude with key considerations for future investigational efforts, providing a critical framework for the development of much needed agents capable of targeting the dysfunctional circuitry underlying movement disorders such as essential tremor, Parkinson's disease, and beyond.
Collapse
Affiliation(s)
| | - Corey B Puryear
- Praxis Precision Medicines, Boston, Massachusetts, 02110, USA
| | | | - Sharan Srinivasan
- Praxis Precision Medicines, Boston, Massachusetts, 02110, USA.,Department of Neurology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | | | - Ming-Kai Pan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, 10617, Taiwan.,Department of Medical Research, National Taiwan University Hospital, Taipei, 10002, Taiwan.,Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, 64041, Taiwan
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, New York, 10032, USA.,Initiative for Columbia Ataxia and Tremor, Columbia University, New York, New York, 10032, USA
| |
Collapse
|
23
|
Thaler C, Tian Q, Wintermark M, Ghanouni P, Halpern CH, Henderson JM, Airan RD, Zeineh M, Goubran M, Leuze C, Fiehler J, Butts Pauly K, McNab JA. Changes in the Cerebello-Thalamo-Cortical Network After Magnetic Resonance-Guided Focused Ultrasound Thalamotomy. Brain Connect 2023; 13:28-38. [PMID: 35678063 PMCID: PMC9942176 DOI: 10.1089/brain.2021.0157] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objective: In recent years, transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) has been established as a potential treatment option for movement disorders, including essential tremor (ET). So far, however, little is known about the impact of tcMRgFUS on structural connectivity. The objective of this study was to detect microstructural changes in tremor- and motor-related white matter tracts in ET patients treated with tcMRgFUS thalamotomy. Methods: Eleven patients diagnosed with ET were enrolled in this tcMRgFUS thalamotomy study. For each patient, 3 Tesla magnetic resonance imaging (3T MRI) including structural and diffusion MRI were acquired and the Clinical Rating Scale for Tremor was assessed before the procedure as well as 1 year after the treatment. Diffusion MRI tractography was performed to identify the cerebello-thalamo-cortical tract (CTCT), the medial lemniscus, and the corticospinal tract in both hemispheres on pre-treatment data. Pre-treatment tractography results were co-registered to post-treatment diffusion data. Diffusion tensor imaging (DTI) metrics, including fractional anisotropy (FA), mean diffusivity (MD) and radial diffusivity (RD), were averaged across the tracts in the pre- and post-treatment data. Results: The mean value of tract-specific DTI metrics changed significantly within the thalamic lesion and in the CTCT on the treated side (p < 0.05). Changes of DTI-derived indices within the CTCT correlated well with lesion overlap (FA: r = -0.54, p = 0.04; MD: r = 0.57, p = 0.04); RD: r = 0.67, p = 0.036). Further, a trend was seen for the correlation between changes of DTI-derived indices within the CTCT and clinical improvement (FA: r = 0.58; p = 0.062; MD: r = -0.52, p = 0.64; RD: r = -0.61 p = 0.090). Conclusions: Microstructural changes were detected within the CTCT after tcMRgFUS, and these changes correlated well with lesion-tract overlap. Our results show that diffusion MRI is able to detect the microstructural effects of tcMRgFUS, thereby further elucidating the treatment mechanism, and ultimately to improve targeting prospectively. Impact statement The results of this study demonstrate microstructural changes within the cerebello-thalamo-cortical pathways 1 year after MR-guided focused ultrasound thalamotomy. Even more, microstructural changes within the cerebello-thalamo-cortical pathways correlated significantly with clinical outcome. These findings do not only highly emphasize the need of new targeting strategies for MR-guided focused ultrasound thalamotomy but also help to elucidate the treatment mechanism of it.
Collapse
Affiliation(s)
- Christian Thaler
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Qiyuan Tian
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Max Wintermark
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Pejman Ghanouni
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Casey H. Halpern
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | | | - Raag D. Airan
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Michael Zeineh
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Maged Goubran
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Christoph Leuze
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Jennifer A. McNab
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
24
|
Madadi Asl M, Valizadeh A, Tass PA. Decoupling of interacting neuronal populations by time-shifted stimulation through spike-timing-dependent plasticity. PLoS Comput Biol 2023; 19:e1010853. [PMID: 36724144 PMCID: PMC9891531 DOI: 10.1371/journal.pcbi.1010853] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/05/2023] [Indexed: 02/02/2023] Open
Abstract
The synaptic organization of the brain is constantly modified by activity-dependent synaptic plasticity. In several neurological disorders, abnormal neuronal activity and pathological synaptic connectivity may significantly impair normal brain function. Reorganization of neuronal circuits by therapeutic stimulation has the potential to restore normal brain dynamics. Increasing evidence suggests that the temporal stimulation pattern crucially determines the long-lasting therapeutic effects of stimulation. Here, we tested whether a specific pattern of brain stimulation can enable the suppression of pathologically strong inter-population synaptic connectivity through spike-timing-dependent plasticity (STDP). More specifically, we tested how introducing a time shift between stimuli delivered to two interacting populations of neurons can effectively decouple them. To that end, we first used a tractable model, i.e., two bidirectionally coupled leaky integrate-and-fire (LIF) neurons, to theoretically analyze the optimal range of stimulation frequency and time shift for decoupling. We then extended our results to two reciprocally connected neuronal populations (modules) where inter-population delayed connections were modified by STDP. As predicted by the theoretical results, appropriately time-shifted stimulation causes a decoupling of the two-module system through STDP, i.e., by unlearning pathologically strong synaptic interactions between the two populations. Based on the overall topology of the connections, the decoupling of the two modules, in turn, causes a desynchronization of the populations that outlasts the cessation of stimulation. Decoupling effects of the time-shifted stimulation can be realized by time-shifted burst stimulation as well as time-shifted continuous simulation. Our results provide insight into the further optimization of a variety of multichannel stimulation protocols aiming at a therapeutic reshaping of diseased brain networks.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran
| | - Alireza Valizadeh
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Peter A. Tass
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
25
|
Upper Limb Function but Not Proprioception is Impaired in Essential Tremor: A Between-Groups Study and Causal Mediation Analysis. Tremor Other Hyperkinet Mov (N Y) 2023; 13:1. [PMID: 36644368 PMCID: PMC9818046 DOI: 10.5334/tohm.731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Background Essential tremor (ET) is characterized by abnormal oscillatory muscle activity and cerebellar involvement, factors that can lead to proprioceptive deficits, especially in active tasks. The present study aimed to quantify the severity of proprioceptive deficits in people with ET and estimate how these contribute to functional impairments. Methods Upper limb sensory, proprioceptive and motor function was assessed inindividuals with ET (n = 20) and healthy individuals (n = 22). To measure proprioceptive ability, participants discriminated the width of grasped objects and the weight of objects liftedwith the wrist extensors. Causal mediation analysis was used to estimate the extentthat impairments in upper limb function in ET was mediated by proprioceptive ability. Results Participants with ET had impaired upper limb function in all outcomes, and had greater postural and kinetic tremor. There were no differences between groups in proprioceptive discrimination of width (between-group mean difference [95% CI]: 0.32 mm [-0.23 to 0.87 mm]) or weight (-1.12 g [-7.31 to 5.07 g]). Causal mediation analysis showed the effect of ET on upper limb function was not mediated by proprioceptive ability. Conclusions Upper limb function but not proprioception was impaired in ET. The effect of ET on motor function was not mediated by proprioception. These results indicate that the central nervous system of people with ET is able to accommodate mild to moderate tremor in active proprioceptive tasks that rely primarily on afferent signals from muscle spindles.
Collapse
|
26
|
Jameel A, Meiwald A, Bain P, Patel N, Nandi D, Jones B, Weston G, Adams EJ, Gedroyc W. The cost-effectiveness of unilateral magnetic resonance-guided focused ultrasound in comparison with unilateral deep brain stimulation for the treatment of medically refractory essential tremor in England. Br J Radiol 2022; 95:20220137. [PMID: 36125247 PMCID: PMC9733625 DOI: 10.1259/bjr.20220137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/01/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES This study aims to ascertain the cost-effectiveness of magnetic resonance-guided focused ultrasound (MRgFUS) for the treatment of medically refractory Essential Tremor (mrET) in England. Essential Tremor (ET) is the most common movement disorder affecting approximately 1 million in the UK causing considerable societal impact affecting patients, carers and the wider healthservice. Medical treatment has mixed efficacy, with approximately 25-55% of ET medication refractory. Deep brain stimulation (DBS) is a proven neurosurgical treatment; however, the risks of surgery and anaesthesia mean some patients are ineligible. MRgFUS is an emerging noninvasive technique that causes tremor suppression by thermal ablation of tremor-sensitive brain tissue. Several international clinical trials have demonstrated MRgFUS is safe and clinically effective; however, to-date no cost-effectiveness study has been performed in Europe. METHODS A Markov model was used to assess two subpopulations of mrET - those eligible and those ineligible for neurosurgery - in the context specific to England and its healthcare system. For those eligible for neurosurgery, MRgFUS was compared to DBS, the current standard treatment. For those ineligible for neurosurgery, MRgFUS was compared to treatment with medication alone. The model calculated the Incremental cost-effectiveness ratio (ICER) with appropriate sensitivity and scenario analyses. RESULTS For those eligible for neurosurgery: In the model base case, the MRgFUS was economically dominant compared to DBS; MRgFUS was less costly (£19,779 vs £62,348) and more effective generating 0.03 additional quality-adjusted life-years (QALYs) per patient (3.71 vs 3.68) over the 5-year time horizon.For those ineligible for neurosurgery: In the model base case, MRgFUS cost over £16,000 per patient more than medication alone (£19,779 vs £62,348) but yielded 0.77 additional QALYs per patient(3.71 vs 2.95), producing an incremental cost-effectiveness ratio (ICER) of £20,851 per QALY. This ICER of £20,851 per QALY falls within the National Institute for Clinical Excellence's (NICE) willingness to pay threshold (WTP) of 20,000-30,000 demonstrating the cost-effectiveness profile of MRgFUS. CONCLUSION This study demonstrates the favourable cost-effectiveness profile of MRgFUS for the treatment of mrET in England; in both patients suitable and not suitable for neurosurgery. ADVANCES IN KNOWLEDGE The introduction of MRgFUS as a widely available ET treatment in UK is currently undergoing the necessary stages of regulatory approval. As the first European study, these favourable cost-effectiveness outcomes (notably the model base case ICER falling within NICE's WTP) can provide a basis for future commissioning of brain MRgFUS treatments in the UK, Europe and globally.
Collapse
Affiliation(s)
| | - Anne Meiwald
- UK Aquarius Population Health Limited, London, United Kingdom
| | - Peter Bain
- Division of Brain Sciences, Imperial College London, London, United Kingdom
| | - Neekhil Patel
- Department of Neurosciences, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Dipankar Nandi
- Department of Neurosciences, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Brynmor Jones
- Department of Radiology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Georgie Weston
- UK Aquarius Population Health Limited, London, United Kingdom
| | | | - Wladyslaw Gedroyc
- Department of Radiology, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
27
|
Reis AS, Brugnago EL, Viana RL, Batista AM, Iarosz KC, Caldas IL. Effects of feedback control in small-world neuronal networks interconnected according to a human connectivity map. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
He R, Qin Y, Zhou X, Liu Z, Xu Q, Guo J, Yan X, Tang B, Zeng S, Sun Q. The effect of regional white matter hyperintensities on essential tremor subtypes and severity. Front Aging Neurosci 2022; 14:933093. [PMID: 36325187 PMCID: PMC9621611 DOI: 10.3389/fnagi.2022.933093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives To investigate the effect of regional white matter hyperintensities (WMHs) on Essential tremor (ET) subtypes and to explore the association between WMHs load and the severity of motor and non-motor symptoms in patients with ET. Methods A cohort of 176 patients with ET (including 86 patients with pure ET and 90 patients with ET plus) and 91 normal controls (NC) was consecutively recruited. Demographic, clinical, and imaging characteristics were compared between individuals with pure ET, ET plus, and NC. The cross-sectional association among regional WMHs and the severity of tremor and non-motor symptoms were assessed within each group. Results Compared with the pure ET subgroup, the ET plus subgroup demonstrated higher TETRAS scores, NMSS scores, and lower MMSE scores (all P < 0.05). Periventricular and lobar WMHs' loads of pure ET subgroup intermediated between NC subjects and ET plus subgroup. WMHs in the frontal horn independently increased the odds of ET (OR = 1.784, P < 0.001). The age (P = 0.021), WMHs in the frontal lobe (P = 0.014), and WMHs in the occipital lobe (P = 0.020) showed a significant impact on TETRAS part II scores in the ET plus subgroup. However, only the disease duration was positively associated with TETRAS part II scores in patients with pure ET (P = 0.028). In terms of non-motor symptoms, NMSS scores of total patients with ET were associated with disease duration (P = 0.029), TETRAS part I scores (P = 0.017), and WMH scores in the frontal lobe (P = 0.033). MMSE scores were associated with age (P = 0.027), body mass index (P = 0.006), education level (P < 0.001), and WMHs in the body of the lateral ventricle (P = 0.005). Conclusion Our results indicated that the WMHs in the frontal horn could lead to an increased risk of developing ET. WMHs may be used to differentiate pure ET and ET plus. Furthermore, WMHs in the frontal and occipital lobes are strong predictors of worse tremor severity in the ET plus subgroup. Regional WMHs are associated with cognitive impairment in patients with ET.
Collapse
Affiliation(s)
- Runcheng He
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Qin
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhou
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Sheng Zeng
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Sheng Zeng
| | - Qiying Sun
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- *Correspondence: Qiying Sun
| |
Collapse
|
29
|
Terzic L, Voegtle A, Farahat A, Hartong N, Galazky I, Nasuto SJ, Andrade ADO, Knight RT, Ivry RB, Voges J, Buentjen L, Sweeney‐Reed CM. Deep brain stimulation of the ventrointermediate nucleus of the thalamus to treat essential tremor improves motor sequence learning. Hum Brain Mapp 2022; 43:4791-4799. [PMID: 35792001 PMCID: PMC9491285 DOI: 10.1002/hbm.25989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 11/06/2022] Open
Abstract
The network of brain structures engaged in motor sequence learning comprises the same structures as those involved in tremor, including basal ganglia, cerebellum, thalamus, and motor cortex. Deep brain stimulation (DBS) of the ventrointermediate nucleus of the thalamus (VIM) reduces tremor, but the effects on motor sequence learning are unknown. We investigated whether VIM stimulation has an impact on motor sequence learning and hypothesized that stimulation effects depend on the laterality of electrode location. Twenty patients (age: 38-81 years; 12 female) with VIM electrodes implanted to treat essential tremor (ET) successfully performed a serial reaction time task, varying whether the stimuli followed a repeating pattern or were selected at random, during which VIM-DBS was either on or off. Analyses of variance were applied to evaluate motor sequence learning performance according to reaction times (RTs) and accuracy. An interaction was observed between whether the sequence was repeated or random and whether VIM-DBS was on or off (F[1,18] = 7.89, p = .012). Motor sequence learning, reflected by reduced RTs for repeated sequences, was greater with DBS on than off (T[19] = 2.34, p = .031). Stimulation location correlated with the degree of motor learning, with greater motor learning when stimulation targeted the lateral VIM (n = 23, ρ = 0.46; p = .027). These results demonstrate the beneficial effects of VIM-DBS on motor sequence learning in ET patients, particularly with lateral VIM electrode location, and provide evidence for a role for the VIM in motor sequence learning.
Collapse
Affiliation(s)
- Laila Terzic
- Neurocybernetics and Rehabilitation, Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
| | - Angela Voegtle
- Neurocybernetics and Rehabilitation, Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
| | - Amr Farahat
- Neurocybernetics and Rehabilitation, Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
| | - Nanna Hartong
- Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
| | - Imke Galazky
- Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
| | - Slawomir J. Nasuto
- Biomedical Sciences and Biomedical Engineering Division, School of Biological SciencesUniversity of ReadingReadingUK
| | - Adriano de Oliveira Andrade
- Faculty of Electrical Engineering, Center for Innovation and Technology Assessment in Health, Postgraduate Program in Electrical and Biomedical EngineeringFederal University of UberlândiaUberlândiaBrazil
| | - Robert T. Knight
- Helen Wills Neuroscience InstituteUniversity of California—BerkeleyBerkeleyCaliforniaUSA
- Department of PsychologyUniversity of California—BerkeleyBerkeleyCaliforniaUSA
| | - Richard B. Ivry
- Department of PsychologyUniversity of California—BerkeleyBerkeleyCaliforniaUSA
| | - Jürgen Voges
- Department of Stereotactic NeurosurgeryOtto von Guericke University MagdeburgMagdeburgGermany
| | - Lars Buentjen
- Department of Stereotactic NeurosurgeryOtto von Guericke University MagdeburgMagdeburgGermany
| | - Catherine M. Sweeney‐Reed
- Neurocybernetics and Rehabilitation, Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
- Center for Behavioral Brain SciencesOtto von Guericke University MagdeburgMagdeburgGermany
| |
Collapse
|
30
|
Khatoun A, Asamoah B, Boogers A, Mc Laughlin M. Epicranial Direct Current Stimulation Suppresses Harmaline Tremor in Rats. Neuromodulation 2022:S1094-7159(22)01223-5. [DOI: 10.1016/j.neurom.2022.08.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 10/14/2022]
|
31
|
Lee J, Kim J, Cortez J, Chang SY. Thalamo-cortical network is associated with harmaline-induced tremor in rodent model. Exp Neurol 2022; 358:114210. [PMID: 36007599 DOI: 10.1016/j.expneurol.2022.114210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/19/2022] [Indexed: 11/04/2022]
Abstract
Essential tremor (ET) is the most frequent form of pathologic tremor and one of the most common adult-onset neurologic impairments. However, underlying mechanisms by which structural alterations within the tremor circuit generate the pathological state and how rhythmic neuronal activities propagate and drive tremor remains unclear. Harmaline (HA)-induced tremor model has been most frequently utilized animal model for ET studies, however, there is still a dearth of knowledge over the degree to whether HA-induced tremor mimics the actual underlying pathophysiology of ET, particularly the involvement of thalamo-cortical region. In this study, we investigated the electrophysiological response of the motor circuit including the ventrolateral thalamus (vlTh) and the primary motor cortex (M1), and the modulatory effect of thalamic deep brain stimulation (DBS) using a rat HA-induced tremor model. We found that the theta and high-frequency oscillation (HFO) band power significantly increased after HA administration in both vlTh and M1, and the activity was modulated by the tremor suppression drug (propranolol) and the thalamic DBS. The theta band phase synchronization between the vlTh and M1 was significantly enhanced during the HA-induced tremor, and the transition of cross-frequency coupling in vlTh was found to be associated with the state of HA-induced tremor. Our findings support that the HA tremor could be useful as a valid preclinical model of ET in the context of thalamo-cortical neural network interaction.
Collapse
Affiliation(s)
- Jeyeon Lee
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Jiwon Kim
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Joshua Cortez
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Su-Youne Chang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
32
|
Kulkarni AS, Burns MR, Brundin P, Wesson DW. Linking α-synuclein-induced synaptopathy and neural network dysfunction in early Parkinson's disease. Brain Commun 2022; 4:fcac165. [PMID: 35822101 PMCID: PMC9272065 DOI: 10.1093/braincomms/fcac165] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/11/2022] [Accepted: 06/20/2022] [Indexed: 01/18/2023] Open
Abstract
The prodromal phase of Parkinson's disease is characterized by aggregation of the misfolded pathogenic protein α-synuclein in select neural centres, co-occurring with non-motor symptoms including sensory and cognitive loss, and emotional disturbances. It is unclear whether neuronal loss is significant during the prodrome. Underlying these symptoms are synaptic impairments and aberrant neural network activity. However, the relationships between synaptic defects and network-level perturbations are not established. In experimental models, pathological α-synuclein not only impacts neurotransmission at the synaptic level, but also leads to changes in brain network-level oscillatory dynamics-both of which likely contribute to non-motor deficits observed in Parkinson's disease. Here we draw upon research from both human subjects and experimental models to propose a 'synapse to network prodrome cascade' wherein before overt cell death, pathological α-synuclein induces synaptic loss and contributes to aberrant network activity, which then gives rise to prodromal symptomology. As the disease progresses, abnormal patterns of neural activity ultimately lead to neuronal loss and clinical progression of disease. Finally, we outline goals and research needed to unravel the basis of functional impairments in Parkinson's disease and other α-synucleinopathies.
Collapse
Affiliation(s)
- Aishwarya S Kulkarni
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| | - Matthew R Burns
- Department of Neurology, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
- Norman Fixel Institute for Neurological Disorders, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| | - Patrik Brundin
- Pharma Research and Early Development (pRED), F. Hoffman-La Roche, Little Falls, NJ, USA
| | - Daniel W Wesson
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
- Norman Fixel Institute for Neurological Disorders, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| |
Collapse
|
33
|
Riboldi GM, Frucht SJ. Is essential tremor a family of diseases or a syndrome? A family of diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:7-29. [PMID: 35750371 DOI: 10.1016/bs.irn.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It is now well-established that essential tremor (ET) can manifest with different clinical presentations and progressions (i.e., upper limb tremor, head tremor, voice tremor, lower limb tremor, task- or position-specific tremor, or a combination of those). Common traits and overlaps are identifiable across these different subtypes of ET, including a slow rate of progression, a response to alcohol and a positive family history. At the same time, each of these manifestations are associated with specific demographic, clinical and treatment-response characteristics suggesting a family of diseases rather than a spectrum of a syndrome. Here we summarize the most important clinical, demographic, neuropathological and imagingfeatures of ET and of its subtypes to support ET as a family of identifiable conditions. This classification has relevance for counseling of patients with regard to disease progression and treatment response, as well as for the design of therapeutic clinical trials.
Collapse
Affiliation(s)
- Giulietta M Riboldi
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY, United States
| | - Steven J Frucht
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY, United States.
| |
Collapse
|
34
|
Cho HJ. Is essential tremor a degenerative or an electrical disorder? Electrical disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:103-128. [PMID: 35750360 DOI: 10.1016/bs.irn.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Essential tremor (ET) is one of the most common movement disorders, yet we do not have a complete understanding of its pathophysiology. From a phenomenology standpoint, ET is an isolated tremor syndrome of bilateral upper limb action tremor with or without tremor in other body locations. ET is a pathological tremor that arises from excessive oscillation in the central motor network. The tremor network comprises of multiple brain regions including the inferior olive, cerebellum, thalamus, and motor cortex, and there is evidence that a dynamic oscillatory disturbance within this network leads to tremor. ET is a chronic disorder, and the natural history shows a slow progression of tremor intensity with age. There are reported data suggesting that ET follows the disease model of a neurodegenerative disorder, however whether ET is a degenerative or electrical disorder has been a subject of debate. In this chapter, we will review cumulative evidence that ET as a syndrome is a fundamentally electric disorder. The etiology is likely heterogenous and may not be primarily neurodegenerative.
Collapse
Affiliation(s)
- Hyun Joo Cho
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
35
|
Bellows S, Jimenez-Shahed J. Is essential tremor a disorder of GABA dysfunction? No. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:285-310. [PMID: 35750366 DOI: 10.1016/bs.irn.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although essential tremor is common, its underlying pathophysiology remains uncertain, and several hypotheses seek to explain the tremor mechanism. The GABA hypothesis states that disinhibition of deep cerebellar neurons due to reduced GABAergic input from Purkinje cells results in increased pacemaker activity, leading to rhythmic output to the thalamo-cortical circuit and resulting in tremor. However, some neuroimaging, spectroscopy, and pathology studies have not shown a clear or consistent GABA deficiency in essential tremor, and animal models have indicated that large reductions of Purkinje cell inhibition may improve tremor. Instead, tremor is increasingly attributable to dysfunction in oscillating networks, where altered (but not necessarily reduced) inhibitory signaling can result in tremor. Hypersynchrony of Purkinje cell activity may account for excessive oscillatory cerebellar output, with potential contributions along multiple sites of the olivocerebellar loop. Although older animal tremor models, such as harmaline tremor, have explored contributions from the inferior olivary body, increasing evidence has pointed to the role of aberrant climbing fiber synaptic organization in oscillatory cerebellar activity and tremor generation. New animal models such as hotfoot17j mice, which exhibit abnormal climbing fiber organization due to mutations in Grid2, have recapitulated many features of ET. Similar abnormal climbing fiber architecture and excessive cerebellar oscillations as measured by EEG have been found in humans with essential tremor. Further understanding of hypersynchrony and excessive oscillatory activity in ET phenotypes may lead to more targeted and effective treatment options.
Collapse
|
36
|
Weber I, Oehrn CR. A Waveform-Independent Measure of Recurrent Neural Activity. Front Neuroinform 2022; 16:800116. [PMID: 35321152 PMCID: PMC8936506 DOI: 10.3389/fninf.2022.800116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/08/2022] [Indexed: 11/23/2022] Open
Abstract
Rhythmic neural activity, so-called oscillations, plays a key role in neural information transmission, processing, and storage. Neural oscillations in distinct frequency bands are central to physiological brain function, and alterations thereof have been associated with several neurological and psychiatric disorders. The most common methods to analyze neural oscillations, e.g., short-time Fourier transform or wavelet analysis, assume that measured neural activity is composed of a series of symmetric prototypical waveforms, e.g., sinusoids. However, usually, the models generating the signal, including waveform shapes of experimentally measured neural activity are unknown. Decomposing asymmetric waveforms of nonlinear origin using these classic methods may result in spurious harmonics visible in the estimated frequency spectra. Here, we introduce a new method for capturing rhythmic brain activity based on recurrences of similar states in phase-space. This method allows for a time-resolved estimation of amplitude fluctuations of recurrent activity irrespective of or specific to waveform shapes. The algorithm is derived from the well-established field of recurrence analysis, which, in comparison to Fourier-based analysis, is still very uncommon in neuroscience. In this paper, we show its advantages and limitations in comparison to short-time Fourier transform and wavelet convolution using periodic signals of different waveform shapes. Furthermore, we demonstrate its application using experimental data, i.e., intracranial and noninvasive electrophysiological recordings from the human motor cortex of one epilepsy patient and one healthy adult, respectively.
Collapse
Affiliation(s)
- Immo Weber
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Carina Renate Oehrn
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
37
|
Pan MK, Kuo SH. Essential tremor: Clinical perspectives and pathophysiology. J Neurol Sci 2022; 435:120198. [PMID: 35299120 PMCID: PMC10363990 DOI: 10.1016/j.jns.2022.120198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/01/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
Essential tremor (ET) is one of the most common neurological disorders and can be highly disabling. In recent years, studies on the clinical perspectives and pathophysiology have advanced our understanding of ET. Specifically, clinical heterogeneity of ET, with co-existence of tremor and other neurological features such as dystonia, ataxia, and cognitive dysfunction, has been identified. The cerebellum has been found to be the key brain region for tremor generation, and structural alterations of the cerebellum have been extensively studied in ET. Finally, four main ET pathophysiologies have been proposed: 1) environmental exposures to β-carboline alkaloids and the consequent olivocerebellar hyper-excitation, 2) cerebellar GABA deficiency, 3) climbing fiber synaptic pathology with related cerebellar oscillatory activity, 4) extra-cerebellar oscillatory activity. While these four theories are not mutually exclusive, they can represent distinctive ET subtypes, indicating multiple types of abnormal brain circuitry can lead to action tremor. This article is part of the Special Issue "Tremor" edited by Daniel D. Truong, Mark Hallett, and Aasef Shaikh.
Collapse
|
38
|
Frei K, Truong DD. Medications used to treat tremors. J Neurol Sci 2022; 435:120194. [DOI: 10.1016/j.jns.2022.120194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/06/2022] [Accepted: 02/17/2022] [Indexed: 10/19/2022]
|
39
|
Maezawa H, Fujimoto M, Hata Y, Matsuhashi M, Hashimoto H, Kashioka H, Yanagida T, Hirata M. Functional cortical localization of tongue movements using corticokinematic coherence with a deep learning-assisted motion capture system. Sci Rep 2022; 12:388. [PMID: 35013521 PMCID: PMC8748830 DOI: 10.1038/s41598-021-04469-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/23/2021] [Indexed: 11/09/2022] Open
Abstract
Corticokinematic coherence (CKC) between magnetoencephalographic and movement signals using an accelerometer is useful for the functional localization of the primary sensorimotor cortex (SM1). However, it is difficult to determine the tongue CKC because an accelerometer yields excessive magnetic artifacts. Here, we introduce a novel approach for measuring the tongue CKC using a deep learning-assisted motion capture system with videography, and compare it with an accelerometer in a control task measuring finger movement. Twelve healthy volunteers performed rhythmical side-to-side tongue movements in the whole-head magnetoencephalographic system, which were simultaneously recorded using a video camera and examined using a deep learning-assisted motion capture system. In the control task, right finger CKC measurements were simultaneously evaluated via motion capture and an accelerometer. The right finger CKC with motion capture was significant at the movement frequency peaks or its harmonics over the contralateral hemisphere; the motion-captured CKC was 84.9% similar to that with the accelerometer. The tongue CKC was significant at the movement frequency peaks or its harmonics over both hemispheres. The CKC sources of the tongue were considerably lateral and inferior to those of the finger. Thus, the CKC with deep learning-assisted motion capture can evaluate the functional localization of the tongue SM1.
Collapse
Affiliation(s)
- Hitoshi Maezawa
- Department of Neurological Diagnosis and Restoration, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
| | - Momoka Fujimoto
- Graduate School of Simulation Studies, University of Hyogo, Minatojima-minamimachi 7-1-28, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Yutaka Hata
- Graduate School of Simulation Studies, University of Hyogo, Minatojima-minamimachi 7-1-28, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Masao Matsuhashi
- Graduate School of Medicine, Human Brain Research Center, Kyoto University, Kawahara-cho 53, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroaki Hashimoto
- Department of Neurological Diagnosis and Restoration, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.,Neurosurgery, Otemae Hospital, Otemae1-5-34, Chuo-ku, Osaka, 540-0008, Japan
| | - Hideki Kashioka
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Yamadaoka 1-4, Suita, Osaka, 565-0871, Japan
| | - Toshio Yanagida
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Yamadaoka 1-4, Suita, Osaka, 565-0871, Japan
| | - Masayuki Hirata
- Department of Neurological Diagnosis and Restoration, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
40
|
Woodward K, Apps R, Goodfellow M, Cerminara NL. Cerebello-Thalamo-Cortical Network Dynamics in the Harmaline Rodent Model of Essential Tremor. Front Syst Neurosci 2022; 16:899446. [PMID: 35965995 PMCID: PMC9365993 DOI: 10.3389/fnsys.2022.899446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
Essential Tremor (ET) is a common movement disorder, characterised by a posture or movement-related tremor of the upper limbs. Abnormalities within cerebellar circuits are thought to underlie the pathogenesis of ET, resulting in aberrant synchronous oscillatory activity within the thalamo-cortical network leading to tremors. Harmaline produces pathological oscillations within the cerebellum, and a tremor that phenotypically resembles ET. However, the neural network dynamics in cerebellar-thalamo-cortical circuits in harmaline-induced tremor remains unclear, including the way circuit interactions may be influenced by behavioural state. Here, we examined the effect of harmaline on cerebello-thalamo-cortical oscillations during rest and movement. EEG recordings from the sensorimotor cortex and local field potentials (LFP) from thalamic and medial cerebellar nuclei were simultaneously recorded in awake behaving rats, alongside measures of tremor using EMG and accelerometery. Analyses compared neural oscillations before and after systemic administration of harmaline (10 mg/kg, I.P), and coherence across periods when rats were resting vs. moving. During movement, harmaline increased the 9-15 Hz behavioural tremor amplitude and increased thalamic LFP coherence with tremor. Medial cerebellar nuclei and cerebellar vermis LFP coherence with tremor however remained unchanged from rest. These findings suggest harmaline-induced cerebellar oscillations are independent of behavioural state and associated changes in tremor amplitude. By contrast, thalamic oscillations are dependent on behavioural state and related changes in tremor amplitude. This study provides new insights into the role of cerebello-thalamo-cortical network interactions in tremor, whereby neural oscillations in thalamocortical, but not cerebellar circuits can be influenced by movement and/or behavioural tremor amplitude in the harmaline model.
Collapse
Affiliation(s)
- Kathryn Woodward
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Marc Goodfellow
- Department of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Nadia L. Cerminara
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- *Correspondence: Nadia L. Cerminara
| |
Collapse
|
41
|
Sieghart W, Chiou LC, Ernst M, Fabjan J, M Savić M, Lee MT. α6-Containing GABA A Receptors: Functional Roles and Therapeutic Potentials. Pharmacol Rev 2022; 74:238-270. [PMID: 35017178 DOI: 10.1124/pharmrev.121.000293] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
GABAA receptors containing the α6 subunit are highly expressed in cerebellar granule cells and less abundantly in many other neuronal and peripheral tissues. Here, we for the first time summarize their importance for the functions of the cerebellum and the nervous system. The cerebellum is not only involved in motor control but also in cognitive, emotional, and social behaviors. α6βγ2 GABAA receptors located at cerebellar Golgi cell/granule cell synapses enhance the precision of inputs required for cerebellar timing of motor activity and are thus involved in cognitive processing and adequate responses to our environment. Extrasynaptic α6βδ GABAA receptors regulate the amount of information entering the cerebellum by their tonic inhibition of granule cells, and their optimal functioning enhances input filtering or contrast. The complex roles of the cerebellum in multiple brain functions can be compromised by genetic or neurodevelopmental causes that lead to a hypofunction of cerebellar α6-containing GABAA receptors. Animal models mimicking neuropsychiatric phenotypes suggest that compounds selectively activating or positively modulating cerebellar α6-containing GABAA receptors can alleviate essential tremor and motor disturbances in Angelman and Down syndrome as well as impaired prepulse inhibition in neuropsychiatric disorders and reduce migraine and trigeminal-related pain via α6-containing GABAA receptors in trigeminal ganglia. Genetic studies in humans suggest an association of the human GABAA receptor α6 subunit gene with stress-associated disorders. Animal studies support this conclusion. Neuroimaging and post-mortem studies in humans further support an involvement of α6-containing GABAA receptors in various neuropsychiatric disorders, pointing to a broad therapeutic potential of drugs modulating α6-containing GABAA receptors. SIGNIFICANCE STATEMENT: α6-Containing GABAA receptors are abundantly expressed in cerebellar granule cells, but their pathophysiological roles are widely unknown, and they are thus out of the mainstream of GABAA receptor research. Anatomical and electrophysiological evidence indicates that these receptors have a crucial function in neuronal circuits of the cerebellum and the nervous system, and experimental, genetic, post-mortem, and pharmacological studies indicate that selective modulation of these receptors offers therapeutic prospects for a variety of neuropsychiatric disorders and for stress and its consequences.
Collapse
Affiliation(s)
- Werner Sieghart
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Lih-Chu Chiou
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Margot Ernst
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Jure Fabjan
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Miroslav M Savić
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Ming Tatt Lee
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| |
Collapse
|
42
|
Lang EJ, Handforth A. Is the inferior olive central to essential tremor? Yes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:133-165. [PMID: 35750361 DOI: 10.1016/bs.irn.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We consider the question whether the inferior olive (IO) is required for essential tremor (ET). Much evidence shows that the olivocerebellar system is the main system capable of generating the widespread synchronous oscillatory Purkinje cell (PC) complex spike (CS) activity across the cerebellar cortex that would be capable of generating the type of bursting cerebellar output from the deep cerebellar nuclei (DCN) that could underlie tremor. Normally, synchronous CS activity primarily reflects the effective electrical coupling of IO neurons by gap junctions, and traditionally, ET research has focused on the hypothesis of increased coupling of IO neurons as the cause of hypersynchronous CS activity underlying tremor. However, recent pathology studies of brains from humans with ET and evidence from mutant mice, particularly the hotfoot17 mouse, that largely replicate the pathology of ET, suggest that the abnormal innervation of multiple Purkinje cells (PCs) by climbing fibers (Cfs) is related to tremor. In addition, ET brains show partial PC loss and axon terminal sprouting by surviving PCs. This may provide another mechanism for tremor. It is proposed that in ET, these three mechanisms may promote tremor. They all involve hypersynchronous DCN activity and an intact IO, but the level at which excessive synchronization occurs may be at the IO level (from abnormal afferent activity to this nucleus), the PC level (via aberrant Cfs), or the DCN level (via terminal PC collateral innervation).
Collapse
|
43
|
Kosmowska B, Wardas J. The Pathophysiology and Treatment of Essential Tremor: The Role of Adenosine and Dopamine Receptors in Animal Models. Biomolecules 2021; 11:1813. [PMID: 34944457 PMCID: PMC8698799 DOI: 10.3390/biom11121813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Essential tremor (ET) is one of the most common neurological disorders that often affects people in the prime of their lives, leading to a significant reduction in their quality of life, gradually making them unable to independently perform the simplest activities. Here we show that current ET pharmacotherapy often does not sufficiently alleviate disease symptoms and is completely ineffective in more than 30% of patients. At present, deep brain stimulation of the motor thalamus is the most effective ET treatment. However, like any brain surgery, it can cause many undesirable side effects; thus, it is only performed in patients with an advanced disease who are not responsive to drugs. Therefore, it seems extremely important to look for new strategies for treating ET. The purpose of this review is to summarize the current knowledge on the pathomechanism of ET based on studies in animal models of the disease, as well as to present and discuss the results of research available to date on various substances affecting dopamine (mainly D3) or adenosine A1 receptors, which, due to their ability to modulate harmaline-induced tremor, may provide the basis for the development of new potential therapies for ET in the future.
Collapse
Affiliation(s)
| | - Jadwiga Wardas
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Kraków, Poland;
| |
Collapse
|
44
|
Batra D, Kamble N, Bhattacharya A, Sahoo L, Yadav R, Pal PK. Modulatory effect of continuous theta burst stimulation in patients with essential tremor. Parkinsonism Relat Disord 2021; 94:62-66. [PMID: 34890877 DOI: 10.1016/j.parkreldis.2021.11.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION We aimed to study the cortical and intracortical functions in patients of ET using transcranial magnetic stimulation (TMS) and to evaluate the effect of continuous theta burst stimulation (cTBS) on the tremor characteristics. METHODS Ten ET and 20 healthy controls were included in the study. All the participants were evaluated with TMS with recording of resting motor threshold (RMT), central motor conduction time, contralateral silent period (cSP), short interval intracortical inhibition (SICI) and intracortical facilitation (ICF). Subsequently only ET patients underwent cTBS of the motor cortex (M1) followed by repeat TMS. RESULTS The mean age of the patients (46.5 ± 17.2 years) was comparable to healthy controls (55.4 ± 9.2 years; p = 0.16). There was a non-significant increase in RMT in ET patients (44 ± 12.5%) when compared to healthy controls (40.9 ± 6.9%; p = 0.48). There was a significant reduction of cSP in the ET group (102.03 ± 15.26 msec) compared to healthy controls (116.1 ± 15.2, p = 0.03). In addition, a significant reduction in ICF was observed in ET patients (0.9 ± 0.7) compared to healthy controls (1.8 ± 0.8, p = 0.01). Following cTBS there was a significant reduction in the tremor scores [FTMRS (Pre-cTBS: 29.3 ± 18.7, Post-cTBS: 25.3 ± 16.8; p < 0.001) and TETRAS (pre-cTBS: 34.4 ± 16.2, post-cTBS: 29.8 ± 12.1; p = 0.01)] and improvement (increase) of the duration of cSP (pre-cTBS: 102.03 ± 15.3 msec., post-cTBS: 119.4 ± 12.03 msec; p = 0.05). CONCLUSIONS Patients with ET have GABAergic and glutaminergic dysfunction as demonstrated by reduced cSP and ICF. However, only the cSP improved following cTBS of M1 region, with a corresponding improvement of tremor severity suggesting the effect of cTBS on the cerebello-thalamo-cortical network.
Collapse
Affiliation(s)
- Dhruv Batra
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Amitabh Bhattacharya
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Lulup Sahoo
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India.
| |
Collapse
|
45
|
van den Berg KRE, Helmich RC. The Role of the Cerebellum in Tremor - Evidence from Neuroimaging. Tremor Other Hyperkinet Mov (N Y) 2021; 11:49. [PMID: 34820148 PMCID: PMC8603856 DOI: 10.5334/tohm.660] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/28/2021] [Indexed: 01/04/2023] Open
Abstract
Background Neuroimaging research has played a key role in identifying which cerebral changes are associated with tremor. Here we will focus on the cerebellum, which may drive tremor oscillations, process tremor-related afferents, modulate activity in remote brain regions, or a combination. Methods On the 6th of October 2021, we conducted a PubMed search to select articles providing neuroimaging evidence for cerebellar involvement in essential tremor (ET), Parkinson's disease (PD) tremor, and dystonic tremor (DT). Results In ET, tremor-related activity is found in motor areas of the bilateral cerebellum, and altered functional connectivity within and outside the cerebellum correlates with tremor severity. Furthermore, ET is associated with cerebellar atrophy, but also with compensatory structural changes outside the cerebellum (e.g. supplementary motor area). In PD, tremor-related cerebellar activity and increased cerebello-thalamic coupling has been found. Emerging evidence suggests that the cerebellum plays a key role in dopamine-resistant rest tremor and in postural tremor. Cerebellar structural alterations have been identified in PD, but only some relate to tremor. DT is associated with more widespread cerebral networks than other tremor types. Discussion In ET, the cerebellum likely acts as an oscillator, potentially due to loss of inhibitory mechanisms. In contrast, in PD the cerebellum may be a modulator, which contributes to tremor oscillations by influencing the thalamo-cortical system. The precise role of the cerebellum in DT remains unclear. We recommend that future research measures tremor-related activity directly by combining electrophysiology with neuroimaging, while brain stimulation techniques may be used to establish causality. Highlights This review of neuroimaging studies has provided convincing evidence that the cerebellum plays a key role in the pathophysiology of ET, PD tremor, and dystonic tremor syndromes. This contribution may consist of driving tremor oscillations, processing tremor-related afferents, modulating activity in remote brain regions, or all the above.
Collapse
Affiliation(s)
- Kevin R. E. van den Berg
- Centre of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Rick C. Helmich
- Centre of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
46
|
Abstract
Essential tremor (ET) is one of the most common movement disorders, with a reported >60 million affected individuals worldwide. The definition and underlying pathophysiology of ET are contentious. Patients present primarily with motor features such as postural and action tremors, but may also have other non-motor features, including cognitive impairment and neuropsychiatric symptoms. Genetics account for most of the ET risk but environmental factors may also be involved. However, the variable penetrance and challenges in validating data make gene-environment analysis difficult. Structural changes in cerebellar Purkinje cells and neighbouring neuronal populations have been observed in post-mortem studies, and other studies have found GABAergic dysfunction and dysregulation of the cerebellar-thalamic-cortical circuitry. Commonly prescribed medications include propranolol and primidone. Deep brain stimulation and ultrasound thalamotomy are surgical options in patients with medically intractable ET. Further research in post-mortem studies, and animal and cell-based models may help identify new pathophysiological clues and therapeutic targets and, together with advances in omics and machine learning, may facilitate the development of precision medicine for patients with ET.
Collapse
|
47
|
Bao SC, Chen C, Yuan K, Yang Y, Tong RKY. Disrupted cortico-peripheral interactions in motor disorders. Clin Neurophysiol 2021; 132:3136-3151. [PMID: 34749233 DOI: 10.1016/j.clinph.2021.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/08/2021] [Accepted: 09/19/2021] [Indexed: 11/15/2022]
Abstract
Motor disorders may arise from neurological damage or diseases at different levels of the hierarchical motor control system and side-loops. Altered cortico-peripheral interactions might be essential characteristics indicating motor dysfunctions. By integrating cortical and peripheral responses, top-down and bottom-up cortico-peripheral coupling measures could provide new insights into the motor control and recovery process. This review first discusses the neural bases of cortico-peripheral interactions, and corticomuscular coupling and corticokinematic coupling measures are addressed. Subsequently, methodological efforts are summarized to enhance the modeling reliability of neural coupling measures, both linear and nonlinear approaches are introduced. The latest progress, limitations, and future directions are discussed. Finally, we emphasize clinical applications of cortico-peripheral interactions in different motor disorders, including stroke, neurodegenerative diseases, tremor, and other motor-related disorders. The modified interaction patterns and potential changes following rehabilitation interventions are illustrated. Altered coupling strength, modified coupling directionality, and reorganized cortico-peripheral activation patterns are pivotal attributes after motor dysfunction. More robust coupling estimation methodologies and combination with other neurophysiological modalities might more efficiently shed light on motor control and recovery mechanisms. Future studies with large sample sizes might be necessary to determine the reliabilities of cortico-peripheral interaction measures in clinical practice.
Collapse
Affiliation(s)
- Shi-Chun Bao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Cheng Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Kai Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Yuan Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Tulsa, OK, USA; Laureate Institute for Brain Research, Tulsa, OK, USA; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Raymond Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
48
|
Muthuraman M, Palotai M, Jávor-Duray B, Kelemen A, Koirala N, Halász L, Erőss L, Fekete G, Bognár L, Deuschl G, Tamás G. Frequency-specific network activity predicts bradykinesia severity in Parkinson's disease. Neuroimage Clin 2021; 32:102857. [PMID: 34662779 PMCID: PMC8526781 DOI: 10.1016/j.nicl.2021.102857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/15/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Bradykinesia has been associated with beta and gamma band interactions in the basal ganglia-thalamo-cortical circuit in Parkinson's disease. In this present cross-sectional study, we aimed to search for neural networks with electroencephalography whose frequency-specific actions may predict bradykinesia. METHODS Twenty Parkinsonian patients treated with bilateral subthalamic stimulation were first prescreened while we selected four levels of contralateral stimulation (0: OFF, 1-3: decreasing symptoms to ON state) individually, based on kinematics. In the screening period, we performed 64-channel electroencephalography measurements simultaneously with electromyography and motion detection during a resting state, finger tapping, hand grasping tasks, and pronation-supination of the arm, with the four levels of contralateral stimulation. We analyzed spectral power at the low (13-20 Hz) and high (21-30 Hz) beta frequency bands and low (31-60 Hz) and high (61-100 Hz) gamma frequency bands using the dynamic imaging of coherent sources. Structural equation modelling estimated causal relationships between the slope of changes in network beta and gamma activities and the slope of changes in bradykinesia measures. RESULTS Activity in different subnetworks, including predominantly the primary motor and premotor cortex, the subthalamic nucleus predicted the slopes in amplitude and speed while switching between stimulation levels. These subnetwork dynamics on their preferred frequencies predicted distinct types and parameters of the movement only on the contralateral side. DISCUSSION Concurrent subnetworks affected in bradykinesia and their activity changes in the different frequency bands are specific to the type and parameters of the movement; and the primary motor and premotor cortex are common nodes.
Collapse
Affiliation(s)
- Muthuraman Muthuraman
- Movement Disorders, Imaging and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marcell Palotai
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | | | - Andrea Kelemen
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Nabin Koirala
- Movement Disorders, Imaging and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Haskins Laboratories, New Haven, USA
| | - László Halász
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Loránd Erőss
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Gábor Fekete
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| | - László Bognár
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| | - Günther Deuschl
- Department of Neurology, Christian-Albrechts University, Kiel, Germany
| | - Gertrúd Tamás
- Department of Neurology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
49
|
Plotnikov SA, Fradkov AL. Synchronization of nonlinearly coupled networks based on circle criterion. CHAOS (WOODBURY, N.Y.) 2021; 31:103110. [PMID: 34717327 DOI: 10.1063/5.0055814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
The problem of synchronization in networks of linear systems with nonlinear diffusive coupling and a connected undirected graph is studied. By means of a coordinate transformation, the system is reduced to the form of mean-field dynamics and a synchronization-error system. The network synchronization conditions are established based on the stability conditions of the synchronization-error system obtained using the circle criterion, and the results are used to derive the condition for synchronization in a network of neural-mass-model populations with a connected undirected graph. Simulation examples are presented to illustrate the obtained results.
Collapse
Affiliation(s)
- Sergei A Plotnikov
- Institute for Problems of Mechanical Engineering, Russian Academy of Sciences, Bolshoy Ave. 61, Vasilievsky Ostrov, St. Petersburg 199178, Russia
| | - Alexander L Fradkov
- Institute for Problems of Mechanical Engineering, Russian Academy of Sciences, Bolshoy Ave. 61, Vasilievsky Ostrov, St. Petersburg 199178, Russia
| |
Collapse
|
50
|
Essential tremor amplitude modulation by median nerve stimulation. Sci Rep 2021; 11:17720. [PMID: 34489503 PMCID: PMC8421420 DOI: 10.1038/s41598-021-96660-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 08/05/2021] [Indexed: 11/08/2022] Open
Abstract
Essential tremor is a common neurological disorder, characterised by involuntary shaking of a limb. Patients are usually treated using medications which have limited effects on tremor and may cause side-effects. Surgical therapies are effective in reducing essential tremor, however, the invasive nature of these therapies together with the high cost, greatly limit the number of patients benefiting from them. Non-invasive therapies have gained increasing traction to meet this clinical need. Here, we test a non-invasive and closed-loop electrical stimulation paradigm which tracks peripheral tremor and targets thalamic afferents to modulate the central oscillators underlying tremor. To this end, 9 patients had electrical stimulation delivered to the median nerve locked to different phases of tremor. Peripheral stimulation induced a subtle but significant modulation in five out of nine patients-this modulation consisted mainly of amplification rather than suppression of tremor amplitude. Modulatory effects of stimulation were more pronounced when patient's tremor was spontaneously weaker at stimulation onset, when significant modulation became more frequent amongst subjects. This data suggests that for selected individuals, a more sophisticated control policy entailing an online estimate of both tremor phase and amplitude, should be considered in further explorations of the treatment potential of tremor phase-locked peripheral stimulation.
Collapse
|