1
|
Peter J, Ferraioli F, Mathew D, George S, Chan C, Alalade T, Salcedo SA, Saed S, Tatti E, Quartarone A, Ghilardi MF. Movement-related beta ERD and ERS abnormalities in neuropsychiatric disorders. Front Neurosci 2022; 16:1045715. [PMID: 36507340 PMCID: PMC9726921 DOI: 10.3389/fnins.2022.1045715] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Movement-related oscillations in the beta range (from 13 to 30 Hz) have been observed over sensorimotor areas with power decrease (i.e., event-related desynchronization, ERD) during motor planning and execution followed by an increase (i.e., event-related synchronization, ERS) after the movement's end. These phenomena occur during active, passive, imaged, and observed movements. Several electrophysiology studies have used beta ERD and ERS as functional indices of sensorimotor integrity, primarily in diseases affecting the motor system. Recent literature also highlights other characteristics of beta ERD and ERS, implying their role in processes not strictly related to motor function. Here we review studies about movement-related ERD and ERS in diseases characterized by motor dysfunction, including Parkinson's disease, dystonia, stroke, amyotrophic lateral sclerosis, cerebral palsy, and multiple sclerosis. We also review changes of beta ERD and ERS reported in physiological aging, Alzheimer's disease, and schizophrenia, three conditions without overt motor symptoms. The review of these works shows that ERD and ERS abnormalities are present across the spectrum of the examined pathologies as well as development and aging. They further suggest that cognition and movement are tightly related processes that may share common mechanisms regulated by beta modulation. Future studies with a multimodal approach are warranted to understand not only the specific topographical dynamics of movement-related beta modulation but also the general meaning of beta frequency changes occurring in relation to movement and cognitive processes at large. Such an approach will provide the foundation to devise and implement novel therapeutic approaches to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jaime Peter
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Francesca Ferraioli
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Dave Mathew
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Shaina George
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Cameron Chan
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Tomisin Alalade
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Sheilla A. Salcedo
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Shannon Saed
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Elisa Tatti
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States,*Correspondence: Elisa Tatti,
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino Pulejo-Piemonte, Messina, Italy,Angelo Quartarone,
| | - M. Felice Ghilardi
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States,M. Felice Ghilardi,
| |
Collapse
|
2
|
Abstract
Smoothness (i.e. non-intermittency) of movement is a clinically important property of the voluntary movement with accuracy and proper speed. Resting head position and head voluntary movements are impaired in cervical dystonia. The current work aims to evaluate if the smoothness of voluntary head rotations is reduced in this disease. Twenty-six cervical dystonia patients and 26 controls completed rightward and leftward head rotations. Patients’ movements were differentiated into “towards-dystonia” (rotation accentuated the torticollis) and “away-dystonia”. Smoothness was quantified by the angular jerk and arc length of the spectrum of angular speed (i.e. SPARC, arbitrary units). Movement amplitude (mean, 95% CI) on the horizontal plane was larger in controls (63.8°, 58.3°–69.2°) than patients when moving towards-dystonia (52.8°, 46.3°–59.4°; P = 0.006). Controls’ movements (49.4°/s, 41.9–56.9°/s) were faster than movements towards-dystonia (31.6°/s, 25.2–37.9°/s; P < 0.001) and away-dystonia (29.2°/s, 22.9–35.5°/s; P < 0.001). After taking into account the different amplitude and speed, SPARC-derived (but not jerk-derived) indices showed reduced smoothness in patients rotating away-dystonia (1.48, 1.35–1.61) compared to controls (1.88, 1.72–2.03; P < 0.001). Poor smoothness is a motor disturbance independent of movement amplitude and speed in cervical dystonia. Therefore, it should be assessed when evaluating this disease, its progression, and treatments.
Collapse
|
3
|
Celletti C, Ferrazzano G, Belvisi D, Ferrario C, Tarabini M, Baione V, Fabbrini G, Conte A, Galli M, Camerota F. Instrumental Timed Up and Go test discloses abnormalities in patients with Cervical Dystonia. Clin Biomech (Bristol, Avon) 2021; 90:105493. [PMID: 34715549 DOI: 10.1016/j.clinbiomech.2021.105493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/11/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023]
Abstract
Background Cervical dystonia is a movement disorder characterized by involuntary and sustained contraction of the neck muscles that determines abnormal posture. The aim of this study was to investigate whether dystonic posture in patients with cervical dystonia affects walking and causes postural changes. Methods Patients with cervical dystonia and a group of age-matched healthy controls underwent an instrumental evaluation of the Timed Up and Go Test. Findings All the spatio-temporal parameters of the sub-phases of the Timed up and go test had a significantly higher duration in cervical dystonia patients compared to the control group while no differences in flection and extension angular amplitudes were observed. Indeed, we found that Cervical Dystonia patients had abnormalities in turning, as well as in standing-up and sitting-down from a chair during the Timed up and go test than healthy controls. Interpretation Impairment in postural control in cervical dystonia patients during walking and postural changes prompts to develop rehabilitation strategies to improve postural stability and reduce the risk of fall in these patients.
Collapse
Affiliation(s)
- C Celletti
- Physical Medicine and Rehabilitation Division, Umberto I University Hospital of Rome, Italy.
| | - G Ferrazzano
- Department of Human Neurosciences, Sapienza, University of Rome, Italy
| | - D Belvisi
- Department of Human Neurosciences, Sapienza, University of Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy
| | - C Ferrario
- Department of Mechanical Engineering, Politecnico di Milano, 20124 Milan, Italy; DEIB, Dept of Electronics, Information and Bioengineering, Politecnico di Milano, Italy
| | - M Tarabini
- Department of Mechanical Engineering, Politecnico di Milano, 20124 Milan, Italy
| | - V Baione
- Department of Human Neurosciences, Sapienza, University of Rome, Italy
| | - G Fabbrini
- Department of Human Neurosciences, Sapienza, University of Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy
| | - A Conte
- Department of Human Neurosciences, Sapienza, University of Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy
| | - M Galli
- DEIB, Dept of Electronics, Information and Bioengineering, Politecnico di Milano, Italy
| | - F Camerota
- Physical Medicine and Rehabilitation Division, Umberto I University Hospital of Rome, Italy
| |
Collapse
|
4
|
Boyce MJ, McCambridge AB, Bradnam LV, Canning CG, Mahant N, Chang FCF, Fung VSC, Verhagen AP. A cross-sectional study of walking, balance and upper limb assessment scales in people with cervical dystonia. J Neural Transm (Vienna) 2021; 128:1663-1675. [PMID: 34333693 DOI: 10.1007/s00702-021-02388-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
Cervical dystonia (CD) is a neurological movement disorder causing the neck to move involuntarily away from the neutral position. CD is a network disorder, involving multiple brain areas and, therefore, may impair movement in parts of the body other than the neck. This study used clinical assessments to investigate walking, balance and upper limb function (UL) in people with CD; the reliability of scoring these assessments and examined for relationship between CD severity, usual exercise and clinical assessments. We conducted a prospective observational cohort study of participants with isolated, focal, idiopathic CD. Participants were assessed by experienced physiotherapists and completed three questionnaires and eight clinical assessments of fear of falling, balance confidence, walking, balance, UL function and usual exercise. Results were compared to published data from healthy adults and other neurological populations. Twenty-two people with mild to moderate CD participated. Fear of falling, gross UL function and usual exercise were worse in people with CD compared with healthy adults, while walking, balance and distal UL function were similar to healthy populations. All assessments were reliably performed by physiotherapists, and we found no correlations between the severity of dystonia or usual exercise and performance on the physical assessments. Routine performance of clinical assessment of walking and balance are likely not required in people with mild to moderate CD; however, fear of falling and gross upper limb function should be assessed to determine any problems which may be amenable to therapy.
Collapse
Affiliation(s)
- M J Boyce
- Graduate School of Health, University of Technology Sydney, Sydney, Australia. .,Physiotherapy Department, Westmead Hospital, Hawkesbury Road, Westmead, NSW, 2145, Australia.
| | - A B McCambridge
- Graduate School of Health, University of Technology Sydney, Sydney, Australia
| | - L V Bradnam
- Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand
| | - C G Canning
- Faculty of Health Sciences, The University of Sydney, Sydney, Australia
| | - N Mahant
- Movement Disorders Unit, Westmead Hospital, Sydney, Australia
| | - F C F Chang
- Movement Disorders Unit, Westmead Hospital, Sydney, Australia
| | - V S C Fung
- Movement Disorders Unit, Westmead Hospital, Sydney, Australia
| | - A P Verhagen
- Graduate School of Health, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
5
|
Abstract
Background: A defining characteristic of dystonia is its position-dependence. In cervical dystonia (CD), sensory tricks ameliorate head tremor (HT). But it remains unknown whether raising the arms alone has the same impact. Methods: We analyzed data collected from patients enrolled by the Dystonia Coalition. For 120 patients with HT, we assessed how raising their arms without touching their head changed their HT severity. Results: Forty-eight out of 120 patients exhibited changes in HT severity when raising their arms. These patients were more likely to exhibit decreases in HT severity (N = 35) than increases (N = 13, χ2 (1, N = 48) = 10.1, p = 0.002). Demographic factors and sensory trick efficacy were not significant predictors of whether HT severity changed when raising their arms. Discussion: Raising the arms without touching the head is a posture that can reduce HT severity in some CD patients. Our results extend the concept of position-dependent motor symptoms in CD to include the position of the arms. Highlights Head tremor (HT) is a prevalent symptom of cervical dystonia (CD) that can often be disabling. This study demonstrates that raising the arms without touching the head is a posture that can reduce HT severity in some CD patients. Our findings also identify a novel form of position-dependence in CD.
Collapse
|
6
|
Paparella G, Fasano A, Hallett M, Berardelli A, Bologna M. Emerging concepts on bradykinesia in non-parkinsonian conditions. Eur J Neurol 2021; 28:2403-2422. [PMID: 33793037 DOI: 10.1111/ene.14851] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Bradykinesia is one of the cardinal motor symptoms of Parkinson's disease. However, clinical and experimental studies indicate that bradykinesia may also be observed in various neurological diseases not primarily characterized by parkinsonism. These conditions include hyperkinetic movement disorders, such as dystonia, chorea, and essential tremor. Bradykinesia may also be observed in patients with neurological conditions that are not seen as "movement disorders," including those characterized by the involvement of the cerebellum and corticospinal system, dementia, multiple sclerosis, and psychiatric disorders. METHODS We reviewed clinical reports and experimental studies on bradykinesia in non-parkinsonian conditions and discussed the major findings. RESULTS Bradykinesia is a common motor abnormality in non-parkinsonian conditions. From a pathophysiological standpoint, bradykinesia in neurological conditions not primarily characterized by parkinsonism may be explained by brain network dysfunction. CONCLUSION In addition to the pathophysiological implications, the present paper highlights important terminological issues and the need for a new, more accurate, and more widely used definition of bradykinesia in the context of movement disorders and other neurological conditions.
Collapse
Affiliation(s)
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Matteo Bologna
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Sedov A, Usova S, Popov V, Tomskiy A, Jinnah HA, Shaikh AG. Feedback-dependent neuronal properties make focal dystonias so focal. Eur J Neurosci 2020; 53:2388-2397. [PMID: 32757424 DOI: 10.1111/ejn.14933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 11/29/2022]
Abstract
Focal dystonia, by definition, affects a specific body part; however, it may have a widespread neural substrate. We tested this hypothesis by examining the intrinsic behaviour and the neuronal properties that are modulated by changes in the physiological behaviour of their connections, that is feedback dependence, of the isolated pallidal neurons. During deep brain stimulation surgery in 12 patients with isolated cervical dystonia (without hand involvement), we measured spontaneous as well as evoked single-unit properties in response to fist making (hand movement) or shoulder shrug (neck movements). We measured the activity of isolated neurons that were only sensitive to the neck movements, hand movement, or not responsive to hand or neck movements. The spontaneous firing behaviour, such as the instantaneous firing rate and its regularity, was comparable in all three types of neurons. The neck movement-sensitive neurons had prominent bursting behaviour in comparison with the hand neurons. The feedback dependence of the neck movement-sensitive neurons was also significantly impaired when compared to hand movement-sensitive neurons. Motor-evoked change in firing rate of neck movement-sensitive neurons rapidly declined; the decay time constant was much shorter compared to hand movement-sensitive neurons. These results suggest that in isolated cervical dystonia, at the resolution of single neurons, the deficits are much widespread, affecting the neurons that drive the neck movement as well as the hand movements. We speculate that clinically discernable dystonia occurs when additional abnormality is added to baseline dysfunctional network, and one source of such abnormality may involve feedback.
Collapse
Affiliation(s)
- Alexey Sedov
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Moscow Region, Russia
| | - Svetlana Usova
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Valentin Popov
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,N. N. Burdenko National Scientific and Practical Center for Neurosurgery, Moscow, Russia
| | - Alexey Tomskiy
- N. N. Burdenko National Scientific and Practical Center for Neurosurgery, Moscow, Russia
| | - Hyder A Jinnah
- Department of Neurology, Pediatrics, and Genetics, Emory University, Atlanta, GA, USA
| | - Aasef G Shaikh
- Departments of Neurology and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.,Neurological Institute, University Hospitals, Cleveland, OH, USA.,Neurology Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| |
Collapse
|
8
|
De Bartolo MI, Manzo N, Ferrazzano G, Baione V, Belvisi D, Fabbrini G, Berardelli A, Conte A. Botulinum Toxin Effects on Sensorimotor Integration in Focal Dystonias. Toxins (Basel) 2020; 12:toxins12050277. [PMID: 32344856 PMCID: PMC7290883 DOI: 10.3390/toxins12050277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/04/2022] Open
Abstract
(1) Background: In dystonia, the somatosensory temporal discrimination threshold (STDT) is abnormally increased at rest and higher and longer-lasting during movement execution in comparison with healthy subjects (HS), suggesting an abnormal sensorimotor integration. These abnormalities are thought to depend on abnormal proprioceptive input coming from dystonic muscles. Since Botulinum toxin-A (BT-A) reduces proprioceptive input in the injected muscles, our study investigated the effects of BT-A on STDT tested at rest and during voluntary movement execution in patients with focal dystonia. (2) Methods: We enrolled 35 patients with focal dystonia: 14 patients with cervical dystonia (CD), 11 patients with blepharospasm (BSP), and 10 patients with focal hand dystonia (FHD); and 12 age-matched HS. STDT tested by delivering paired stimuli was measured in all subjects at rest and during index finger abductions. (3) Results: Patients with dystonia had higher STDT values at rest and during movement execution than HS. While BT-A did not modify STDT at rest, it reduced the abnormal values of STDT during movement in CD and FHD patients, but not in BSP patients. (4) Conclusions: BT-A improved abnormal sensorimotor integration in CD and FHD, most likely by decreasing the overflow of proprioceptive signaling from muscle dystonic activity to the thalamus.
Collapse
Affiliation(s)
- Maria Ilenia De Bartolo
- IRCCS NEUROMED, Via Atinense, 18, 86077 Pozzilli (IS), Italy; (M.I.D.B.); (N.M.); (D.B.); (G.F.); (A.C.)
| | - Nicoletta Manzo
- IRCCS NEUROMED, Via Atinense, 18, 86077 Pozzilli (IS), Italy; (M.I.D.B.); (N.M.); (D.B.); (G.F.); (A.C.)
| | - Gina Ferrazzano
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (V.B.)
| | - Viola Baione
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (V.B.)
| | - Daniele Belvisi
- IRCCS NEUROMED, Via Atinense, 18, 86077 Pozzilli (IS), Italy; (M.I.D.B.); (N.M.); (D.B.); (G.F.); (A.C.)
| | - Giovanni Fabbrini
- IRCCS NEUROMED, Via Atinense, 18, 86077 Pozzilli (IS), Italy; (M.I.D.B.); (N.M.); (D.B.); (G.F.); (A.C.)
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (V.B.)
| | - Alfredo Berardelli
- IRCCS NEUROMED, Via Atinense, 18, 86077 Pozzilli (IS), Italy; (M.I.D.B.); (N.M.); (D.B.); (G.F.); (A.C.)
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (V.B.)
- Correspondence:
| | - Antonella Conte
- IRCCS NEUROMED, Via Atinense, 18, 86077 Pozzilli (IS), Italy; (M.I.D.B.); (N.M.); (D.B.); (G.F.); (A.C.)
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (V.B.)
| |
Collapse
|
9
|
Assessment of hand functions in patients with idiopathic cervical dystonia. Hum Mov Sci 2020; 70:102581. [PMID: 31950896 DOI: 10.1016/j.humov.2020.102581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/23/2019] [Accepted: 01/08/2020] [Indexed: 12/18/2022]
Abstract
Cervical dystonia (CD) is the most common form of focal dystonia characterized by involuntary contractions of the neck muscles, causing abnormal rotation of the head into specific directions. Studies report that idiopathic dystonia is a developmental disorder of the sensorimotor circuits, involving both the cortico-striatal and thalamo-cortical pathways. It is also suggested that enhanced cortical plasticity extends beyond the clinically affected region and may also be detected in the unaffected upper limbs of the patient with CD. In the present study, we aimed at exploring if patients with CD had hand motor dysfunctions. Forty patients with idiopathic CD and 40 healthy controls were included in this study. Dystonic symptoms were assessed by means of The Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS). Stanford Health Assessment Questionnaire (HAQ) was used to assess functional status. Quality of life (QoL) was assessed by using the Medical Outcomes Study Short Form 36-Item Health Survey (SF 36). Grip strength was assessed by using hand dynamometers. Tip pinch, lateral pinch and chuck pinch of the hand were assessed by using a pinchmeter. Fingertip dexterity and hand coordination was assessed using Purdue Pegboard. Duruoz Hand Index (DHI) was used for the assessment of hand functions. There were no significant differences between the groups in grip and pinch strengths of hands and fingers. As to the fingertip dexterity, patients with CD had a mean Pin 1 and Pin 2 test score of 10.6 ± 2.8 and 10.8 ± 3.2 respectively and a mean assembling test score of 5.2 ± 2.0. These results were significantly worse than those of the healthy controls. As to the SF 36 sub-scores, there were significant differences between the groups in all SF 36 sub-scores (p < .001). This study indicates that patients with CD suffer a deteriorated fine motor coordination of hands without dystonic involvement of upper extremities. Furthermore, lower SF 36 scores in patients with CD suggest poorer health-related quality of life.
Collapse
|
10
|
Desrochers P, Brunfeldt A, Sidiropoulos C, Kagerer F. Sensorimotor Control in Dystonia. Brain Sci 2019; 9:brainsci9040079. [PMID: 30979073 PMCID: PMC6523253 DOI: 10.3390/brainsci9040079] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 12/24/2022] Open
Abstract
This is an overview of the sensorimotor impairments in dystonia, a syndrome characterized by sustained or intermittent aberrant movement patterns leading to abnormal movements and/or postures with or without a tremulous component. Dystonia can affect the entire body or specific body regions and results from a plethora of etiologies, including subtle changes in gray and white matter in several brain regions. Research over the last 25 years addressing topics of sensorimotor control has shown functional sensorimotor impairments related to sensorimotor integration, timing, oculomotor and head control, as well as upper and lower limb control. In the context of efforts to update the classification of dystonia, sensorimotor research is highly relevant for a better understanding of the underlying pathology, and potential mechanisms contributing to global and regional dysfunction within the central nervous system. This overview of relevant research regarding sensorimotor control in humans with idiopathic dystonia attempts to frame the dysfunction with respect to what is known regarding motor control in patients and healthy individuals. We also highlight promising avenues for the future study of neuromotor control that may help to further elucidate dystonia etiology, pathology, and functional characteristics.
Collapse
Affiliation(s)
- Phillip Desrochers
- Dept. of Kinesiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Alexander Brunfeldt
- Dept. of Kinesiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Christos Sidiropoulos
- Dept. of Neurology and Ophthalmology, Michigan State University, East Lansing, MI 48824, USA.
| | - Florian Kagerer
- Dept. of Kinesiology, Michigan State University, East Lansing, MI 48824, USA.
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
11
|
|
12
|
Avanzino L, Fiorio M, Conte A. Actual and Illusory Perception in Parkinson's Disease and Dystonia: A Narrative Review. Front Neurol 2018; 9:584. [PMID: 30079051 PMCID: PMC6062595 DOI: 10.3389/fneur.2018.00584] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Sensory information is continuously processed so as to allow behavior to be adjusted according to environmental changes. Before sensory information reaches the cortex, a number of subcortical neural structures select the relevant information to send to be consciously processed. In recent decades, several studies have shown that the pathophysiological mechanisms underlying movement disorders such as Parkinson's disease (PD) and dystonia involve sensory processing abnormalities related to proprioceptive and tactile information. These abnormalities emerge from psychophysical testing, mainly temporal discrimination, as well as from experimental paradigms based on bodily illusions. Although the link between proprioception and movement may be unequivocal, how temporal tactile information abnormalities and bodily illusions relate to motor disturbances in PD and dystonia is still a matter of debate. This review considers the role of altered sensory processing in the pathophysiology of movement disorders, focusing on how sensory alteration patterns differ between PD and dystonia. We also discuss the evidence available and the potential for developing new therapeutic strategies based on the manipulation of multi-sensory information and bodily illusions in patients with these movement disorders.
Collapse
Affiliation(s)
- Laura Avanzino
- Section of Human Physiology, Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Mirta Fiorio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
13
|
Popa T, Hubsch C, James P, Richard A, Russo M, Pradeep S, Krishan S, Roze E, Meunier S, Kishore A. Abnormal cerebellar processing of the neck proprioceptive information drives dysfunctions in cervical dystonia. Sci Rep 2018; 8:2263. [PMID: 29396401 PMCID: PMC5797249 DOI: 10.1038/s41598-018-20510-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/20/2017] [Indexed: 01/11/2023] Open
Abstract
The cerebellum can influence the responsiveness of the primary motor cortex (M1) to undergo spike timing-dependent plastic changes through a complex mechanism involving multiple relays in the cerebello-thalamo-cortical pathway. Previous TMS studies showed that cerebellar cortex excitation can block the increase in M1 excitability induced by a paired-associative stimulation (PAS), while cerebellar cortex inhibition would enhance it. Since cerebellum is known to be affected in many types of dystonia, this bidirectional modulation was assessed in 22 patients with cervical dystonia and 23 healthy controls. Exactly opposite effects were found in patients: cerebellar inhibition suppressed the effects of PAS, while cerebellar excitation enhanced them. Another experiment comparing healthy subjects maintaining the head straight with subjects maintaining the head turned as the patients found that turning the head is enough to invert the cerebellar modulation of M1 plasticity. A third control experiment in healthy subjects showed that proprioceptive perturbation of the sterno-cleido-mastoid muscle had the same effects as turning the head. We discuss these finding in the light of the recent model of a mesencephalic head integrator. We also suggest that abnormal cerebellar processing of the neck proprioceptive information drives dysfunctions of the integrator in cervical dystonia.
Collapse
Affiliation(s)
- T Popa
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.
| | - C Hubsch
- Department of Neurology, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - P James
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, India
| | - A Richard
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - M Russo
- Department of Neurosciences, University of Messina, Messina, Italy
| | - S Pradeep
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, India
| | - S Krishan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, India
| | - E Roze
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Department of Neurology, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - S Meunier
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - A Kishore
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, India
| |
Collapse
|
14
|
Jaynes MJ, Mink JW. Motor sequence awareness is impaired in dystonia despite normal performance. Ann Neurol 2018; 83:52-60. [PMID: 29244239 DOI: 10.1002/ana.25121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 12/10/2017] [Accepted: 12/10/2017] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Dystonia is a movement disorder that has been associated with impaired motor learning and sequence recognition. However, despite evidence that patients with dystonia have a reduced sense of agency, it is unclear whether dystonia is specifically associated with impaired recognition of a movement sequence. We have shown previously that performance consistency in the temporal and kinematic domains predicts awareness of underlying motor patterns in a finger-tapping task. Since movements in dystonia are characterized by high variability, we predicted that subjects with dystonia would have decreased motor sequence awareness. METHODS Subjects with dystonia (n = 20) and healthy control adults (n = 30) performed finger-tapping sequences with a common motor pattern and changing stimulus-to-response mappings. Subjects were said to be "aware" of the motor pattern if they recognized that their fingers moved in the same order during each stimulus-to-response remapping. RESULTS Subjects with dystonia had decreased motor pattern awareness, but those differences were not due to greater performance variability. Subjects with dystonia tapped sequences as series of discrete movements, rather than as a combined series. INTERPRETATION Dystonia is associated with impaired recognition of a repeating movement pattern. This difference may result from a strategy of separating sequential elements and attending to them individually. Ann Neurol 2018;83:52-60.
Collapse
Affiliation(s)
| | - Jonathan W Mink
- Departments of Neurology, Neuroscience, and Pediatrics, University of Rochester, Rochester, NY
| |
Collapse
|
15
|
Avanzino L, Ravaschio A, Lagravinese G, Bonassi G, Abbruzzese G, Pelosin E. Adaptation of feedforward movement control is abnormal in patients with cervical dystonia and tremor. Clin Neurophysiol 2017; 129:319-326. [PMID: 28943258 DOI: 10.1016/j.clinph.2017.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/14/2017] [Accepted: 08/12/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE It is under debate whether the cerebellum plays a role in dystonia pathophysiology and in the expression of clinical phenotypes. We investigated a typical cerebellar function (anticipatory movement control) in patients with cervical dystonia (CD) with and without tremor. METHODS Twenty patients with CD, with and without tremor, and 17 healthy controls were required to catch balls of different load: 15 trials with a light ball, 25 trials with a heavy ball (adaptation) and 15 trials with a light ball (post-adaptation). Arm movements were recorded using a motion capture system. We evaluated: (i) the anticipatory adjustment (just before the impact); (ii) the extent and rate of the adaptation (at the impact) and (iii) the aftereffect in the post-adaptation phase. RESULTS The anticipatory adjustment was reduced during adaptation in CD patients with tremor respect to CD patients without tremor and controls. The extent and rate of adaptation and the aftereffect in the post-adaptation phase were smaller in CD with tremor than in controls and CD without tremor. CONCLUSION Patients with cervical dystonia and tremor display an abnormal predictive movement control. SIGNIFICANCE Our findings point to a possible role of cerebellum in the expression of a clinical phenotype in dystonia.
Collapse
Affiliation(s)
- Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genova, Genova, Italy; Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico per l'Oncologia.
| | - Andrea Ravaschio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genova, Genova, Italy
| | - Giovanna Lagravinese
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genova, Genova, Italy
| | - Gaia Bonassi
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genova, Genova, Italy
| | - Giovanni Abbruzzese
- Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico per l'Oncologia; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genova, Genova, Italy
| | - Elisa Pelosin
- Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico per l'Oncologia; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genova, Genova, Italy
| |
Collapse
|
16
|
Barr C, Barnard R, Edwards L, Lennon S, Bradnam L. Impairments of balance, stepping reactions and gait in people with cervical dystonia. Gait Posture 2017; 55:55-61. [PMID: 28412603 DOI: 10.1016/j.gaitpost.2017.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/23/2017] [Accepted: 04/02/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Impaired balance is common in neurological disorders. Cervical dystonia is a neurological movement disorder affecting the neck. The effect of this aberrant head posture on physical function is unknown. OBJECTIVES To compare balance, mobility, gait and stepping reactions between ten people with cervical dystonia and ten control adults. METHODS Spatiotemporal gait parameters and walking speed were assessed using a computerised walkway. Step length and time, time in double support and gait variability were calculated, then normalised to gait speed. Centre of pressure path length was assessed with eyes open and eyes closed to calculate a Romberg Quotient. Simple and choice reaction times were measured using customised apparatus while mobility was assessed by the timed up and go. Cervical spine range of motion was measured using a head mounted goniometer. Self-reported scales included Falls Self Efficacy Scale and Dystonia Discomfort Scale. RESULTS There was a difference between groups for most outcome measures. The timed up-and-go and walking speed was slower (both P<0.005) and the Romberg Quotient lower (P=0.046) in cervical dystonia. People with cervical dystonia had lower falls self-efficacy (P=0.0002). Reduced cervical range of motion was correlated with balance, stepping reaction time and mobility (all P<0.05). Timed up and go was positively associated with stepping reaction time (P<0.01). Dystonia discomfort did not impact function. CONCLUSIONS People with cervical dystonia displayed deficits in balance, gait and stepping reactions, and expressed higher fear of falling. Studies to further elucidate functional limitations and their impact on activity and participation in daily life are required.
Collapse
Affiliation(s)
- Christopher Barr
- Clinical Rehabilitation, School of Health Sciences, Flinders University, Australia
| | - Rhiannon Barnard
- Discipline of Physiotherapy, School of Health Sciences, Flinders University, Australia
| | - Lauren Edwards
- Discipline of Physiotherapy, School of Health Sciences, Flinders University, Australia
| | - Sheila Lennon
- Discipline of Physiotherapy, School of Health Sciences, Flinders University, Australia
| | - Lynley Bradnam
- Discipline of Physiotherapy, School of Health Sciences, Flinders University, Australia; Discipline of Physiotherapy, Graduate School of Health, University of Technology Sydney, Australia.
| |
Collapse
|
17
|
Bologna M, Berardelli A. Cerebellum: An explanation for dystonia? CEREBELLUM & ATAXIAS 2017; 4:6. [PMID: 28515949 PMCID: PMC5429509 DOI: 10.1186/s40673-017-0064-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/28/2017] [Indexed: 11/29/2022]
Abstract
Dystonia is a movement disorder that is characterized by involuntary muscle contractions, abnormal movements and postures, as well as by non-motor symptoms, and is due to abnormalities in different brain areas. In this article, we focus on the growing number of experimental studies aimed at explaining the pathophysiological role of the cerebellum in dystonia. Lastly, we highlight gaps in current knowledge and issues that future research studies should focus on as well as some of the potential applications of this research avenue. Clarifying the pathophysiological role of cerebellum in dystonia is an important concern given the increasing availability of invasive and non-invasive stimulation techniques and their potential therapeutic role in this condition.
Collapse
Affiliation(s)
- Matteo Bologna
- Department of Neurology and Psychiatry and Neuromed Institute, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy.,Neuromed Institute IRCCS, Pozzilli, IS Italy
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry and Neuromed Institute, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy.,Neuromed Institute IRCCS, Pozzilli, IS Italy
| |
Collapse
|
18
|
Forbes PA, de Bruijn E, Nijmeijer SWR, Koelman JHTM, van der Helm FCT, Schouten AC, Tijssen MAJ, Happee R. Dynamic head-neck stabilization in cervical dystonia. Clin Biomech (Bristol, Avon) 2017; 42:120-127. [PMID: 28157620 DOI: 10.1016/j.clinbiomech.2017.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 01/11/2017] [Accepted: 01/15/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Effective sensorimotor integration is essential to modulate (adapt) neck stabilization strategies in response to varying tasks and disturbances. This study evaluates the hypothesis that relative to healthy controls cervical dystonia patients have an impaired ability to modulate afferent feedback for neck stabilization with changes in the frequency content of mechanical perturbations. METHODS We applied anterior-posterior displacement perturbations (110s) on the torso of seated subjects, while recording head-neck kinematics and muscular activity. We compared low bandwidth (0.2-1.2Hz) and high bandwidth (0.2-8Hz) perturbations where our previous research showed a profound modulation of stabilization strategies in healthy subjects. Cervical dystonia patients and age matched controls performed two tasks: (1) maintain head forward posture and (2) allow dystonia to dictate head posture. FINDINGS Patients and controls demonstrated similar kinematic and muscular responses. Patient modulation was similar to that of healthy controls (P>0.05); neck stiffness and afferent feedback decreased with high bandwidth perturbations. During the head forward task patients had an increased neck stiffness relative to controls (P<0.05), due to increased afferent feedback. INTERPRETATION The unaffected modulation of head-neck stabilization (both kinematic and muscular) in patients with cervical dystonia does not support the hypothesis of impaired afferent feedback modulation for neck stabilization.
Collapse
Affiliation(s)
- Patrick A Forbes
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands; Department of Neuroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands.
| | - Edo de Bruijn
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Sebastiaan W R Nijmeijer
- Department of Neurology and Clinical Neurophysiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Johannes H T M Koelman
- Department of Neurology and Clinical Neurophysiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Frans C T van der Helm
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands; Laboratory of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands
| | - Alfred C Schouten
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands; Laboratory of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands
| | - Marina A J Tijssen
- Department of Neurology and Clinical Neurophysiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands; Department of Neurology, University Medical Centre Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Riender Happee
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
19
|
Bologna M, Paparella G, Fabbrini A, Leodori G, Rocchi L, Hallett M, Berardelli A. Effects of cerebellar theta-burst stimulation on arm and neck movement kinematics in patients with focal dystonia. Clin Neurophysiol 2016; 127:3472-3479. [PMID: 27721106 DOI: 10.1016/j.clinph.2016.09.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/11/2016] [Accepted: 09/04/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate the cerebellar inhibitory influence on the primary motor cortex in patients with focal dystonia using a cerebellar continuous theta-burst stimulation protocol (cTBS) and to evaluate any relationship with movement abnormalities. METHODS Thirteen patients with focal hand dystonia, 13 patients with cervical dystonia and 13 healthy subjects underwent two sessions: (i) cTBS over the cerebellar hemisphere (real cTBS) and (ii) cTBS over the neck muscles (sham cTBS). The effects of cerebellar cTBS were quantified as excitability changes in the contralateral primary motor cortex, as well as possible changes in arm and neck movements in patients. RESULTS Real cerebellar cTBS reduced the excitability in the contralateral primary motor cortex in healthy subjects and in patients with cervical dystonia, though not in patients with focal hand dystonia. There was no correlation between changes in primary motor cortex excitability and arm and neck movement kinematics in patients. There were no changes in clinical scores or in kinematic measures, after either real or sham cerebellar cTBS in patients. CONCLUSIONS The reduced cerebellar inhibitory modulation of primary motor cortex excitability in focal dystonia may be related to the body areas affected by dystonia as opposed to being a widespread pathophysiological abnormality. SIGNIFICANCE The present study yields information on the differential role played by the cerebellum in the pathophysiology of different focal dystonias.
Collapse
Affiliation(s)
- Matteo Bologna
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy; Neuromed Institute IRCCS, Pozzilli (IS), Italy
| | - Giulia Paparella
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Andrea Fabbrini
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Giorgio Leodori
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Rocchi
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke - NINDS, Bethesda, MD, USA
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy; Neuromed Institute IRCCS, Pozzilli (IS), Italy.
| |
Collapse
|
20
|
Non-motor symptoms in patients with adult-onset focal dystonia: Sensory and psychiatric disturbances. Parkinsonism Relat Disord 2016; 22 Suppl 1:S111-4. [PMID: 26360238 DOI: 10.1016/j.parkreldis.2015.09.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 11/29/2022]
|
21
|
Avanzino L, Tinazzi M, Ionta S, Fiorio M. Sensory-motor integration in focal dystonia. Neuropsychologia 2015; 79:288-300. [PMID: 26164472 DOI: 10.1016/j.neuropsychologia.2015.07.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/04/2015] [Accepted: 07/07/2015] [Indexed: 01/24/2023]
Abstract
Traditional definitions of focal dystonia point to its motor component, mainly affecting planning and execution of voluntary movements. However, focal dystonia is tightly linked also to sensory dysfunction. Accurate motor control requires an optimal processing of afferent inputs from different sensory systems, in particular visual and somatosensory (e.g., touch and proprioception). Several experimental studies indicate that sensory-motor integration - the process through which sensory information is used to plan, execute, and monitor movements - is impaired in focal dystonia. The neural degenerations associated with these alterations affect not only the basal ganglia-thalamic-frontal cortex loop, but also the parietal cortex and cerebellum. The present review outlines the experimental studies describing impaired sensory-motor integration in focal dystonia, establishes their relationship with changes in specific neural mechanisms, and provides new insight towards the implementation of novel intervention protocols. Based on the reviewed state-of-the-art evidence, the theoretical framework summarized in the present article will not only result in a better understanding of the pathophysiology of dystonia, but it will also lead to the development of new rehabilitation strategies.
Collapse
Affiliation(s)
- Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, 16132 genoa, Italy
| | - Michele Tinazzi
- Department of Neurological and Movement Sciences, University of Verona, 37131 Verona, Italy
| | - Silvio Ionta
- Laboratory for Investigative Neurophysiology, Department of Radiology and Department of Clinical Neurosciences, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Mirta Fiorio
- Department of Neurological and Movement Sciences, University of Verona, 37131 Verona, Italy.
| |
Collapse
|
22
|
Albanese A, Abbruzzese G, Dressler D, Duzynski W, Khatkova S, Marti MJ, Mir P, Montecucco C, Moro E, Pinter M, Relja M, Roze E, Skogseid IM, Timerbaeva S, Tzoulis C. Practical guidance for CD management involving treatment of botulinum toxin: a consensus statement. J Neurol 2015; 262:2201-13. [PMID: 25877834 PMCID: PMC4608989 DOI: 10.1007/s00415-015-7703-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 01/02/2023]
Abstract
Cervical dystonia is a neurological movement disorder causing abnormal posture of the head. It may be accompanied by involuntary movements which are sometimes tremulous. The condition has marked effects on patients’ self-image, and adversely affects quality of life, social relationships and employment. Botulinum neurotoxin (BoNT) is the treatment of choice for CD and its efficacy and safety have been extensively studied in clinical trials. However, current guidelines do not provide enough practical information for physicians who wish to use this valuable treatment in a real-life setting. In addition, patients and physicians may have different perceptions of what successful treatment outcomes should be. Consequently, an international group of expert neurologists, experienced in BoNT treatment, met to review the literature and pool their extensive clinical experience to give practical guidance about treatment of CD with BoNT. Eight topic headings were considered: the place of BoNT within CD treatment options; patient perspectives and desires for treatment; assessment and goal setting; starting treatment with BoNT-A; follow-up sessions; management of side effects; management of non-response; switching between different BoNT products. One rapporteur took responsibility for summarising the current literature for each topic, while the consensus statements were developed by the entire expert group. These statements are presented here along with a discussion of the background information.
Collapse
Affiliation(s)
- Alberto Albanese
- Neurologia I Istituto Neurologico Carlo Besta, Università Cattolica del Sacro Cuore, Via G. Celoria, 11, 20133, Milan, Italy.
| | - Giovanni Abbruzzese
- Centre for Parkinson's Disease and Movement Disorders DINOGMI, University of Genoa Largo Daneo 3, 16132, Genoa, Italy
| | - Dirk Dressler
- Movement Disorders Section, Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Wojciech Duzynski
- Section of Neurology, Department of Clinical Sciences, Lund University, Jan Waldenströms gata 15, 205 02, Malmö, Sweden
| | - Svetlana Khatkova
- Neurological Department for Post-Stroke Patients, Moscow Federal State Hospital for Treatment and Rehabilitation Ministry of Health Russia, Moscow, Russia
| | - Maria Jose Marti
- Neurology Service, Institut Cliníc de Neurosciències (ICN), CIBERNED, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville, Spain
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi n. 58/B, 35121, Padua, Italy
| | - Elena Moro
- Division of Neurology, CHU of Grenoble, Joseph Fourier University, Grenoble, France
| | - Michaela Pinter
- Center for Neurorehabilitation, Department for Clinical Neurosciences and Preventive Medicine, Danube University Krems, Dr. Karl-Dorrek-Straße 30, 3500, Krems, Austria
| | - Maja Relja
- Referral Center for Movement Disorders, Department of Neurology, School of Medicine, University Hospital Center Zagreb, University of Zagreb, Kispaticeva 12, 10000, Zagreb, Croatia
| | - Emmanuel Roze
- AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neurologie, 75013, Paris, France
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France
| | - Inger Marie Skogseid
- Movement Disorders Unit, Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Sofiya Timerbaeva
- Department of Neurogenetics, Research Center of Neurology, Russian Academy of Medical Sciences, 80 Volokolamskoye shosse, Moscow, 125367, Russian Federation
| | - Charalampos Tzoulis
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
23
|
Avanzino L, Fiorio M. Proprioceptive dysfunction in focal dystonia: from experimental evidence to rehabilitation strategies. Front Hum Neurosci 2014; 8:1000. [PMID: 25538612 PMCID: PMC4260499 DOI: 10.3389/fnhum.2014.01000] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/25/2014] [Indexed: 11/13/2022] Open
Abstract
Dystonia has historically been considered a disorder of the basal ganglia, mainly affecting planning and execution of voluntary movements. This notion comes from the observation that most lesions responsible for secondary dystonia involve the basal ganglia. However, what emerges from recent research is that dystonia is linked to the dysfunction of a complex neural network that comprises basal ganglia–thalamic–frontal cortex, but also the inferior parietal cortex and the cerebellum. While dystonia is clearly a motor problem, it turned out that sensory aspects are also fundamental, especially those related to proprioception. We outline experimental evidence for proprioceptive dysfunction in focal dystonia from intrinsic sensory abnormalities to impaired sensorimotor integration, which is the process by which sensory information is used to plan and execute volitional movements. Particularly, we will focus on proprioceptive aspects of dystonia, including: (i) processing of vibratory input, (ii) temporal discrimination of two passive movements, (iii) multimodal integration of visual-tactile and proprioceptive inputs, and (iv) motor control in the absence of visual feedback. We suggest that these investigations contribute not only to a better understanding of dystonia pathophysiology, but also to develop rehabilitation strategies aimed at facilitating the processing of proprioceptive input.
Collapse
Affiliation(s)
- Laura Avanzino
- Section of Human Physiology, Department of Experimental Medicine, Centro Polifunzionale di Scienze Motorie, University of Genoa , Genoa , Italy
| | - Mirta Fiorio
- Department of Neurological and Movement Sciences, University of Verona , Verona , Italy
| |
Collapse
|
24
|
Abbruzzese G, Trompetto C, Mori L, Pelosin E. Proprioceptive rehabilitation of upper limb dysfunction in movement disorders: a clinical perspective. Front Hum Neurosci 2014; 8:961. [PMID: 25505402 PMCID: PMC4243688 DOI: 10.3389/fnhum.2014.00961] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/12/2014] [Indexed: 11/15/2022] Open
Abstract
Movement disorders (MDs) are frequently associated with sensory abnormalities. In particular, proprioceptive deficits have been largely documented in both hypokinetic (Parkinson’s disease) and hyperkinetic conditions (dystonia), suggesting a possible role in their pathophysiology. Proprioceptive feedback is a fundamental component of sensorimotor integration allowing effective planning and execution of voluntary movements. Rehabilitation has become an essential element in the management of patients with MDs, and there is a strong rationale to include proprioceptive training in rehabilitation protocols focused on mobility problems of the upper limbs. Proprioceptive training is aimed at improving the integration of proprioceptive signals using “task-intrinsic” or “augmented feedback.” This perspective article reviews the available evidence on the effects of proprioceptive stimulation in improving upper limb mobility in patients with MDs and highlights the emerging innovative approaches targeted to maximizing the benefits of exercise by means of enhanced proprioception.
Collapse
Affiliation(s)
- Giovanni Abbruzzese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa , Genoa , Italy
| | - Carlo Trompetto
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa , Genoa , Italy
| | - Laura Mori
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa , Genoa , Italy
| | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa , Genoa , Italy
| |
Collapse
|
25
|
Motor sequence learning and motor adaptation in primary cervical dystonia. J Clin Neurosci 2014; 21:934-8. [DOI: 10.1016/j.jocn.2013.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/13/2013] [Accepted: 08/24/2013] [Indexed: 11/17/2022]
|
26
|
Aristotle's illusion in Parkinson's disease: evidence for normal interdigit tactile perception. PLoS One 2014; 9:e88686. [PMID: 24523929 PMCID: PMC3921216 DOI: 10.1371/journal.pone.0088686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 01/10/2014] [Indexed: 11/27/2022] Open
Abstract
Sensory alterations, a common feature of such movement disorders as Parkinson’s disease (PD) and dystonia, could emerge as epiphenomena of basal ganglia dysfunction. Recently, we found a selective reduction of tactile perception (Aristotle’s illusion, the illusory doubling sensation of one object when touched with crossed fingers) in the affected hand of patients with focal hand dystonia. This suggests that reduced tactile illusion might be a specific feature of this type of dystonia and could be due to abnormal somatosensory cortical activation. The aim of the current study was to investigate whether Aristotle’s illusion is reduced in the affected hand of patients with PD. We tested 15 PD patients, in whom motor symptoms were mainly localised to one side of the body, and 15 healthy controls. Three pairs of fingers were tested in crossed (evoking the illusion) or parallel position (not evoking the illusion). A sphere was placed in the contact point between the two fingers and the blindfolded participants had to say whether they felt one or two stimuli. Stimuli were applied on the affected and less or unaffected side of the PD patients. We found no difference in illusory perception between the PD patients and the controls, nor between the more affected and less/unaffected side, suggesting that Aristotle’s illusion is preserved in PD. The retained tactile illusion in PD and its reduction in focal hand dystonia suggest that the basal ganglia, which are dysfunctional in both PD and dystonia, may not be causally involved in this function. Instead, the level of activation between digits in the somatosensory cortex may be more directly involved. Finally, the similar percentage of illusion in the more affected and less or unaffected body sides indicates that the illusory perception is not influenced by the presence or amount of motor symptoms.
Collapse
|
27
|
Blood AJ. Imaging studies in focal dystonias: a systems level approach to studying a systems level disorder. Curr Neuropharmacol 2013; 11:3-15. [PMID: 23814533 PMCID: PMC3580788 DOI: 10.2174/157015913804999513] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 08/16/2012] [Accepted: 08/29/2012] [Indexed: 12/14/2022] Open
Abstract
Focal dystonias are dystonias that affect one part of the body, and are sometimes task-specific. Brain imaging and transcranial magnetic stimulation techniques have been valuable in defining the pathophysiology of dystonias in general, and are particularly amenable to studying focal dystonias. Over the past few years, several common themes have emerged in the imaging literature, and this review summarizes these findings and suggests some ways in which these distinct themes might all point to one common systems-level mechanism for dystonia. These themes include (1) the role of premotor regions in focal dystonia, (2) the role of the sensory system and sensorimotor integration in focal dystonia, (3) the role of decreased inhibition/increased excitation in focal dystonia, and (4) the role of brain imaging in evaluating and guiding treatment of focal dystonias. The data across these themes, together with the features of dystonia itself, are consistent with a hypothesis that all dystonias reflect excessive output of postural control/stabilization systems in the brain, and that the mechanisms for dystonia reflect amplification of an existing functional system, rather than recruitment of the wrong motor programs. Imaging is currently being used to test treatment effectiveness, and to visually guide treatment of dystonia, such as placement of deep brain stimulation electrodes. In the future, it is hoped that imaging may be used to individualize treatments across behavioral, pharmacologic, and surgical domains, thus optimizing both the speed and effectiveness of treatment for any given individual with focal dystonia.
Collapse
Affiliation(s)
- Anne J Blood
- Mood and Motor Control Laboratory, Laboratory of Neuroimaging and Genetics, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
28
|
Konczak J, Abbruzzese G. Focal dystonia in musicians: linking motor symptoms to somatosensory dysfunction. Front Hum Neurosci 2013; 7:297. [PMID: 23805090 PMCID: PMC3691509 DOI: 10.3389/fnhum.2013.00297] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/05/2013] [Indexed: 11/29/2022] Open
Abstract
Musician's dystonia (MD) is a neurological motor disorder characterized by involuntary contractions of those muscles involved in the play of a musical instrument. It is task-specific and initially only impairs the voluntary control of highly practiced musical motor skills. MD can lead to a severe decrement in a musician's ability to perform. While the etiology and the neurological pathomechanism of the disease remain unknown, it is known that MD like others forms of focal dystonia is associated with somatosensory deficits, specifically a decreased precision of tactile and proprioceptive perception. The sensory component of the disease becomes also evident by the patients' use of “sensory tricks” such as touching dystonic muscles to alleviate motor symptoms. The central premise of this paper is that the motor symptoms of MD have a somatosensory origin and are not fully explained as a problem of motor execution. We outline how altered proprioceptive feedback ultimately leads to a loss of voluntary motor control and propose two scenarios that explain why sensory tricks are effective. They are effective, because the sensorimotor system either recruits neural resources normally involved in tactile-proprioceptive (sensory) integration, or utilizes a fully functioning motor efference copy mechanism to align experienced with expected sensory feedback. We argue that an enhanced understanding of how a primary sensory deficit interacts with mechanisms of sensorimotor integration in MD provides helpful insights for the design of more effective behavioral therapies.
Collapse
Affiliation(s)
- Jürgen Konczak
- Human Sensorimotor Control Laboratory, Center for Clinical Movement Science, School of Kinesiology, University of Minnesota Minneapolis, MN, USA
| | | |
Collapse
|
29
|
Kinematic analysis of grasping in focal dystonia of the face and neck. Neuroscience 2013; 237:216-22. [DOI: 10.1016/j.neuroscience.2013.01.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/15/2013] [Accepted: 01/29/2013] [Indexed: 11/22/2022]
|
30
|
Avanzino L, Abbruzzese G. How does the cerebellum contribute to the pathophysiology of dystonia? ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.baga.2012.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Marinelli L, Pelosin E, Trompetto C, Avanzino L, Ghilardi MF, Abbruzzese G, Bove M. In idiopathic cervical dystonia movement direction is inaccurate when reaching in unusual workspaces. Parkinsonism Relat Disord 2011; 17:470-2. [PMID: 21334958 DOI: 10.1016/j.parkreldis.2011.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/24/2011] [Accepted: 01/26/2011] [Indexed: 11/28/2022]
Affiliation(s)
- Lucio Marinelli
- Department of Neuroscience, Ophthalmology and Genetics, University of Genova, Italy.
| | | | | | | | | | | | | |
Collapse
|
32
|
Kojovic M, Caronni A, Bologna M, Rothwell JC, Bhatia KP, Edwards MJ. Botulinum toxin injections reduce associative plasticity in patients with primary dystonia. Mov Disord 2011; 26:1282-9. [PMID: 21469207 PMCID: PMC4235250 DOI: 10.1002/mds.23681] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 12/27/2010] [Accepted: 01/24/2011] [Indexed: 12/23/2022] Open
Abstract
Botulinum toxin injections ameliorate dystonic symptoms by blocking the neuromuscular junction and weakening dystonic contractions. We asked if botulinum toxin injections in dystonia patients might also affect the integrity of sensorimotor cortical plasticity, one of the key pathophysiological features of dystonia. We applied a paired associative stimulation protocol, known to induce long-term potentiation-like changes in the primary motor cortex hand area to 12 patients with cervical dystonia before and 1 and 3 months after botulinum toxin injections to the neck muscles. Primary motor cortex excitability was probed by measuring transcranial magnetic stimulation-evoked motor evoked potentials before and after paired associative stimulation. We also measured the input-output curve, short-interval intracortical inhibition, intracortical facilitation, short afferent inhibition, and long afferent inhibition in hand muscles and the clinical severity of dystonia. Before botulinum toxin injections, paired associative stimulation significantly facilitated motor evoked potentials in hand muscles. One month after injections, this effect was abolished, with partial recovery after 3 months. There were significant positive correlations between the facilitation produced by paired associative stimulation and (1) the time elapsed since botulinum toxin injections and (2) the clinical dystonia score. One effect of botulinum toxin injection treatment is to modulate afferent input from the neck. We propose that subsequent reorganization of the motor cortex representation of hand muscles may explain the effect of botulinum toxin on motor cortical plasticity. © 2011 Movement Disorder Society.
Collapse
Affiliation(s)
- Maja Kojovic
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, United Kingdom
- Department of Neurology, University of Ljubljana, Ljubljana, Slovenia
| | - Antonio Caronni
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, United Kingdom
- Department of Human Physiology, University of Milan, Milan, Italy
| | - Matteo Bologna
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, United Kingdom
- Department of Neurology and Psychiatry and Neuromed Institute, “Sapienza” University of Rome, Rome, Italy
| | - John C. Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, United Kingdom
| | - Kailash P. Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, United Kingdom
| | - Mark J. Edwards
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, United Kingdom
| |
Collapse
|
33
|
Opavský R, Hluštík P, Otruba P, Kaňovský P. Sensorimotor network in cervical dystonia and the effect of botulinum toxin treatment: a functional MRI study. J Neurol Sci 2011; 306:71-5. [PMID: 21492880 DOI: 10.1016/j.jns.2011.03.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 03/18/2011] [Accepted: 03/24/2011] [Indexed: 11/25/2022]
Abstract
BACKGROUND The evidence suggests that the origin of primary dystonia is at least partly associated with widespread dysfunction of the basal ganglia and cortico-striato-thalamo-cortical circuits. The aim of the study was to assess the sensorimotor activation pattern outside the circuits controlling the affected body part in cervical dystonia, as well as to determine task-related activation changes induced by botulinum toxin type A (BoNT-A) treatment. METHODS Seven patients suffering from cervical dystonia and nine healthy controls were examined with functional MRI during skilled hand motor task; the examination was repeated 4 weeks after BoNT-A application to dystonic neck muscles. RESULTS Functional MRI data demonstrated overall reduced extent of hand movement-related cortical activation but greater magnitude of blood oxygenation level dependent signal change in the contralateral secondary somatosensory cortex in patients compared to controls. Effective BoNT-A treatment led to reduced activation of the ipsilateral supplementary motor area and dorsal premotor cortex in patients. The patients' post-treatment sensorimotor maps showed significantly smaller basal ganglia activation compared to controls. CONCLUSIONS These results provide imaging evidence that abnormalities in sensorimotor activation extend beyond circuits controlling the affected body parts in cervical dystonia. The study also supports observations that BoNT-A effect has a correlate at central nervous system level, and such effect may not be limited to cortical and subcortical representations of the treated muscles.
Collapse
Affiliation(s)
- Robert Opavský
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czech Republic.
| | | | | | | |
Collapse
|
34
|
Abbruzzese G, Berardelli A. Further progress in understanding the pathophysiology of primary dystonia. Mov Disord 2011; 26:1185-6. [DOI: 10.1002/mds.23707] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 02/14/2011] [Indexed: 11/07/2022] Open
|
35
|
Bota RG, Witkowski JW. Quetiapine Induced Acute Dystonia in a patient with History of severe Head Injury. Rehabil Process Outcome 2010. [DOI: 10.4137/rpo.s3626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
A patient with a history of severe head injury 10 years ago regained ability to walk after years of being bound to a wheelchair. During the last psychiatric hospitalization, quetiapine was increased to therapeutic dose using a normal titration. As a result the patient developed dystonia of multiple muscle groups requiring 4 days of hospitalization for remittance of symptoms. In this paper, we take a close look at the literature concerning extrapiramidal symptoms (EPS) in this context, and we suggest that in patients with a history of head injury, it is warranted to consider a slower titration of antipsychotic medications, including ones that are considered having a lower risk of EPS such as quetiapine.
Collapse
Affiliation(s)
- Robert G. Bota
- Kaiser Permanente, Corona, CA
- University of Missouri Kansas City
| | - Joanne W. Witkowski
- Kaiser Permanente, Corona, CA
- Kaiser Permanente, Riverside, CA
- University of California, Riverside and University of California, Irvine
| |
Collapse
|