1
|
Nazari S, Pourmand SM, Makki SM, Brand S, Vousooghi N. Potential biomarkers of addiction identified by real-time PCR in human peripheral blood lymphocytes: a narrative review. Biomark Med 2022; 16:739-758. [PMID: 35658670 DOI: 10.2217/bmm-2021-0291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Addiction-related neurobiological factors could be considered as potential biomarkers. The concentration of peripheral biomarkers in tissues like blood lymphocytes may mirror their brain levels. This review is focused on the mRNA expression of potential addiction biomarkers in human peripheral blood lymphocytes (PBLs). PubMed, EMBASE, Web of Science, Scopus and Google Scholar were searched using the keywords 'addiction', 'biomarker', 'peripheral blood lymphocyte', 'gene expression' and 'real-time PCR'. The results showed the alterations in the regulation of genes such as dopamine receptors, opioid receptors, NMDA receptors, cannabinoid receptors, α-synuclein, DYN, MAO-A, FosB and orexin-A as PBLs biomarkers in addiction stages. Such variations could also be found during abstinence and relapse. PBLs biomarkers may help in drug development and have clinical implications.
Collapse
Affiliation(s)
- Shahrzad Nazari
- Department of Neuroscience & Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Seyed Mahmoud Pourmand
- Addiction Department, School of Behavioral Sciences & Mental Health (Tehran Institute of Psychiatry), Iran University of Medical Sciences, Tehran, 1445613111, Iran
| | - Seyed Mohammad Makki
- Department of Psychiatry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Serge Brand
- Center for Affective-, Stress- and Sleep Disorders (ZASS), Psychiatric Clinics (UPK), University of Basel, Basel, 4002, Switzerland.,Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, 6714869914, Iran.,Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah, 6714869914, Iran.,Department of Sport, Exercise, and Health, Division of Sport Science and Psychosocial Health, University of Basel, Basel, 4052, Switzerland.,Department of Psychiatry, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417466191, Iran
| | - Nasim Vousooghi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran.,Research Center for Cognitive & Behavioral Sciences, Tehran University of Medical Sciences, Tehran, 13337159140, Iran.,Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, 1336616357, Iran
| |
Collapse
|
2
|
Tavakkolifard M, Vousooghi N, Mahboubi S, Golab F, Ejtemaei Mehr S, Zarrindast MR. Evaluation of the relationship between the gene expression level of orexin-1 receptor in the rat blood and prefrontal cortex, novelty-seeking, and proneness to methamphetamine dependence: A candidate biomarker. Peptides 2020; 131:170368. [PMID: 32668268 DOI: 10.1016/j.peptides.2020.170368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/19/2020] [Accepted: 07/06/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND previous studies have suggested that methamphetamine (METH) abuse may affect orexin regulation. However, the data regarding the relationship between the current level of orexin and the vulnerability to METH abuse are minimal. Here, we have investigated the correlation between the gene expression level of the orexin-1 receptor (OX1R) in the rat prefrontal cortex (PFC) and blood lymphocytes and susceptibility to METH dependence and its impact on novelty-seeking behavior. METHODS male Wistar rats were first examined for novelty-seeking behavior by the novel object recognition test, and the expression level of OX1R in their blood lymphocytes was evaluated by real-time PCR. Then, the susceptibility to METH abuse was investigated by voluntary METH oral consumption test. According to the amounts of METH consumption, the animals were divided into two groups of METH preferring and non-preferring. Half of the rats in each group were sacrificed, and the level of OX1R in their blood lymphocytes and PFC tissue was measured. The other half were sacrificed for the same reason after two weeks of drug abstinence. RESULTS The indexes of novelty-seeking behavior were significantly higher in the METH- preferring group compared to the non-preferring animals. Furthermore, the expression level of OX1R in the blood lymphocytes and PFC in the preferring group was considerably higher than the non-preferring group. CONCLUSION Up-regulation of the mRNA expression level of OX1R in the lymphocytes and PFC may predict vulnerability to the METH consumption and novelty-seeking, which may serve as a potential biomarker for METH abuse.
Collapse
Affiliation(s)
- Mahnoosh Tavakkolifard
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran.
| | - Sara Mahboubi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shahram Ejtemaei Mehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zarrindast
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran.
| |
Collapse
|
3
|
Matt SM, Gaskill PJ. Where Is Dopamine and how do Immune Cells See it?: Dopamine-Mediated Immune Cell Function in Health and Disease. J Neuroimmune Pharmacol 2020; 15:114-164. [PMID: 31077015 PMCID: PMC6842680 DOI: 10.1007/s11481-019-09851-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/07/2019] [Indexed: 02/07/2023]
Abstract
Dopamine is well recognized as a neurotransmitter in the brain, and regulates critical functions in a variety of peripheral systems. Growing research has also shown that dopamine acts as an important regulator of immune function. Many immune cells express dopamine receptors and other dopamine related proteins, enabling them to actively respond to dopamine and suggesting that dopaminergic immunoregulation is an important part of proper immune function. A detailed understanding of the physiological concentrations of dopamine in specific regions of the human body, particularly in peripheral systems, is critical to the development of hypotheses and experiments examining the effects of physiologically relevant dopamine concentrations on immune cells. Unfortunately, the dopamine concentrations to which these immune cells would be exposed in different anatomical regions are not clear. To address this issue, this comprehensive review details the current information regarding concentrations of dopamine found in both the central nervous system and in many regions of the periphery. In addition, we discuss the immune cells present in each region, and how these could interact with dopamine in each compartment described. Finally, the review briefly addresses how changes in these dopamine concentrations could influence immune cell dysfunction in several disease states including Parkinson's disease, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, as well as the collection of pathologies, cognitive and motor symptoms associated with HIV infection in the central nervous system, known as NeuroHIV. These data will improve our understanding of the interactions between the dopaminergic and immune systems during both homeostatic function and in disease, clarify the effects of existing dopaminergic drugs and promote the creation of new therapeutic strategies based on manipulating immune function through dopaminergic signaling. Graphical Abstract.
Collapse
Affiliation(s)
- S M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
4
|
Shahkarami K, Vousooghi N, Golab F, Mohsenzadeh A, Baharvand P, Sadat-Shirazi MS, Babhadi-Ashar N, Shakeri A, Zarrindast MR. Evaluation of dynorphin and kappa-opioid receptor level in the human blood lymphocytes and plasma: Possible role as a biomarker in severe opioid use disorder. Drug Alcohol Depend 2019; 205:107638. [PMID: 31710992 DOI: 10.1016/j.drugalcdep.2019.107638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/31/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The dynorphin (DYN)/kappa opioid receptor (KOR) system plays an important role in the development of addiction, and dysregulation of this system could lead to abnormal activity in the reward pathway. It has been reported that the expression state of the neurotransmitters and their receptors in the brain is reflected in peripheral blood lymphocytes (PBLs). METHODS We have evaluated the PBLs and plasma samples of four groups: 1) subjects with severe opioid use disorder (SOD), 2) methadone-maintenance treated (MMT) individuals, 3) long-term abstinent subjects having former SOD, and 4) healthy control subjects (n = 20 in each group). The mRNA expression level of preprodynorphin (pPDYN) and KOR in PBLs has been evaluated by real-time PCR. Peptide expression of PDYN in PBLs has been studied by western blot, and DYN concentration in plasma has been measured by ELISA. RESULTS The relative expression level of the pPDYN mRNA and PDYN peptide in PBLs were significantly up-regulated in SOD, MMT, and abstinent groups compared to control subjects. No significant difference was found in the plasma DYN concentration between study groups. The expression level of the KOR mRNA in PBLs was significantly decreased in all three study groups compared to the control subjects. CONCLUSION the expression changes in the DYN/KOR system after chronic exposure to opioids, including methadone, seems to be stable and does not return to normal levels even after 12 months abstinence. These long-time and permanent changes in PBLs may serve as a biomarker and footprint of SOD development in the periphery.
Collapse
Affiliation(s)
- Kourosh Shahkarami
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran.
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Mohsenzadeh
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Parastoo Baharvand
- Department of Social Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mitra-Sadat Sadat-Shirazi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Babhadi-Ashar
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Atena Shakeri
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zarrindast
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran.
| |
Collapse
|
5
|
Horn A, Scheller C, du Plessis S, Arendt G, Nolting T, Joska J, Sopper S, Maschke M, Obermann M, Husstedt IW, Hain J, Maponga T, Riederer P, Koutsilieri E. Increases in CSF dopamine in HIV patients are due to the dopamine transporter 10/10-repeat allele which is more frequent in HIV-infected individuals. J Neural Transm (Vienna) 2013; 120:1411-9. [PMID: 24057505 PMCID: PMC3779317 DOI: 10.1007/s00702-013-1086-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/23/2013] [Indexed: 11/30/2022]
Abstract
Dysfunction of dopaminergic neurotransmission has been implicated in HIV infection. We showed previously increased dopamine (DA) levels in CSF of therapy-naïve HIV patients and an inverse correlation between CSF DA and CD4 counts in the periphery, suggesting adverse effects of high levels of DA on HIV infection. In the current study including a total of 167 HIV-positive and negative donors from Germany and South Africa (SA), we investigated the mechanistic background for the increase of CSF DA in HIV individuals. Interestingly, we found that the DAT 10/10-repeat allele is present more frequently within HIV individuals than in uninfected subjects. Logistic regression analysis adjusted for gender and ethnicity showed an odds ratio for HIV infection in DAT 10/10 allele carriers of 3.93 (95% CI 1.72-8.96; p = 0.001, Fishers exact test). 42.6% HIV-infected patients harbored the DAT 10/10 allele compared to only 10.5% uninfected DAT 10/10 carriers in SA (odds ratio 6.31), whereas 68.1 versus 40.9%, respectively, in Germany (odds ratio 3.08). Subjects homozygous for the 10-repeat allele had higher amounts of CSF DA and reduced DAT mRNA expression but similar disease severity compared with those carrying other DAT genotypes. These intriguing and novel findings show the mutual interaction between DA and HIV, suggesting caution in the interpretation of CNS DA alterations in HIV infection solely as a secondary phenomenon to the virus and open the door for larger studies investigating consequences of the DAT functional polymorphism on HIV epidemiology and progression of disease.
Collapse
Affiliation(s)
- Anne Horn
- Institute of Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Carsten Scheller
- Institute of Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Stefan du Plessis
- Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Gabriele Arendt
- Department of Neurology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Thorsten Nolting
- Department of Neurology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - John Joska
- Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | | | - Matthias Maschke
- Department of Neurology, University Hospital of Duisburg-Essen, Essen, Germany
| | - Mark Obermann
- Department of Neurology, University Hospital of Duisburg-Essen, Essen, Germany
| | - Ingo W. Husstedt
- Department of Neurology, University Hospital of Münster, Münster, Germany
| | - Johannes Hain
- Institute of Mathematics and Informatics, Chair of Mathematics VIII (Statistics), University of Würzburg, Würzburg, Germany
| | - Tongai Maponga
- Department of Virology, Stellenbosch University, Stellenbosch, South Africa
| | - Peter Riederer
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Eleni Koutsilieri
- Institute of Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
| | | |
Collapse
|
6
|
Buttarelli FR, Fanciulli A, Pellicano C, Pontieri FE. The dopaminergic system in peripheral blood lymphocytes: from physiology to pharmacology and potential applications to neuropsychiatric disorders. Curr Neuropharmacol 2012; 9:278-88. [PMID: 22131937 PMCID: PMC3131719 DOI: 10.2174/157015911795596612] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 09/17/2010] [Accepted: 09/24/2010] [Indexed: 12/12/2022] Open
Abstract
Besides its action on the nervous system, dopamine (DA) plays a role on neural-immune interactions. Here we review the current evidence on the dopaminergic system in human peripheral blood lymphocytes (PBL). PBL synthesize DA through the tyrosine-hydroxylase/DOPA-decarboxylase pathway, and express DA receptors and DA transporter (DAT) on their plasma membrane. Stimulation of DA receptors on PBL membrane contributes to modulate the development and initiation of immune responses under physiological conditions and in immune system pathologies such as autoimmunity or immunodeficiency. The characterization of DA system in PBL gave rise to a further line of research investigating the feasibility of PBL as a cellular model for studying DA derangement in neuropsychiatric disorders. Several reports showed changes of the expression of DAT and/or DA receptors in PBL from patients suffering from several neuropsychiatric disorders, in particular parkinsonian syndromes, schizophrenia and drug- or alcohol-abuse. Despite some methodological and theoretical limitations, these findings suggest that PBL may prove a cellular tool with which to identify the derangement of DA transmission in neuropsychiatric diseases, as well as to monitor the effects of pharmacological treatments.
Collapse
|